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Evaporation from superfluid helium
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We calculate the spectral distribution of atoms evaporating from superfluid helium, with the help of a theory,
derived from the exact treatment of tunneling, which is free from the transfer-Hamiltonian approximation. In
the absence of a detailed microscopic model for He II, the current cannot be computed completely. However,

it is found that the spectrum must exhibit a singularity at the energy of the roton minimum: It is shown that,
contrary to earlier predictions, this is of the "cusp" or "rounded wedge" type, due to the shape of the
transmission-coef6cient singularity at the threshold of the roton channel.

I. INTRODUCTION

A few years ago, King and Johnston' reported
that 4He atoms evaporated from the superfluid
liquid had a mean temperature exceeding that of
the liquid. It is now known' that such a result was
due to an unsuitable experimental arrangment, and
more recent evaporation experiments"' do not re-
port any clear effect of that sort. However, a the-
oretical study of He II evaporation is of interest,
on one hand in order to achieve a better under-
standing of the evaporation (or condensation) pro-
cess itself, and on the other hand in order to make
clear how the energy distribution of the current is
related to the quasiparticle spectrum of the liquid.

Following a suggestion by Anderson, ' several
authors' ' have predicted that one should observe
in the single-particle elastic emission spectrum
an enhancement in the vicinity of the energy cor-
responding to the roton minimum ~„of the super-
fluid liquid. Most of these theories rely on the
assumption that the coupling between the super-
fluid and its vapor can be described by an effective
transfer Hamiltonian

where a~ and c& are operators which destroy an
atom in the superfluid and vapor phases, respec-
tively. Assuming T», to be quasiconstant and
treating II~ to lowest order, as is done is Bar-
deen's theory of tunneling, ' one finds an evapora-
tion current spectrum of the form

j(~)" ~~ ~'p, (~)p,(~),

where p is the density of states for excitations in
the liquid (L) or atoms in the vapor (V). The en-
hancement then comes directly from the high den-
sity of roton states in the liquid at (d -~„.

Such a theory has been successfully applied to
explain the results of Giaever's experiments on

tunneling in superconductors. " But it is well
known that it does not correctly describe tunneling
between normal metals. Moreover, Griffin and
Demers" have proven that even in the case of
superconducting electrodes it is not exactly the
BCS density of states which is measured by the
tunneling current (even though, in practice, the
difference in that case is too small to be measur-
able. Indeed, the use of a simplified transfer
Hamiltonian (i.e., with a constant matrix element)
cannot be justified in general. A detailed discus-
sion of this point, which we will not reproduce
here, is given in a paper by Caroli and Saint-
James. " Moreover, in the present case the cou-
pling between the two phases is obviously not small
enough to justify a priori a first-order approxi-
mation.

The approach we develop in Sec. II. is based on
Keldysh's formalism for out-of-equilibrium many-
body systems. It does not rely on a transfer-
Hamiltonian approximation, and treats the cou-
pling to all orders, with the help of a method which
was previously used to treat tunneling and thether-
mionic effect.

For a liquid maintained at a uniform temperature
T &&T~ emitting atoms into the vacuum, the elastic
current spectrum j(&u) can then be expressed for-
mally in the frame of well-defined approximations.
The next step would be to evaluate quantitatively
j(&u) for the whole range of experimentally acessi-
ble (d's. Unfortunately, there is no convincing
microscopic model for superfluid helium, so that
it is not possible to calculate numerically the pa-
rameters involved in the formal expression of
j(&o). Nevertheless, it is possible to draw conclu-
sive results in the immediate vicinity of the roton
minimum energy u„: We shall show that there is
no enhancement of j(&o) near e„, but (when inter-
actions between excitations are neglected) a struc-
ture with a vertical tangent at &o„and a

~

&o —&u„~'I'

behavior of j(&o) on both sides of this point exists.
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This structure is to some extent rounded by in-
elastic and lifetime effects. This kind of behavior
is not surprising at all; it is in fact well-known
and general in other physical domains, in which
a similar situation takes place, namely, the open-
ing of a new channel at a threshold energy (here
the roton channel for &o~ v„). This corresponds
to a "cusp" or a "rounded wedge" threshold be-
havior (as high-energy physicists call it) of a cur-
rent spectrum, a phase shift, a ref lectivity, or a
cross section depending on the problem at hand.
This will be discussed in more detail in Sec. III.

II. CALCULATION OF EVAPORATION CURRENT
SPECTRUM

A. Description of model

Recently Caroli et al."developed a microscopic
theory of tunneling based on Keldysh's nonequili-
brium perturbation formalism. This method does
not rely on any effective-Hamiltonian approxima-
tion and gives an exact expression for the current.

In the present work we shall apply this formal-
ism to the case of atomic emission into the vacuum
from liquid maintained at a uniform temperature
z' («z', ).

At the very beginning of the calculation a diffi-
culty arises which does not appear in the problems
involving emission of electrons from solids. In-
deed, in a solid the electron gas is restrained in-
side the material by the ionic potential, so that, at
least in a first approximation, the confinement of
the electrons to a limited region of space is due
to a one-body potential. This is not at all the sit-
uation for a liquid, in which it is the interactions
between the atoms themselves which are responsi-
ble for the separation into phases (and we want to
study the evaporation of these atoms'); thus a cor-
rect description of the system (semi-infinite liquid
+ semi-infinite vacuum) would demand a micro-
scopic description of the condensation. Unfortu-
nately, the only tractable approximation for such
a system is a generalized Hartree-Fock scheme,
which, as it is well known, is unable to predict
any separation of the fluid into phases. " In order
to circumvent this difficulty, we take the existence
of the liquid condensation as a starting point: we
assume that the atomic density n(x) is a known
function of position, falling from the bulk liquid
value (for x- —~) to zero (for x-+ ~) on some
characteristic surface thickness of the order of
the atomic radius a.

The total current density induced by the depar-
ture from equilibrium (owing to the zero pressure
maintained in the vacuum region) is

g= go+gory (4)

where g, is the free-particle propagator in the
isolated subsystem and Z(x, x') is that part of the
self-energy of the complete system (in the pres-
ence of the current) which does not couple the two
sides of the cut (xx' &0). Thus a giveng can con
neet only two points on the same side of the cut,
but it is not exactly the propagator of an isolated
semi-infinite medium at equilibrium, which would
have a particle density n'(x) different from n(x) in
the surface layer (in particular, one would have
n'(0) = 0 on the cutting plane) and, in general, a
self-energy term o different from Z.

In the case of tunneling, " since the quantity
Z(x, x ) appearing in Eq. (4) is, by definition, non-
zero only when x and x' lie in the same electrode,
and since the transmission coefficient of the tun-
neling barrier is very small, it is clear that the
difference between Z and 0 is very small —except
possibly at a distance from the cut of atomic or-
der. In particular, for the same reason, the ef-
fect on Z of the departure from equilibrium (i.e.,
of the current flow itself) is obviously small enough

where G'(r, t; r', t') is the "occupation propagator"
for the entire out-of-equilibrium system,

G'(r, t; r', t') = i(P (r', t')g(r, t)).

g and tl are, respectively, the atom creation and
destruction operators. Without entering into the
details described at length in a series of papers
on tunneling, '""let us first recall the principle
of the method used to calculate this G' in the sim-
ple case where interaction effects can be neglec-
ted. The system is cut into two subsystems (which,
here, would be the "liquid, "x &0, and the "vacu-
um, "x&0); to zeroth order the semi-infinite sub-
systems are both treated as completely isolated
(bounded by an infinite potential) and separately at
equilibrium, each with its own chemical potential.
Then the coupling between these two subparts,
which originates from the kinetic-energy term of
the total Hamiltonian, is reintroduced and treated
to all orders, with the help of Kjeldysh's pertur-
bation formalism for out-of-equilibrium systems.

When interactions cannot be neglected, which is
precisely the case here, the procedure is slightly
more complicated. It is described in detail in
Ref. 16, and we will here state only its principle.
One again defines semi-infinite subsystems, but
these are not strictly isolated. Indeed, they are
described by Green's functions g in which a bare
particle cannot go across the separation plane
(x = 0), but particles can cross that cut way and
back zvithin a self energy -inclusion That .is, the
functions g are given by the following "pseudo-
Dyson equation":
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to be neglected.
In the present case, only excitations with ener-

gies above the vacuum level contribute to the evap-
oration current; particles do not tunnel through
any barrier, but are simply "refracted, " so that
one does not expect the transmission coefficients
of interest to be particularly small. One may then
wonder about the magnitude of the effect on Z of
the current flow. However, one can make the fol-
lowing remark: the evaporation process affects
the population of excitation levels essentially only
in the range of energy Lo ~ co ~ Lo+ &E, where 4 E
-kT and the energy of the vacuum level L, is equal
to the latent heat of evaporation (Fig. 1). Since
we are considering low-temperature evaporation
only, the equilibrium population [-exp(- L,/kT)]
in that range is very small, and so is, a fortiori. ,
the change of this population owing to the current
flow. On the other hand, the self-energy Z„ is
made up of the contributions of all the interaction
processes consistent with the conservation laws.
That is, Z„results from a sum on phase space
involving the non current-carrying states (&u &L,)
as well as the "evaporation range. " The popula-
tion change in that range can therefore induce
only a small modification of the self-energy (i.e. ,
of lifetimes and of the shape of the dispersion
curve), with respect to that of the semi-infinite
liquid at equilibrium, at least at distances from
the surface larger than the space range (-a) of
Z itself.

Of course, since we are dealing with a super-
fluid liquid phase, it is understood that our system
is characterized not only by a particle density
function, but also by a condensate wave function
(g(x)). This, as well as n(x), is, even in the ab
sence of the current, different from the corre-
sponding quantity in the isolated semi-infinite
liquid at equilibrium. Moreover, it is also modi-
fied by the current flow. Again, by the above ar-

gument, we can assume that this last effect is
small, and it is clear that this remains true as
long as the temperature T is small enough for the
evaporation current J to be much smaller than the
critical current J~. Thus we will from now on
assume that the subsystems can be considered as
completely isolated and separately at equilibrium,
each of them being characterized by a given value
of the chemical potential (p = pz for the liquid, p,

=- ~ for the vacuum).
At this point, a problem remains: We have to

choose a model to account for the space variation
(which takes place mostly in the layer

~
x~ & a) of

the quantities [particle density n(x), condenstate
wave function (g(x)), self-energy Z(x, x')] which
characterize our total system. Since we are not
able to calculate them from first principles, we
choose to represent them by the simplest possible
approximation: The liquid is completely restrained
to the x & 0 region, with the same characteristic
functions as the infinite liquid, namely,

n(x) =nz8(- x), (g(x)) =($)z8(-x),

Z(x, x ) =Z, (x x )8( x)8( x ),

where 8(x) is the unit step function which is zero
for negative arguments. That is, we neglect the
direct coupling between the liquid and vacuum re-
gions via self-energy terms, and therefore as-
sume that the transfer primarily derives from the
kinetic-energy coupling. " This model is obviously
not self-consistent in a layer of atomic thickness
along the interface, but describes correctly bulk
properties. It therefore does not permit one to
obtain reliable quantitative results for the current.
But as we shall see, our qualitative conclusions
about the variation of j close to co„derive only
from the structure of the bulk spectrum. Thus
the present approximation, which affects only the
"matching properties" at the interface, does not
limit their validity.

B. Formal expression of evaporation current

~„=8.65
L, =7.15

k, k k

FIG. 1. Dispersion curve for quasiparticles in super-
fluid helium below 7&. Lo is the heat of evaporation of
the liquid.

In order to go further and get a formal expres-
sion for the current from Eq. (3), we must define
the Green's functions involved in the problem.
First of all, we are dealing with a superfluid Bose
system, which brings in anomalous functions; each
Green's function (in Kjeldysh's sense) becomes a
2 &2 matrix 6,

(G Fi
G=

(F G 1

defined in the usual way. " For example, the causal
Green's-function matrix is defined by
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G (rt; r't') = —i(T[4 (r, t)4t(r', t')] &,

where

(V (r, t)}
4(rt) =

(W'(r, t))

of the whole surface can be written"

with
and

V(r, t) = 4(r, t) —(4(r, t)&.
G;(x, x', k, )= f d pd)G'((;'P( )'

In the following, we will use the four matrices G',
G, G', G":

G'(rt; r't') = —i(4 tr(r 't')4 r(r, t)&,

G (rt; r't') = —i(4)(rt)4 t(r't')&,

G"(rt; r't') = —i8(t —t')(4 (rt)4 (r't') (8)

x„=—~ E+nE with n =0, + 1,+2, .. . ,

and we consider the above Green's functions only
between points of the discretized set. Then the
coupling between the two subsystems must be in-
troduced; it links pointx, to pointx, and is rep-
resented in the above matrix formulation by a
2X 2 matrix

—4',(r't')4, (rt)&,

G'(rt); r't') = te(t' t)(4 (rt)4'(r't')

—4 tr(r) t')4 r {rt)&,

where C ~ is the transpose of 4.
The above Green's functions refer to the whole

system. We also define the corresponding Green's
matricesg'(r, t;r;t'), g (r, t;r't'), P'(r t;)r', t'),
and P'(r, t; r't') for the zero-order system (no
coupling between liquid and vacuum). Note that
the g 's vanish when r and r' belong to the two dif-
ferent subsystems and that in the vacuum region
(x and x'& 0) they reduce to diagonal matrices (the
condensation amplitude being zero in that region).
Moreover, we are dealing with a continuous sys-
tem, so that the technique described in detail in
Ref. 15 has to be worked out. We introduce an in-
finite set of points on the x axis,

x exp[ik„( p —p') —i())(t —t') ].

+ G (x() x() k(()TP+ (x~ x~ k () (13)

Using the fact that the chemical potential of the
vacuum is p.„=—~, which implies that

g'„(x„x,; k„) =0 (14)

and that

g (x) x)' k() g (x) x) k() =g (x) x)' k()) (15)

we flIld

j„(&o,k„) = [r'/(2x)'h]g„(x„x, ; k„)G' (x„x,;k„).

p = (y, z) and k)) are vectors lying in a plane paral-
lel to the surface.

The contribution to the evaporation current owing

to atoms of energy & and parallel wave vector k
~,

can be deduced immediately from Eq. (9),

j,((d, k„)= —[r/(2w)'h][G (x'„„x,; k„)

—G'„(x„x,; k„)], (11)

where the E-0 limit is understood.
Making extensive use of the recipes described

at length in Refs. 13 and 15, we calculate the G"s
in terms of the g's with the help of the Dysonequa-
tion for the G matrices,

G (x) x()) k))) [g~(x) x)) k )))TG~( x)ox()) k)))]+

+ g'„(x„x,; k„)TG'„(x„x,; k„} (12)

and

where r= —8 /2m&'. At the end of the calculation,
the E -0 limit has to be taken.

Following Ref. 15, the total current flowing out

We thus have to calculate G'(xo xo kI). Using once
again the matrix form of Dyson's equation, we
easily find

G'„(xo, xo; k„) = [f Tg"„(xo,xo; k„)g"„(x„x,; k„-)] '

xg'„(x,x;k„) && [f T'p'(x„x;, k„)g„(x„—x,;k„)] ',

(17)
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where I is the unit matrix.
before calculating explicitly G' from Eq. (17), it is convenient to take the e-0 limit of Eq. (17). Once

again following Ref. 15, we get

P""'(x,x ' k„)—= (I/r)[f+e yo"'((u, k„)],

g""'(x„x k„)-=(I/r) [I+e y", "'(&u, k„)],

g'„(x„x,; k„) (&/v') yo(&u, k„),

g (xg xg' kn) = (e/v) rg((d ki)

(18)

where the y matrices are independent of e and finite. Setting

(u y

and using Eqs. (16}-(18),we finally obtain

(19)

ro ~ro+ r& ~

+ rououo uou—(r + r ) uu—(ro+ y )
(2v)'K ~(r".+ r', )(r."+ r",) - u", u", ~'

(20)

where it is understood that all of the functions in-
volved have arguments (~ ki).

Let us recall that the above result is valid only
in the approximation, described in Sec. II.B,
where direct coupling via self- energy terms is
neglected. At this point, and even in our very
simplified model, a full calculation of j,((d k~~)

from Eq. (20) would demand a complete micro-
scopic model for superfluid helium We will there-
fore study only the shape of the j-vs - {fI) curve in
the immediate vicinity of the roton minimum

C. Behavior of j„(~,k ~~)
near ~„

lim —G"„'"(x,x', k„)ax

lim —F"„"(x,x', k„) = 0,
6~O+ ~+ gag'- 6

and, finally, noting that F"„'"(x,x', k[~)

=F„"(x,x', k„), we obtain

y"=(m/8 )G '"(0 0 k[)[4 ((d ki)]

y", = (m /8 }G„'"(0,0; k„)[4"(&u, k„)]
u" =u", =(m/8 }F"'"(00 k„)[4"((o,k„)]

where

(22)

(23)

(24)

(26)

We will now show that the qualitative behavior
of j„(&u,k„}near the roton minimum ru„, as deduced
from Eq. (20), does not depend on the specific mi-
croscopic model used to describe super fluid he li-
um, but only on the well-known shape of the bulk
dispersion equation ~ = v(k) depicted in Fig. 1. In
order to study this behavior, we express the P's
(and then the y's) in terms of the Green's functions
6" of the infinite liquid. Neglecting as above the
seU-energy terms linking points on different sides
of the cut, ' we immediately obtain

g„'(x„x,; k„)

= G"„'"(xo,xo;k„)[E+TG '"(x„xo;k„)] . (21)

Performing the matrix product, taking the E -0
limit, and using (for the sake of simplicity of the
following analytic expression} the two relations,
which are easily proved by integrating the equa-
tions of motion of G" and F",

4"((d, ki) = G"„'"(0,0; k„}G"„'"(0 0' k„)

—[F"„'"(0,0; k„)], (26)

yo = —2iB(&o) Imyo,

y', = —2iB(v) Imy,",
u,'=u,'= —2iB(u)) Imu,',

where B(&o) is the Bose-Einstein function

(27a)

(27b}

(27c)

B((u) ={exp[((u —} I)/kT] —I} '.
G"„'"(x,x', k„) and F"„'"(x,x', k[~) are now expressed
in terms of their Four ier transforms,

(27d}

dkG„'"(x,x', k„) = 'exp[ik, (x -x')]G„"((o,k),

(28)

with a similar expression for F"'"; k„ is the com-
ponent of the momentum vector k[ (k& kI}] in the

from which the other quantities of interest are
easily deduced, with the help of the thermodynamic
relations
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direction transverse to the surface. G"'"((d k)))

and F"'"(((&,k„) are usually written"

G"'"((d, k) =G"'"(- &u, —k)

(a+e, —pi+S((u) k) -A((u) k) N((o) k)
D((d, k) D((d, k) '

opposite directions,

P& = k& —k)) + a(()& —(d~),

with

b=- BD BD

a(d a(k') „„„.,
)0.

(33}

F"'"((d,k) = —C(((&, k)/D((d, k),

with

(29)

(30)
(ii) Near (&u„, k„), where k„ is the momentum of

the rotons of minimum energy (i.e., on the roton
branches),

D((d, k) = [(d+ i&} —A((u, k)]' —[E&, —p~+S((d, k)]'

+c'((d, k}

D(&u, k) =—(~ —~,)—BD

td=cdr, 0=k 1

BD
+ (k —k, ) (,) td=fdr, k=0~

(32)

that is, for a given energy e and parallel momen-
turn k„, there are two possible phonons with trans-
verse wave vectors k, =+p, ((d, k„), propagatmg in

and e„=8k'/2M. S((d, k) and A((d, k) are, respec-
tively, an even and an odd function of v. Owing to
the rotational invariance of the infinite liquid, all
of these functions depend only on ~k ~= (k,'+k)'))'i'.
The excitations of the infinite liquid are defined by
the solutions of the equation D((d, k) =0. They, of
course, have finite lifetimes. However, in the
superfluid phase and in the energy range of inter-
est here ((d-(d„), these lifetimes are long enough
for the dispersion relation (Fig. 1) to be measur-
able experimentally. Therefore as a first approxi-
mation we will, for the time being, assume that
the solutions of the D =0 equation are completely
real. This neglects at the same time the widths
of the quasiparticle peaks and the incoherent back-
ground in the spectral density.

In order to study j,((d, k„) near (d„we must ex-
pand the Green's functions G" in powers of (((& —&u„).

As is clear from Eq. (28), their behavior is con-
trolled by the positions of the zeros of D((d, k).
Developing the dispersion equation in the vicinity
of ~=co„, we can write the following:

(i) Near ((d„, k,), where k, is the momentum of
the photon of energy (d„(i.e., on the phonon branch
of the spectrum),

D((d, k) = ((d —&u„)—BD

co=co kMrl r

j 2 2 2+ 2 (k —k„) a(k, ),
fd =cur, k=itr

134)

i.e. , for given k„and co, there are four roton
modes, with transverse wave vectors +P, (&u, k))),
+p, ((d, k„) given by

p,'=k„' k,', + [a((d —(u„)]'~',

P', =k2 —k,', —[a((u —&u„)]'i',
(35)

with

Clearly, two cases must be considered:
For ~ a ~„, the largest possible value

of k() (which corresponds to grazing emission) is

= [(2M/I')(~ —I,)]' ' (36)

where M is the free-atom mass. With co„=8.65 'K
and I,=7.15 'K, one finds that 0}~=0.5 A '. This
value is slightly smaller than the phonon wave-
vector k„and a fortiori, k)~) &k„. Therefore
whatever the direction of emission, p„p„and
P3 are real functions of ~. In other words, at the
energies of interest, atoms are refracted from
the vacuum into the liquid; there is no total reflec-
tion. The retarded propagator must be analytic in
the upper ~-half-plane. This imposes the restric-
tion that the poles which contribute to expression
(28) are P, sgn(x —x'), i&2sgn(x —x'), and
—p, sgn(x —x'). That is, causa. lity implies that
only excitations with a group velocity in the x di-
rection v, satisfying sgnv „=sgn(x —x'} contribute
to G"'r. Thus

2 p, ( k„()d[aD/a(k')]„.„,, [a((d —(d„)]"'[a'D/a(k')']„. „,,
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2 p, (u, k„)[8D/8(k')]„, , [a((d &u„)]"'[8'D/8(k')']„.„,,
(:(,{)*,+[a(~ ){"*)'") (:(,{),*~ [ (,){"*)"*)}

p, ((o, k„) p, ((d, k„)
(38)

Assuming that N((d, k), C((d, k), and yy((d kI) are
well-behaved functions of (d and k, and using the
relation

D((d, k) = —N((d) k)N((()), k) + C ((d) k), (39)

we obtain easily the expansion of the y, 's and uo's
in the vicinity of ~, with the help of formulas
(23)-(27). Inserting them into Eq. (20), we get

j.(&, k))) =—j.((d„k)))[I+(r)(k)))(~ —(d,)"]

values of k)) In the vicinity of (()„, j,(((), k„) may
therefore vary with one of the four possible shapes
(all characterized by a vertical tangent at (d = (d„)

depicted in Fig. 2, depending on the signs of 0.&
and n&. It is even possible that the shape of the
j-vs-~ curve could be of different types in diffe-
rent ranges of values of k„.

The energy distribution of the total current J,((d)

can be easily inferred from j„((d k)),

40 & (d„. (40) J(w) = J d'k„j,(,)(). (42}

For &o s(d„, p, ((d, k„) and p, (a&, k„) are now complex
quantities (roton waves are evanescent} but the
same kind of expansion can be worked out; it gives

((d k))) =j ((()~ k)))[1 + Q&(k)))((()~ (()) ]

(41)

It is not difficult, although lengthy, to obtain the
formal expressions of the two coefficients a&(k„)
and Q&(k))) We do not write them here explicitly,
because they are complicated combinations of
N(&u„, k,), C((()„,k, ), D(((()„k&) [where k, = (P, , „
k„}], and their derivatives. These coefficients
cannot be simplified (even by using sum rules) in

the absence of a detailed microscopic model, so
that their expressions are of no practical interest.
Moreover, owing to the lack of such a model, (i)
we cannot derive any simple relationship between
a& and a&, and (ii) there is no way to decide on
their signs: each of them can, a priori, be either
positive or negative; signs may change at some

{c)

FIG. 2. (a) and (b) Cusp and (c) and (d) rounded wedge
singularities in j» (co, k{~) near ~„.

Since the value of &o at which j,(&u, k))) has asquare-
root singularity is independent of 0„, the total
current will exhibit a singularity of the same type
at the same energy, namely ur„,

J„((u) =—J,((d„}[1+p)((d —(o,)'t '] if (d & (o„(
)

J„((d)=J,((d,)[1+p(((o„—(())'t'] if (d &(o,.
Again, the respective values and signs of the nu-

merical coefficients P& and P& could be obtained
only from a complete microscopic calculation.

III. DISCUSSION

As shown in Sec. II, our calculation cannot pro-
vide a full quantitative expression for the evapora-
tion spectrum, but only a prediction about its (sin-
gular) shape in the vicinity of the roton minimum.
This situation results from two physical difficul-
ties (which are, in our opinion, very hard to over-
come):

(i) We do not know the values of all of the para
meters involved in our calculation. More exactly,
a complete description, even in the simplified
model used in Sec. II, would require that we know

not only the dispersion relation, but the full Green's
functions (or equivalently, the self-energies) of
the infinite liquid, for all values of (d and k.

(ii) Even if condition (i) were realized, the sim-
ple model used here to describe the coupling be-
tween the "liquid" and "vacuum" subsystems would
not give an accurate numerical value of J,((()).

Indeed, for the sake of practical feasibility of cal-
culation, we have neglected the coupling across the
surface via self-energy terms and kept only the cou-
pling due to the kinetic-energy (one-body) term. This
approximation amounts to matching, at the inter-
face, free-atom wave functions, not with the true
wave functions 4 of quasiparticles of the liquid,
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but with approximate "bare" functions. That is,
the continuity at the surface of that part of the 4''s
which corresponds to the presence of a dressing
cloud is not assured by our approximation. In
other words, it is not possible, in the case of he-
lium, to calculate simply an exact value of the ex-
citation- (phonon- roton-) atom transmission co-
efficients. This stems from the fact that the (atom-
ic) range of nonlocal (dressing} effects is of the
same order of magnitude as all of the other char-
acteristic lengths, including the coherence dis-
tance $, so that the equations of motion of the ex-
citations are irreducibly nonlocal. This contrast
with the case of superconductors, "for which,
since $ &&a, nonlocal effects are negligible, and
the transmission coefficients of Bogoliubov exci-
tations can be obtained from standard local match-
ing equations.

For all of these reasons, there is little hope of
obtaining reliable quantitative predictions about
the complete evaporation spectrum. However, the
qualitative result about the singular behavior of
j(&u) around &o„, obtained in Sec. II, is completely
general, and by no means an artifact of the afore-
mentioned approximations. We found that j(v)
must exhibit a structure with a vertical tangent at
&o = &o„, taking either a cusp [Fig. 2(a) or 2(b)] or
rounded-wedge [Fig. 2(c) or 2(d)] shape, depending
on the respective signs of the coefficients P& .
This is, indeed, a well-known scattering pheno-
menon which occurs, each time a new "channel"
opens, at the corresponding threshold energy (the
opening channel is here the roton one, with thresh-
old v= &a„}." It has been studied extensively in
high-energy physics, where it gives rise to singu-
larities of the inelastic scattering cross sections
near a reaction threshold. It can be shown directly
that our evaporation problem may be recast into
the language of multichannel scattering theory,
leading to the same final result as the one obtained
in Sec. II, under the single condition that interac-
tions between excitations of the liquid be negligible.
(This, together with transmission singularities for
solids, is the subject of a separate paper. ") In
other words, the fact that in the present paper we
have neglected nonlocal effects in the vicinity of the
surface does not affect the validity of our result.
This is quite understandable when one considers
the physical reasons for the occurrence of the
threshold singular ity:

(i) For e«u„, only phonons can propagate in
the liquid. However, close below co„, there also
exist, near the surface, evanescent roton waves,
the space range of which increases as (&o, —&u) '~'.
A phonon wave packet, before being transmitted
into vacuum, spends, in the rotonevanescentstate,
a time which increases as the range of that state.

This phenomenon, which is obviously independent
of the details of the (pseudo) potential in the sur-
face layer, is what gives rise to the (u„—e)'~' be-
havior of the phonon-atom transmission coefficient
below the roton threshold.

(ii) For ro & &u„, roton channels open, the flux
carried by the rotons of energy &u varies as (&u

—&u„)'~' (and this, again, whatever the detailed
properties of the surface layer). This together
with the condition of flux conservation entails the
square-root variations of all transmission coeffi-
cients.

Such a singularity has already been observed in
one case involving a transmission problem: the
optical ref lectivity of CdS exhibits a cusp at the
minimum energy of the upper polariton branch. "
Note that this is an experimental proof that the
predicted threshold behavior is not modified by
nonlocal short-range effects; indeed, polariton
modes are a superposition of photons and excitons.
Excitons obviously have a finite radius, so that
nonlocal effects are present in the polariton prob-
lem as well as in the case of helium.

All of:he above calculation and discussio"I have
neglected lifetime effects, or, equivalently, inter-
actions between quasiparticles. These appear in
two ways:

(i) They give rise to imaginary self- energy terms
coupling points on the two sides of the surface.
These are the terms responsible for inelastic
transmission processes (for example, a phonon
at energy ~ decomposes, at the surface, into a
transmitted atom of energy co'&~ and a reflected
phonon ~ —(d', or, two phonons ~, and e, combine
at the surface into an atom ~, + re„etc.). As has
been argued by Anderson, ' and substantiated by
recent reflection measurements, "the phase space
available for such processes is very small, so
that the corresponding inelastic current can be
safely neglected.

(ii) They limit the lifetimes of the bulk excita-
tions. The finiteness of these lifetimes can be
taken into account (at least approximately) by let-
ting, in the calculation of Sec. II, the momenta p&
(lip k~~) of the excitation have finite imaginary parts.
This straightforwardly results in a rounding of the
roton threshold singularity, on a width 4&@ -g/r
(where r is some average of the lifetimes of the
excitations of energy &u-u&„). The same intuitive
conclusion is also obtained from general scattering
theory arguments. The different low-temperature
lifetimes for roton-roton, phonon-roton, and pho-
non-phonon scattering are larger than, typically,
10 ' sec.'4 Thus h/r«&u„.

Therefore, finally, the observability of the thres-
hold singularity depends only, in practice, on the
order of magnitude of the P coefficients. In the
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absence of a complete microscopic calculation,
we must rely on dimensional arguments. In super-
fluid helium, all of the characteristic energies of
interest are of the same order, -co„, which also
gives the scale of the variations of the various
quantities involved in the expression of the a and

P coefficients. One then finds that P& -u„' '. Thus
it seems that one can reasonably hope that the pre-
dicted singularity is observable experimentally
(especially if it turns out to be of the cusp type).

No such effect has yet been observed in evapora-
tion experiments. However, of course, the ideal-
ized experiment considered above is not realizable
as such. Most actual experiments"' use a heat
pulse to create an excess population of excitations
in the liquid, so that the relevant occupation factor
is not the thermal one, but a quantity depending on
the characteristics of the pulse, the impedance of
the contact between the liquid and the heating re-
sistor, the distance between this and the surface,
and the details of the thermalization processes in

He II.
Since all of these quantities are very poorly

known, it is difficult to extract detailed informa-
tions from the spectra thus obtained. Although it
is not impossible that evaporation experiments
can lead to the observation of the above predicted
effect, there seems to be more hope, at least in
the near future, of exploiting data about the spec-
trum of He atoms reflected from superfluid liquid
He. Moreover, the reflection technique would
probably be more appropriate since, as proved in
Ref. 19, at energies of order (d„ the reflected cur-
rent j„is much smaller than the transmitted cur-
rent jr (ja-10 'j„)which induces a corresponding
enhancement of the relative amplitude of the singu-
larity of j„with respect to the one of j~. Such an
experiment has recently been performed by Ed-
wards et al. ." However, the experimental uncer-
tainty of j(&u) is relatively large in the range
co-co„, so that further refinements are needed in
order to draw a definite conclusion.
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