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Breakdown of the Gin*burg-Landau approximation in superconductor fluctuation theory
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The fluctuation specific heat above transition for a clean superconductor in a uniform magnetic field is

calculated microscopically for fixed temperature and varying field. It does not exhibit the premature
breakdown of the Ginzburg-Landau approximation, arising from failure of the (gli)'~(gli + 2eA/h c)'
substitution that was found previously for the clean fluctuation diamagnetism.

I. INTRODUCTION

The Ginzburg-Landau (GL) equation governing
the order parameter or pair wave function of a
superconductor holds for slowly varying wave
functions, and is linear in (V/i} . The influence
of a magnetic field H on the Cooper pairs in a
superconductor is taken into account by the sub-
stitution' (V/f)' ll' =-(V/i-+ 2eA/gc)'. (Here A is
the vector potential, and the GL approximation
keeps only leading-order contributions in II'.)
The Cooper pair is thus treated by this substitu-
tion as a point doubly charged particle. Using
this substitution, the fluctuation diamagnetism
above transition M(T) was calculated within the
GL approximation by Prange' who predicted that
M(T~)/H'~' = const. Deviations from GL predic-
tions in strong fields were expected only for
H/H„(0)-1 as higher powers of II' become im-
portant.

Experimentally, however, Gollub, Beasley, and
Tinkham' found that a plot of M(T~)/H'~' vs field
deviated from the GL prediction for unexpectedly
low fields, H/H„(0)- 0.05, for clean superconduc-
tors. For increasingly dirty superconductors,
this effect diminished, and in the dirty limit, the
deviations occurred at H/H„(0}- 1, as expected.
Patton, Ambegaokar, and Wilkins' (PAW) did an
improved calculation that included high-wave-
number fluctuations, with the magnetic field in-
cluded by a [(V/i)'- ll']-type substitution. This
could not, however, account for the premature
breakdown of the GL approximation.

Lee and Payne' (LP} and Kurkijarvi, Am-
begaokar, and Eilenberger' (KAE) showed theo-
retically that the anomalous results could be ac-
counted for by a consistent inclusion of commuta-
tors [II„,II,], as well as higher powers of II'.
This is necessary for consistency, since the field
parameter measuring the contribution of both is
the same, namely, h=-(2eH/Ifc)('(0)=H/H„(0).
Here $(0) is the GL coherence length and H„(0)
=Ifc/2e('(0) is the zero-temperature Ginzburg-

Landau critical field. The consistent inclusion
of the extra field terms from the commutator was
called "nonlocal electrodynamics" (ned) by LP.
The calculations"' were done both in the clean and
dirty cases, but since the ned effect is largest in
the former case, we shall only consider it in this
paper. Inclusion of ned resulted in a curve for the
diamagnetism"' that deviated from GL predictions
for fields about an order of magnitude smaller
than the PAW calculation, and so fitted the exper-
imental curve' closely.

A question that immediately arises is if nonlocal
electrodynamics plays a similiarly essential role
in other superconductor fluctuation phenomena in
a magnetic field. This is especially important,
since the inclusion of ned in theoretical calcula-
tions is more involved than the simple substitution.

In this paper we examine the effect of a magnetic
field on the fluctuation specific heat for clean
superconductors, and show that ned is unimpor-
tant. For fixed temperature and varying field, the
calculated specific heat that includes both II' and
[II„II,] terms consistently (as in LP-KAE),
closely matches the calculated curve that includes
II' terms alone (as in PAW). This is in contrast
to the diamagnetism case, where the two curves
are very different, as stated above.

In Sec. II we outline the microscopic calculations,
based on the pair propagator, ' and present our
results. In the Appendix we point out that the
LP-KAE result for inclusion of ned may be rede-
rived in a simpler manner using properties of
special functions instead of operators and coherent
states. "'

II. CALCULATIONS AND RESULTS

We follow LP, and outline the calculation of
the grand potential from the pair propagator. The
grand potential I= —k~T ln Tre ~'" ""' for the
superconductor described by a Gorkov' Hamilto-
nian
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N —IN= I a'rEa, — II —e)a,J ~ 2'PB
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can be found by differentiating, then integrating I
with respect to the coupling constant A..

Thus"'

I(.) r(o)= ( ae ja'rlI(-. ..-;o-),
40

(2)

where

D (r, r', v') = ( T[P &
(r, r)P ( (r, )TP] (r ', 0)gt (r', 0)])

is the finite-temperature pair propagator' in the
presence of the Gorkov interaction. D satisfies an
integral equation that is soluble in the ladder ap-
proximation, if D is diagonal in some basis 4
i.e. , if

This is in the GL approximation, where K([q~ )
has been expanded up to order q~. In order to in-
clude the effect of high-wave-number fluctuations,
PA% essentially put

1 —l(iio(
~ q ~

) = 1 —exp[-N(0}A[go+ $'(0)P]),

and included the effect of a magnetic field by the
simple substitution on the pair momentum,
$'(0)q'- $'(0)k'+ 2h(n+ &). Here k is the pair wave
number parallel to the field, and n=0, 1,2, ... .

LP-KAE showed that the simple substitution
above, equivalent to (V/I)'-Il', failed for the
fluctuation diamagnetism, especially for the clean
case. With the pair propagator diagonal in pair
Landau states, their result"' rederived in the
Appendix, for 1 —XII -(1—I(II„~) was

I 111 =N(o)1(e, ~ ae e L (e}'„(-1)"
0

D(r, r', (d )= Q @ (r)4*(r')D ((o ). x K((e' ~ a*}'")). (5)

I(X) - I(0) = ks T Q ln(l —1(.II ), (3)

Here co = 2mmk~T, m is an integer, and is hence-
forth set equal to zero and suppressed, since for
the clean case it is D (0) that diverges at transi-
tion and dominates the ~ &0 contribution. '"'
Therefore, we have with D =II,/(1 —l(.II ) that

Here P= eH/Kc. T—he effect of the extra commutator
terms, or ned, is to cause the folding of the zero-
field kernel K(~f~) with a Laguerre polynomial
L,„(K).

LP showed' that for h& 0.28 the contribution of
the exact kernel K under the Laguerre folding of
Eq. (5) could be simulated by a PAW form

where K(I ql ) = I —exp[ —g'(0)q'(r~/T)'] . (8)

II =- d'r, d'r, 4* r, II r„r, 4' r,

and II(r„r,} is the polarization part,

II(r„r,) = keT g G,(r„r,; }a)G,(r„r,; —v).

(4)
Using this simulation and Eqs. (5) and (8) in Eq.
(3) they found, after expanding the logarithm and
integrating, that

I(X) -I(0)= —[VksT(T/T~)h/4v~~~g (0)]Q F,'.
T=j

In zero magnetic field, II(r, r, ) at H = 0 is
—= II,(~ r, —r,

~
) and the propagator is diagonal in

plane waves, II - II(q) = 11,(
~ q ~

}with

~il, ([@)=N(0)~[~, +K([q [)]
= N(0)h[~, + ~'(0)q'].

Here N(0) is the single-spin electron density of

states at the Fermi surface, e, = ln(T/T„) and the
zero-field kernel K(

~ q ~
) -=[II,(0) —II,(

~ q ~
)]/N(0).

(7)

Here E„=—(1 —A")(QA, }',A, —= 1 a h, A —=A /A„Q —= 1+c„
and h is a dimensionless but temperature-depen-
dent field variable h =- h(T„/T)'. [Terms such as- ln(1+ e,) not leading to a divergent specific heat
at transition have been extracted and neglected. ]

From Eq. (7) we find the specific heat per unit
volume, C = —V 'T S'[l(X) -l(0)]ST', including ned

effects, to be given by
I

(r+ 1) 3r 4hr (1+A" ') hr(1+A" ') h r(r —1)(1 -A" ') H
Q' QA, (1 -A"} A, (1 -A") A'(1 —A") T

I

where

( ) KTg, rh(1+A" ')
H +

and

K:h ks T/ [4v T~ E (0)].
Here the last term in Eq. (8) is in terms of the
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diamagnetism M„~ calculated by LP-KAE, and
found by them to be sensitive to the magnetic field.
Note that the sum for M,~ begins at the x= 3 term,
since the r = 1,2 terms are zero, as may be easily
checked. Such cancellation does not occur in the
other terms of C„~ in Eq. (8). Both series of Eqs.
(8) and (9) diverge at a T„(H) defined by QA, = 1
with ln[T/T„(H)] = e, + k/(1+ h). Equation (8) has
previously been plotted' for fixed field and vary-
ing temperature. Here we will consider fixed
temperature and varying field.

In order to compare with C„~, we also deter-
mine the specific heat Cpg„with higher orders in
I12 included, but with the commutators [II„,11,]
neglected. The Laguerre folding in Eq. (5) is
omitted and the ('(0)q'- ('(0)k'+ 2k(n+ —,) substitu-
tion into Eq. (6) is used. ' ' This gives us a C~„„
expression as in Eq. (8}but with the substitution
A, -A,'=—e'". The Mp„„ term does not exhibit a
cancellation of the r=1, 2 terms. '

From Eq. (8) C(T)$'(0)h'~' is a function of di-
mensionless scaled variables &, and h only. Thus,
plots versus these variables will be universal in
the sense that all clean superconductors with
fluctuations above T„(H), i.e., intrinsic type-II
materials and supercooled type-I materials, will
give the same curve.

In Fig. 1, we plot C(T)$'(0)k'~' vs h, for various
fixed values of e,(=0,+0.003). For e, =0 and
k«1, C(T)$'(0)k'~'-const+A, where, in the GL
approximation, the constant is'

(ks /8v} P (2n+ 1) '~' = 0.91 x 10 "(erg/'K).
n 0

The solid curves are the C„d curves of Eq. (8).
The &,= +0.003 curves merge with the z, = 0 curve
for h» co, fitting it to within 1% for h& 0.1. For
clarity, they are terminated at h= 0.05. The
g, = 0,003 curve goes to zero like h' ' for h «1,
and the a, = 0.003 curve diverges at T„(H).

In order to judge the importance of ned, we

plot, for &,=0 only, the corresponding
C(T)$'(0)k'~' curve using the Cv„„, neglecting
ned (dashed line). The PAW curve, coming from
the simple (V/i)'-ll' substitution, matches the
ned curve to within 7 /0 or less, with both changing
by one-half the GL value (horizontal line), by
about h=0.3. This is to be compared to the dia-
magnetism, where the ned curve changes by one-
half the GL value at h= 0.05, with the correspond-
ing change in the PAW curve occurring only for
fields about a factor of 10 larger. Thus for the
fluctuation specific heat, the extra commutator
terms do not cause anomalous behavior and the
deviations from the GL prediction are mainly due
to higher order II' terms.

This behavior is better understood if we also

hC
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FIG. 1. C(T)$~(0)h is plotted vs h on a semilog
scale for fixed ~0(= 0, + 0.003), where the variables are
defined in the text. The solid lines are predicted speci-
fic heats, including ned effects. The co=+0.003 curves
merge with the ~0= 0 curve, but are terminated at h
= 0.05 for clarity. The dashed and dotted lines are the
PAW specific-heat and dominant-term contributions,
respectively, for e 0= 0. (The corresponding curves for
~ 0=+ 0.003 are not shown. ) The horizontal line is the
GL limit.

III. CONCLUSION AND COMMENTS

In conclusion, for the fluctuation specific heat,
the corrections to the (V/i)'-ll' substitution are
small, in contrast to the fluctuation diamagnet-
ism"' where such corrections lead to a premature
breakdown of the GL approximation. Measurement
of the universal curves predicted in Fig. 1 would
confirm this.

In clean superconductors, fluctuations are much
harder to measure than in the dirty case, owing to
the smallness of the critical region. However,
the application of a magnetic field widens the
critical region and enhances the fluctuation speci-
fic heat. ' Previous measurements in a magnetic
field" were done only for very dirty superconduc-
tors, for which ned effects were found to be unim-
portant for the diamagnetism. ' ' Therefore, these
results" cannot be directly compared with the
theory presented here.

plot (dotted line) the contribution to C„d from
terms excluding the M,~ term in Eq. (8). In the
field range shown these terms alone match the
ned curve to better than 2%. The M„d term, which
is known to be sensitive to ned effects, is thus
small compared to these dominant terms.
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Finally, in view of recent theoretical" and ex-
perimental' work on fluctuations inside the criti-
cal region, we must emphasize that our calcula-
tions are valid only outside the critical region in
a magnetic field' since we assumed only bare elec-
tron Green's functions G„ in the polarization part
II, above. The question of the role of ned in fluc-
tuation effects inside the critical region is, how-
ever, worth examining.
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R, =—r, —r,

d'~, +„*„r, d'BIIo R e'"'" 4», r, .

(A3)

LP evaluate Eq. (A3) by converting the differentiai.
operator TI to creation and annihilation operators,
expanding in coherent states, and performing some
integrals over special functions. It is here that we
diverge from previous treatments. " Note that in
Eq. (A3) odd powers of R 5 vanish by symmetry,
leaving a series' in IF-h and [II„,II,]-ih. This
series is independent of the degeneracy label q,
and so actually Il„~, is II„,. Thus in Eq. (Al) we
may sum both sides over q and divide by the de-
generacy factor (2eHL„L,

~

2gIIc) leaving Ii„~ un-
changed, but resulting in an S» term on the right,
with Z=z, —z, and

APPENDIX
2eHL„L, /2)/hc V

(A4)

The result of Eq. (5) for the inclusion of ned in
the pair propagator has been obtained previously
by LP-KAE. However, the methods they use are
somewhat involved, "' using operator algebra and
coherent states. Here we outline an alternative
and somewhat simpler derivation using properties
of special functions.

We want to determine II, —II„„,of Eq. (4} where
-4„~„which are pair Landau states, and

eigenfunctions of Il~, i. e. ,

&'(0)II'4' , = [&'(0)k'+ 2h(n + —,)]4„~.
In the gauge A= (0, Hx, 0) and with volume
V—= L„L,Lz and P =- eH/hc, the pair Landau state is

2p})/4 l(ae+ar-8 (~-~0)2

II„,= d'x, d'y', 0„,r, II r, -r,

x e '""~"2'4, (r,),
where IIo is the zero-field polarization, and

1

)f) (12)= (2e/Ifc) A(s) ds
2

(A2)

integrated along a straight line path.
Invoking Werthamer's trick'" we obtain with

(A 1)

Here q is the degeneracy label, x, = —q/2P, and

H„(x) is a Hermite polynomial. Making the eikonal
approximation on the Green's function (valid for
kg T/fi» ~„ the electronic cyclotron frequency) and
writing it as a zero-field Green's function times a
phase factor, we get

The sum over the degeneracy label of a product of
electron Landau states is known, and has been used
in a different context. " For completeness, we
outline the steps for pair Landau states.

By invoking the Hermite polynomial generating
function"

n&n«n

x exp{[2xyg —(x'+ y')z']/(1 —z')],

(A5)

we get a generating function for I„,

g z"I„=e'~ '")""(I—z) ' exp[(1+ z)Pp'/2(1 —z)] .
n=0

(A6)

Here p' -=(x, —x, )'+ (y, -y, )' and the phase integral,
in our gauge is )f)(12}= t)(x, + x,)(y, -y, ). Compar-
ing this with the standard Laguerre generating
function Zz"L„(x)= (1 —g) 'exp[-xg/(1 —z)) we ob-
tain from Eq. (A4)

V le)kge)o(r)r2)e Br / L (tIp-) (A7)

Inserting this into the equation for II», the phase
factors cancel, giving, with d'R in cylindrical
coordinates,

II„= Jt pdpd8dz IIO(~ R)e' ' ' /'L„(Pp') . (A8)

Fourier transforming ilo(~ R~) and doing the 8 in-
tegration in Eq. (A8) gives a zero order Bessel
function. Doing the p integration and adding and
subtracting 11,(~q~ =0), with a Debye cutoff, ' gives
the LP-KAE result.
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( ere„, =N(0(e(e, +
2

e*e' e (e)„
(-&)" ""

x (2
QO

(A9)

The Laguerre polynomial appears because its gen-
erating function is related to that of the generating
function for a product of Hermite polynomials. We
see that the infinite degeneracy of the Landau states
states with respect to q plays an essential role in
obtaining the final result.
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