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We introduce the new concept of "nodal phase correlation" (NPC) into many-particle quantum mechanics.
NPC is a particular quantum correlation among particles, which is important for current-carrying states of
isolated systems. Mathematically it is characterized by a definite relation in configuration space between the
phase and the modulus of the many-particle wave function. We illustrate the significance of NPC by showing

the crucial role it plays in magnetic flux quantization and in certain macroscopic interference effects in

superconducting rings. To this end we partly rederive the theory of these phenomena. Our method is based on
the BCS theory. We critically examine previous work, in particular the single-particle pairing theory, which is
considered to be a standard approach to magnetic flux quantization. This theory does not give rise to NPC.
We are able to show that the corresponding many-particle wave function is in fact unrealistic and not
consistent with the BCS theory of superconductivity.

I. INTRODUCTION

We introduce a new concept into many-particle
quantum mechanics: nodal phase co~relation.
This concept gives a useful and detailed mathe-
matical characterization of the many-particle
wave function of a number of special quantum-
mechanical correlation phenomena which occur in
current-carrying systems. In this paper we shall
discuss the many-particle wave function of a
superconducting ring, which is a particularly in-
teresting example of a system where a nodal phase
correlation structure can be realized. We shall
see that this structure is responsible for the ef-
fect of magnetic-Qux quantization' and for certain
macroscopic interference effects depending on the
magnetic flux enclosed in the ring (for a review
see Ref. 2}.

In the literature, however, the relevance of
nodal phase correlation to the macroscopic quan-
tum effects mentioned above has not been recog-
nized. ' In our opinion this can be explained by the
fact that nodal phase correlation does not appear
in a simple way in the formalism of field theory,
which governs modern many-particle theory.

In Sec. II of this paper we develop the concept
of nodal phase correlation (NPC} and the more
specified concept of n-particle NPC. We then show

the relevance of this concept to the general struc-
ture of currents in quantum mechanics. In Secs.
III and IV we illustrate the significance of NPC by
rederiving the effect of quantized magnetic flux
and the macroscopic interference effects men-
tioned above. In particular, our analysis shows
that the decisive structure of the many-particle
wave function, which is responsible for these ef-
fects, is a two-particle NPC. It appears that this
fact has so far not been fully recognized. We give

a critical discussion of previous standard work
about flux quantization, covering in particular the
contributions of Brenig, ' Byers and Yang, ' and
Yang. '

II. NODAL PHASE CORRELATION (NPC)

We consider an isolated system of N particles
which can be described by a spin-free time-inde-
pendent Schrodinger Hamiltonian. In an earlier
paper' we have shown that the phase y(x) of an
eigenfunction

g(x) =R(x}e'"'"'=a(x)+ib(x), x cR'"

(R, y, a, b real)

depends in a critical way on the (3N 2)-dimen-
sional nodal' hypersurfaces (denoted by M,„,} and
their circulation numbers m~,

(2)

where P~ is a closed path which encircles once the
kth (3N —2)-dimensional nodal hypersurface, but
no other (3N —2}-dimensional nodal hypersurface.
The circulation numbers m, are integers.

Simple one-particle examples (N = 1) are given
by the hydrogen states

P„,~
(r) = q„, (r, 8)[1 —( cso)8'] ~'e'

which have a single one-dimensional nodal line
(since N —2= 1) along the e axis (8=0, w) around
which the phase function y(r) = mn (a is the azi-
muthal angle) is multivalued and where the circu-
lation number is just the familiar magnetic quan-
tum number. For systems with more than one
particle the phase function y(x) may be the sum of
two real functions It, and k', such that h depends
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only on n definite particle coordinates r,-, and h'
does not depend on these n coordinates, and where
h itself cannot be decomposed into a sum of func-
tions depending on different particle coordinates.
Now let us further assume that h is multivalued
"around" at least one nodal hypersurface M», .
Then the position in configuration space, R» of
the hypersurface M», can only depend on the n-
particle coordinates r, , which are arguments of
h. We call such a function h a nodal phase. In the
case where n is equal to one, i.e., where, e.g. ,
h = h(r, ), there is no phase correlation between the
4th particle and the rest of the particles. But in
the case where n is greater than one, there is a
phase correlation between the n particles whose
coordinates appear as arguments of h. We call
this correlation n-particle nodal phase correla-
tion.

The importance of nodal phase structures is
illustrated by the following theorem': Consider a
spin-free time-independent Schrodinger Hamilton-
ian which does not contain a magnetic vector po-
tential, and whose coefficients are sufficiently reg-
ular (for details see Ref. 7). Let the Hamiltonian
be defined in the space of square integrable func-
tions Z, (G), where G is a simply connected do-
main in the configuration space R'". Let (j)(x} be
an eigenfunction. Further let the corresponding
N -current density

2
a

= —R'(x) V(x)M

(M =M& for n =3j —2, 3j —1, 3j; M& is the mass
of the jth particle; j=1,2, ..., N), be such that the
surface integral of the 3N-dimensional vector
y(x)j (x) over the total boundary hypersurface of
the domain of the system in the configuration space
R'" vanishes. (This is true, e.g. , if, in three di-
mensions, the particle density vanishes at the
boundary of a finite domain, e.g. , in an isolated
piece of solid, as it is considered in Sec. III.)
Then the phase function y(x) of the eigenfunction
(})(x) is a constant [apart from possible jumps
across nodal (3N-1}-dimensional hypersurfaces]
unless there exists at least one (3N-2)-dimen-
sional nodal hypersurface with nonzero circulation
number yn. In other words, whenever the phase
p(x) differs from a constant, the wave function
(j)(x) is zero on at least one (3N-2) Dimensional
hypersurface M» „and the phase y(x} is multi-
valued, such that its value changes by 2wm along
any closed path in the 3N-dimensional configura-
tion space which encircles once a particular hyper-
surface M», [but no other (3N-2)-dimensional

nodal hypersurface with nonzero circulation num-
ber) .Other phase structures do not exist under
the conditions stated above. This theorem is a
direct consequence of the mathematical structure
of the Schrodinger equation in configuration-space
representation. It gives the most general struc-
tural relation between the phase y(x) and the mod-
ulus R(x) of the wave function (j(x), saying that the
mere existence of a nonzero phase gradient S S)(x)
implies that the modulus R(x) vanishes on a (3N
—2)dimensional hypersurface.

If the vector potential is different from zero,
the phase y(x) may be different from a constant
without the simultaneous existence of nodal hyper-
surfaces M», . However, if the Hamiltonian is
sufficiently regular, the following is always true':
Whenever the phase changes its value along a
closed path in the space R'", then this path en-
closes a nodal hypersurface of type M», . Thus
from the behavior of the phase on the closed path
in R'" some information follows about the be-
havior of the wave function in the "interior" of
the closed path.

NPC can occur in solutions of the Schrodinger
equation of free particles. This shows that it is
a typical quantum correlation in the sense of the
Einstein-Podolsky-Rosen experiment, ' i.e., a
correlation which is possible among particles
which do not interact dynamically. From particu-
lar examples of NPC (e.g. , the one treated in Sec.
III) it becomes clear that NPC describes a corre-
lation between the measured values of the positions
and the orbital angular momenta around different
axes of the individual particles.

In the absence of a magnetic field the nodal phase
structure [E(I. (2)] does in general not give any
observable effects because of time-reversal de-
generacy of the states with opposite equal circu-
lation numbers. In the presence of a magnetic
field B(r)= curlX(r) this degeneracy is removed
under favorable constellations of the 3N-dimen-
sional vectors

8 (x) = (A(r, ),A(r, ), . . . , X(r„)) and y(x)
X+

(cf. Secs. III and IV).

III. MAGNETIC FLUX QUANTIZATION

We consider a superconductor shaped as a long,
hollow cylinder (centered by the z axis) of inner
and outer radii a and b, respectively, and we as-
sume the radius a and the wall thickness b -a to
be much greater than the penetration depth. The
Hamiltonian in the space of N superconducting
electrons has the form
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(5)
separation of the variables g and R,

Here mo is the electron mass and V is the sum of
two terms, the first one representing the sum of
the single-electron potential seen by each conduc-
tion electron, the second one representing the
electron phonon interaction. According to BCS
the superconducting states are described by ap-
proximate eigenfunctions g(», s) of the general
form'

(6)' ' ' 4(rx-i rN)Xpr-i, n].
Here y, &

is the spin function 4(i)f(j) and 5 is the
antisymmetrizing operator. For our purpose it
is sufficient to consider the system as being
translationally invariant in the bulk of the super-
conductor. In this case the functions g(r„r&) have
the form

y(r, , r, ) = f(a„)e" "&&,

with

Ic(g=r( —rg R~= (r +rJ). (8)

[Equation (7) is only valid if the vector k is suf-
ficiently small (see, for example, Ref. 10, p. 5'I).]
The function f(Z) (which itself depends on k) is
symmetric with respect to the origin, and it ex-
tends only over the microscopic range of the order
of 10"4 cm, i.e., of Pippard's coherence length
(see Ref. 10, p. 43).

Equation (I) describes the local, microscopic
structure of the ground state (k= 0) and of current
carrying lower excited states (k4 0). For a dis-
cussion of a macroscopic ring we will have to con-
sider the behavior of the wave function on a mac-
roscopic scale. This behavior will be determined
by the shape of the macroscopic domain. The lo-
cal structure of g(r„r&) [Eq. (I)] is valid only in
the interior of the solid, i.e., in the neighborhood
of all pairs (r, , r&) for which both r, and r& are
contained in the volume of the hollow cylinder.
Now f(~,.~) extends only over a microscopic range
of the order of 10 ' cm. This means that, on a
macroscopic scale, the range of ~,J is confined
to the origin I&I,.~=0, i.e., r, =r~. As a conse-
quence, the macroscopic support of the function
p(r„r, ) with respect to the variable R,&

is the
whole volume of the hollow cylinder. (Physically,
the support in ~ space originates essentially in the
electron-phonon interaction, whereas the support
in R space is a consequence of the effective crys-
tal potential extending over the volume of the ring,
together with the support in z space. ) The local
structure of g(», R) [Eq. (7)] corresponds to a

where g(R) is an eigenfunction of the kinetic en-
ergy operator

E„„(R)= ( ) (10)

such that g(R) does not change appreciably over a
coherence length. Since the support in R space is
the volume of the hollow cylinder, the eigenfunc-
tion g(R) is adapted to this cylindrical symmetry,
i.e., we have

g(R) = a(R„R,„)e' +@' (X = m, = integer) . (11)

Here o., is the azimuthal angle in R space and R„,
= (R2+R2)' '. For small values of m, this global
structure [Eq. (11)] is consistent with the local
structure [Eq. (7)], since, as a consequence of the
macroscopic dimension of the ring, neither
a(R„R„)nor the R gradient of n, (R) vary appre-
ciably over a microscopic region. [Remark:
From the mathematical point of view X can act-
ually be any real number, since we consider a
doubly connected region (the volume of the ring),
where the Schrodinger equation is not fully de-
fined. However, for physical reasons, the Schro-
dinger equation of the doubly connected region
must be consistent with a covering Schrodinger
equation which is defined in a larger, simply con-
nected region (e.g. , in the whole three-dimension-
al R space), containing our doubly connected ring
volume. It can be shown" that under quite gen-
eral assumptions the covering Schrodinger equa-
tion has only single-valued solutions. Therefore
we must restrict the value of X to integers. ]

For the following the dependence of g(r, , r~) on

the angle o.,(R;&) is important. The angle o.,(R,~)
is related to the azimuthal angles n(r, ) and a(r&)
of the spaces of the ith and jth particles, respec-
tively, by the following important relation:

o.(r, ) = a(r,.) = a, (R,,), (12)

whence

2n, (R,q) = o, (r, )+ a(r~) . (13)

Equation (12) is valid for all points (r„r~) for
which g(r, , r, ) is appreciably different from zero.
This is easily verified, since these points obey
the relations r& = r, , together with I r& I » 0, I rz I » 0,
the latter being a consequence of the macroscopic
inner radius of the cylinder.

In the presence of a magnetic field 5(r) = curl X(r)
the N-particle Schrodinger equation reads (-e is
the electric charge):
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1 " I 8 e
+ —X(r~) + V E-P'(x, s)=0.

2mo, i ~r~ c

(14)

If a magnetic flux ft} is present in the hole of the
cylinder, then in the volume of the ring the vector
potential takes the form

XQr = (P/2v)gradn (r), (15)

and Eq. (14) is equivalent to

I, (8 )
.V ~ 0(. .).

in Eqs. (9) and (11), since owing to the same sep-
aration of variables the two functions obey similar
equations.

The expectation value of the azimuthal part
(-h'/4m, IR l')(S/Sa, )' of the kinetic energy oper-
ator (10), times ,'N (t—he number of pairs), rep-
resents the dominant part E~ of the flux dependent
total energy of the N-electron system. For the
ground state we obtain

E~ = (Nh'/8mof2) [m, + (2e/hc)P]', (23)

where l is the average radius of the cylinder. E~
is a periodic function of the total flux ft}, with
minima (equal to zero) for

xexp n r~ =0. 16 P = (-hc/2e)m, ,

and differences between the minima

(24)

P"(r„r/) = P(r, , r/) exp [f(2eg/hc)a, (R;/)]

-=f'(»„)g"(R,/}. (19}

Here the R-dependent function g"(R) is an eigen-
solution of the operator (10) considered in the
(doubly connected) volume of the ring. But now

the eigenfunction

g "(R)= a'(R„R„,)e""++' (20)

Now we claim that the solutions g'(x, s) have the
same structure as the functions g(x, s} in the flux-
free case [Eqs. (6), (9), and (11)]. Let us use the
ansatz for the pair functions

0'(r r ) = f'(»; ) 8'(R; ) ~

Then the total eigenfunction of the field-free Ham-
iltonian in Eq. (16}consists of sums of products of
the functions

g"(r„r/) = P'(r„r/)

x exp (f(ep/hc) [n(r, )+ a(r/)]}. (18}

If now the support of the function f'(») is approxi-
mately the same as in the flux-free case, we can
apply relation (13), whence

&P = hc/2e. (25)

This periodicity leads to the phenomena of trapped
magnetic flux and of flux quantization in units of
hc/2e (Ref. 13; see also Refs. 4 and 5).

IV. DISCUSSION

A. Nodal phase correlation

We consider a total X-particle wave function
P(x, s) which is a solution of Eq. (16) (where we
omit the prime). The corresponding space func-
tions g(x) are linear combinations of functions of
the type

(26)

Here the index v represents a definite partition of
N into ,N pairs —fj, and $(ij) stands for a pair func-
tion g(r, , r/) defined by Eq. (22) (where we omit the
primes). The functions g(r, , r,.) and their N par-
ticle product functions g„(x) clearly show two-par-
ticle NPC whenever the circulation number m, is
different from zero. The phase of each pair func-
tion g(r„r/) appearing in a particular function

g„(x)=R„(x)e'"~'"' gives rise to a class of paths
P „'~ defined by

has to obey the subsidiary condition

X = m, + 2eg/hc, m, integer, (21)

taking into account the fact that P'(x) is single
valued [see the remark made in connection with
Eq. (11}]. From Eqs. (19) and ('20) we obtain

g'(», R) = f'(») a'(R„R, )e' + +' ', m, integer.

(22)

If we consider solutions where X in Eq. (20) is of
the same order of magnitude as A. in Eq. (11), then
g'(», R) has in fact the same structure as $(», R)

where each path P„'~ encircles once the region
V(ij}= (x!R„'/, & a). According to Sec. II this implies
that a nodal hypersurface M»„, associated with the
particular class of paths P„" must lie somewhere
in the interior of the region V(ij). Its exact posi-
tion is not known, since the detailed form of g(x) is
unknown in V(ij). If g(x, s) had the structure [Eqs.
(6) and (22)] also in the volume V(ij), then this
nodal hypersurface (denoted by M,"„'/, ) would be
explicitly known and defined by
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(r, + r, ),= 0 = (r, + r, ), . (28)

There are 2 N hypersurfaces M,"„'., associated with
each function P„(x). The analysis of Sec. II shows
that flux quantization in superconductors, and in
particular the factor & appearing in the flux quan
turn (hc/2e), originate in this two par-ticle NPC
structure of the functions g„(x). (Remark: In Sec.
II we have defined NPC as being associated with a
total space function g(x), and not with functions
P„(x) into which it may be decomposed. Now the
dominant support of a function g(x) is the union of
branches each of which represents the dominant
support of a function g„(x). In our case the differ-
ent functions g„(x) have almost disjoint dominant
supports in the space R'". [The dominant support
of a function P„(x) is the region where P„(x) is ap-
preciably different from zero. It consists of all
points x =(r„.. .r„.. . r&, . . . r„), such that

~ r, —r, ~& $ (where ( is of the order of 10 ' cm,
for all pairs (r„r&) which are arguments of a
pair function g(r, , r, ) appearing in the product
function (26).] Therefore P(x) is equal to some
function f„(x) on almost the whole of each branch
of its proper dominant support. That is, apart
from the intersections of the branches (which
are negligible for our macroscopic considerations)
the NPC structure of g(x) is the same as that of
the functions g„(x).)

It is instructive to compare our system of super-
conducting electrons with a system of identical,
spinless, interaction-free bosons with charge —q.
Here the ground-state function g(x} is a product
of N equal single-particle functions u(r~) -e' '~a',

i.e., the NPC index n is equal to one and P(x) does
not show NPC. In a method analogous to Sec. III
one finds that the azimuthal part of the ground-
state energy of the bosons in the ring is propor-
tional to (m+ q/hc)', whence a flux quantum equal
to hc/q is obtained. We see that the factor —,',
which occurs for superconductors as a consequence
of two-particle NPC (n= 2), is here replaced by
one, as a consequence of n being equal to one.

The effect of two-particle NPC is further illus-
trated by the fact that owing to Eq. (13) applied to
Eq. (22) (we omit the primes), the functions g„(x)
can approximately be written

p„(x)= exp Pi[—'n(r )]m, Qf(It„) a(R,",R„"„).
k=1 (&/)

(29)

Equation (29) makes one think of g„(x) being an
eigenfunction of the one-particle orbital angular
momentum operators

a eI =-ik x —-ys kg@ kgx
k k

with possible half -integer orbital angular momenta
(since m, is integer). This is in fact true if we
consider only points x (= R'", which are situated
on the dominant support of g„(x). For points x
which lie outside the dominant support of g„(x),
however, the phase structure of g„(x) is in general
different from that given in Eq. (29). [This is cer
tainly the case if Ir, I= Ir,. l=0, or if Ir,. I= ir,. l

with (r, -r&)„„»10 ' cm, since in these cases re-
lation (13) is not valid. ] Further, the projection
of the dominant support into a one-particle sub-
space depends on the position of other particles.
This means, that tjI„(x) is not an eigenfunction of
a properly defined single-particle orbital angular
momentum operator L, .

Despite the phase structure appearing in Eq.
(29), the function g„(x) is still single valued. In
fact, consider a vector x in the dominant support
of $„(x) and let a single-particle vector r~ go once
around the hole [(r,),„&a] of the macroscopic cyl-
inder; then x remains in the dominant support only
if another single-particle vector r~, = r, (the mate
of r~) simultaneously goes around the hole [(r~,)„
&a). Hence the phase of p„(x) changes by 2w(&m, )
+2v(&m, ) =2x&& integer. We further remark that, on
the dominant support of g„(x), the total angular mo-
mentum is always integer, since the simulated
half -integer one -particle angular momenta always
occur in pairs.

Approximation (29) is valid for each function
P„(x) on its proper dominant support. Therefore,
a total space function g(x) [which is a linear com-
bination of functions g„(x)], in very good approxi-
mation contains the factor

on its dominant support. Brenig' uses (as an an-
satz) a wave function with such a factor. However,
he finally constructs his wave function such that it
is also single valued in each n(r~} individually.
Our present analysis justifies the idea of the gen-
eral phase structure in Brenig's ansatz and shows
its origin. On the other hand, it also shows that
a phase structure according to Eq. (29) occurs
only on the dominant support of the wave function,
and that here, i.e., on this particular subset of
the configuration space R'", the wave function is
not single valued in each angle variable a(r~} sep-
arately. [This is not in contradiction to the fact
that the wave function is single valued in each
particle variable individually, i.e., single valued
in the whole of the configuration space R' . In
other words our statement means the following:
if we let one angular variable a(r, ) vary around
the hole of the cylinder, while all other variables
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are kept fixed, then after a microscopic variation
(of the order of the coherence length divided by
the radius of the cylinder) we come to a region in
configuration space R'" which lies outside the
dominant support, and there the wave function has
no longer the form (29).] We therefore find that
Brenig's wave function is not equivalent to our
wave function, but rather to the single-particle
pairing function which we discuss in Sec. III 8.

B. Examination of the single-particle pairing approximation

A standard derivation of flux quantization' (cf.
Ref. 10, p, 240ff) is based on solutions of the one-
electron Schrodinger equation for the ring. Fol-
lowing Byers and Yang, ' and Schrieffer' the sin-
gle-particle states are then paired up according
to a pairing scheme to form the N-particle state.
(We remark that such a state, before antisymme-
trization, does not show NPC, in contrast to the
functions g„(x) discussed previously. ) The method
works as follows: First the single-particle func-
tions are determined by solving the azimuthal
part of the one-electron Schrodinger equation

theory zvith the azimuthal part
~~+a++$f) = e~™rl~ ~5)e~(~+/2)a(~f)

of our two pa-rticfe function g(r(, r&)=f(((,&)g(R(&)
[Eqs. (17) and (22), where we omit the primes],
both representing a state where the energy has a
minimum. This means that

—,'m, = —e(P/hc,

and hence

q(«r «r ) g(R ) simony(%($ )

e-i (e4/hc)a g3)e-s (e4 /hc)a (Vf )

(38)

(39)

We recognize that Eqs. (36) and (39) are not idenfi
cal. The only situation in which they could be for-
mally identical would be in the presence of excited
states of the relative coordinate function f(((„.),
such that f((((&) would have the form

f(((,&)
= b(((,'~, ' (()e~' " '"(&'-, -m integer . (40)

[Here ((,'~, ((„'~„and a ((((&) are cylindrical coordi-
nates in ((,~ space. ] In fact, if in analogy to Eq.
(13) we had

1 h s e(P—+ 0 ((()
2 mr' i Sn 2((c 2n (((,,)—= 2a (r, —r~) = a(r,.)-a(r,.) (41)

where

h2
, M+ — y„(u), (30)

mar' hc

r= (x'+y')'i' and g„(n)=e' ", Minteger. (31)

(o( is the azimuthal angle in (( space), then we
could replace Eq. (39) by

y(r, , r, )= f((((.~)g(R(, )

ei(m /2-e4/hc)aQ~)ei(-m„/2-e4/hc)aO'f)

(42)
The angular kinetic energy of the electron is

given by

E = (5'/2m, I2)(M+ e(plhc)'. (32)

The pairing condition for pairing two single-par-
ticle functions P„and g& reads"

M+ ep/hc = —(M+ eQ/hc),

that is,
M—= m —e(P/hc and M=-m -e@/hc

(33)

(34)

E „=I'm'/mof',

where m=0, + —,', +1, . . . .
Now let us compare the azimuthal part,

eisa (Pz) eisa ($.) ei(m-e4 /hc)a (5-)

(35)

are paired, with m and e(P/hc beingbothintegeror
both half-odd integer. As a consequence the mini-
ma of the azimuthal part of the two-particle ener-
gies are equal to

which is now equal to Eq. (36) if &m equals m.
(This latter condition is consistent with m being
integer and m being integer or half-odd integer. )
Thus we obtain the result that the single-particle
pairing formalism is formally equivalent to our
approach presented in Sec. III, provided Eqs. (40)
and (41) are valid, and provided that &m is pair
wise equal to m. However, Eq. (41) is, in general,
not valid on the dominant support of P(r(, r&), where
r, = rf. Hence the two sets of pair functions cannot
be formally identical.

Even if only Eq. (40) was valid [but not Eq. (41)],
the two methods would not even approximately be
equivalent. This becomes most evident, if we
compare the N particle states o-f the two op-
proaches in the presence of the flux {t).

a. In the single-particle pairing method the
ground state has the form

(» s) I (elllf(&($$) (u(&(($)

~ ei ( e-ee /hc)a {5f) (36)
el''~a ($2( I) + IN', a(%2y)

]2 ~ ~ ~

of a particular two particle function (d-escribed by
a definite value of m) in the single particle pairi-ng

~ ~ ~ e&+N/2a (~N ) + &NN/2a (Pg ~N~le N$
&2A ly2k N-1 A I~

(43)
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Here M» are integers which are all dhfferent from
each other. The total energy is given by

E (p)=, I (M + —„)+(M ~ —)'
(44)

It has (almost equal) minima at Q = (hc/2e) x inte-
ger. (The minima are not equal to zero. ) In the
absence of the flux we have M, = -M,. When the
flux increases, the energy changes continuously,
and the numbers M~ and M~ to be paired change
whenever 2eglhc passes a value —,'+ integer [cf.
Eqs. (33) and (34), or Fig. 8.8 in Ref. 10].

b. In our case, on the other hand, the ground
state has the form [Eq. (6)], where the orbital
pair functions

P(r„r,) = f(r, —r~)g( —,'(r, + r~)}

are highly correlated, and are all equa/. The
azimuthal energy, which is due to the R,&

spaces,
is given by Eq. (23). It has minima (equal to zero)
whenever p is equal to (-hc/2s)m„(m, integer).
In the absence of the flux, the function g has no
azimuthal phase factor in the ground state, i.e.,
m, is equal to zero. With increasing flux Q the
energy changes continuously, and the quantum
number m, changes (in the same way for all pairs}
whenever 2eg/hc passes a value —,'+ integer. Now

if in fact f (7) had exited states of the form (40),
then the quantum number m would nevertheless
be zero, despite the presence of the magnetic flux,
because otherwise the energy would increase by
the azimuthal part E"„ofthe energy corresponding
to the Pc,~ spaces

m'NK' g*(p7, R) g(x, R)
OJf 2mo &X3

and the system would no longer be in its ground
state, since this additional energy is independent
of the flux. [That is, unlike the phase m, a.(R),
the phase m.a (x) does not contribute to minimize
the magnetic energy. This follows from the fact
that on the dominant support of a function |jI„(x) the
N-dimensional vector potential 8 (x} in very good
approximation depends only on the variables
a.(R„).]

The preceding comparison shows that the ground
state of the single-particle pairing formalism
corresponds to a highly excited state in our ap-
proach (which is more closely based on the BCS
theory}. For example, in the absence of the flux,
the ground state (43) of the pairing theory corre-
sponds to an excited state of our function g(x, s)
[Eqs. (6) and (9)], where all the relative coordinate
functions f(r, r&) are in a d-ifferent excited state
(40), with quantum numbers m having different

(and only even! ) values for each pair [cf. Eqs. (33),
(34), (36}, (40)-(45)]. Thus our analysis shows,
that the single pa-rticle pairing formalism leads
to a ratkex physically unrealistic many-particle
aoave function of the superconducting ring system,
and that it is not consistent with the BCS theory.

c. Off dia-gonial long range -order (ODLRO}
It is well known" that a BCS function shows
ODLRO of the reduced density matrix p"'. In
fact, ODLRO [e.g. , in the form given by Eq. (26c)
of Ref. 6] can easily be verified for a BCS function
by using the fact that the dominant supports of the
different functions P„(x) are almost disjoint sets
in the space R'", and that all pair functions in Eq.
(6) are equal. Yang' gives an argument in favor
of the statement that ODLRO implies a periodic
free-energy behavior as a function of the flux Q

(and hence implies magnetic -flux quantization}.
We emphasize, however, that the property of the
energy, in order to be a periodic function of the
magnetic flux, originates in the phase stncctm. e
of the N-particle wave function, whereas ODLRO
is also possible for real functions. Therefore
Yang's statement has to be taken with precaution.
As a counterexample imagine, e.g., a system,
which is described by wave functions of the general
type (6) discussed in Sec. III, but such that g(R) is
real (but still macroscopically extended), owing to
some additional interaction in the system. In this
case the magnetic energy is not periodic with the
flux, but we still have ODLRO in p"'. Thus ODLRO
is not a sufficient condition for magnetic-flux
quantization. [Nor is it a necessary condition,
since the wave function (43) of the single-particle
pairing formalism, which leads to a periodic flux
dependence of the energy, does not show ODLRO. ]
All we can say is that if the energy of the system
is periodic with the flux, and if the system shows
ODLRO, then the nature of ODLRO may determine
the length of the period (compare Refs. 6 and 13).

V. SUPERCONDUCTING INTERFEROMETERS

While the single-particle pairing formalism,
despite its unrealistic wave function (43}, is able
to approximately simulate the correct flux de-
pendence of the energy of a superconducting ring,
we expect it to be unsuccessful in describing physi-
cal effects which directly involve a measurement
of a partial behavior of the wave function. On the
other hand, we expect that the BCS-type function
of Sec. III will be able to describe the effects.
This is exactly what happens in the following ex-
ample.

If one connects two Josephson junctions in paral-
lel by superconducting links, one obtains a super-
conducting interferometer (for a review see Ref.
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2}. Such a system has the same topological struc-
ture as the ring discussed in Sec. III. The super-
conducting electron waves in the individual arms
of the interferometer interfere with each other in
the same way (apart from the Josephson effect) as
in an electron interferometer for freely moving
electron beams. Now if in this second case the
two branches of the interferometer enclose a mag-
netic flux P, the order of the interference pattern
is shifted by unity whenever the magnetic flux in-
creases by an amount hQ = hc/e. This is the (mag-
netic) Aharonov-Bohm effect." (For a review see,
e.g. , Ref. 15.}

The theoretical derivation of the Aharonov-Bohm
effect given in Ref. 14 (see also Ref. 16) consists
in calculating stationary scattering states of the
one-electron Schrodinger equation in the presence
of the magnetic flux. (The system consists of un-
correlated electrons. ) Analogously, in the case
of a superconducting interferometer enclosing a
magnetic flux one has to calculate stationary N-
electron scattering states. In the framework of
the single-particle pairing formalism this means
that one has to build a Slater determinant out of
N single-particle stationary scattering states, i.e.,
out of N single-particle states, each describing a
one-electron Aharonov-Bohm effect. This method
therefore leads to the same periodic flux depen-

(R) -ikey fm+a~di) (46)

Here we recognize the same two-particle NPC
structure as in the closed-ring system discussed
in Sec. III.

dence as in the Aharonov-Bohm effect for beams
of free electrons, with a flux period &P = hc/e.
Experimentally, however, one observes' a flux
period 4P = hc/2e.

On the other hand, if we use a BCS N-particle
wave function as in Sec. III, we obtain at once the
experimental value: Following the same argu-
ments as given in Sec. III, the kinetic part of the
Schr5dinger equation here reduces to the scatter-
ing problem for the function g(R). This is again
the same problem as in the case of the Aharonov-
Bohm effect for a single electron, except that now
in R space, as a consequence of Eq. (13) (or more
generally because r, = r& = R,&), the vector poten-
tial has twice the value it has in a single-particle
space [cf. Eqs. (16), (19)], whence the flux period
&P = hc/2e.

The mathematical behavior of the scattering
states is complicated. However, in the special
case where 2$e/hc = m, = integer, the functions
g(R), for large radial distances from the flux
carrying area, have the asymptotic form"
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