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%'. Gotze and M. Lucke¹
Physik-Department der Technischen Universitat and Max-Ptanck-Institut fiir Physik, Munchen, Germany

(Received 6 October 1975&

The dynamical density correlation function of liquid helium II at zero temperature is expressed in terms

of a static restoring force Q0 and a polarization operator N within Mori's theory. N is approximated in terms

of two-mode decay integrals and Qo is related self-consistently to the liquid structure factor. The nonlinear

integral equations for M and Q0 are solved by an iteration procedure and the dynamical structure factor

S(q, ~) obtained is compared with the experimental results of Cowley and Woods. The elementary excita-

tion spectrum calculated has a roton minimum 6 of 11'K and shows Pitaevskij bending for large momenta.

The existence of a resonance of S(q, w) is found to be the explanation for the measured excitation peak to
exceed 2b, . The variation of the single excitation strength as a function of momentum is analyzed. The

multiphonon contribution to S(q, w) is discussed and the existence of a double-peak structure therein is

found for intermediate wave numbers.

I. INTRODUCTION

p ~)0
q q (la)

is a reasonable test function, because of the inter-
play of Bose statistics and strong interaction at
high density. Here g is the ground-state wave
function and p- denotes the density operator of
wave number fl. Calculating the expectation value
of the Hamiltonian with it)'-, one gets" as an upper
bound for the excitation energy

s,(q) =q'/2m s(q). (1b)

Here m denotes the helium mass and s(q) is the
structure factor. Every liquid, contrary to the
dilute systems of the Bogoliubov model, exhibits
a peak in s(q) for q roughly equal to the reciprocal
interparticle distance. This peak then implies a

0
roton minimum for q -—2 A ', in agreement with
Landau's' prediction.

Since Landau' introduced the concept of an ele-
mentary excitation to provide a microscopic theory
for the two-fluid hydrodynamics of liquid helium II
much effort has been invested to working out a
first-principles derivation of his phonon-roton
spectrum. Bogoliubov' studied the model of a
weakly interacting Bose gas; he was able to derive
for his model the elementary excitation picture as
a consequence of the Bose condensation. The ex-
citation spectrum exhibited as low-lying-states
phonons only: a result necessary to explain super-
fluidity. The model was extended later' to a theory
of dilute Bose systems with essentially realistic
interactions. The Bogoliubov model and its ex-
tensions do not yield a theory of rotons. Feynman'
could explain the rotons as a result of the high
density of helium. He showed that Bijl's' sugges-
tion for an excitation state

The minimal roton energy 6 according to the
Bijl-Feynman spectrum (lb) is larger than the ex-
perimental one by a factor of 2. The main reason
for this deficiency has been found by Feynman and
Brenig. ' The continuity equation forces the roton
wave packet to be surrounded by a back flow of
liquid. Estimating this back flow on the basis of
classical hydrodynamics they found that, essential-
ly, m in Eq. (la) ha, s to be replaced by m*=-,'m.
A detailed calculation of the excitation spectrum
with a trial wave function incorporating back flow
was carried out by Feynman and Cohen. ' For b.
they obtained 11.9 'K.

W'ithin Beliaev's' field-theoretical formulation
of the helium problem, the decay of one elementary
excitation into two was analyzed by Pitaevskij. ' He
carried out an asymptotic expansion of the scatter-
ing amplitudes and self-energies near the decay
thresholds. In particular he found that the excita-
tion spectrum cannot exceed 2E. The spectrum
has to bend and approaches 2b, with zero group
velocity. The Feynman-Cohen spectrum is not in
agreement with the Pitaevskij result.

Condidering the Bijl-Feynman wave functions
(la) as the zeroth approximation, Kuper' calcula-
ted the first perturbation correction to b, taking
double density fluctuations as the most important
intermediate states into account. Jackson and
Feenberg"'" have carried out the calculation of
s, (q) for all moments, and obtained a. spectrum re-
sembling the one of Feynman and Cohen. Jackson"
also presented a calculation of the complete dy-
namical structure factor S(q, a&). In a first-order
calculation one uses the zeroth-order frequencies
(1b) as energies for the decaying quasiparticles.
These energies so(q) are very different from s,(q),
and this inconsistency is the reason for not getting
a correct Pitaevskij bending. Jackson" proposed
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a consistent theory such that their original result"
is obtained as a first approximation; the result"
e(q) of this theory, being lower than e,(q), is not
satisfactory, however.

A very helpful qualitative discussion of the dy-
namical structure factor S(q, a)) was given by
Miller, Pines, and Nozieres. " They realized that
the Feynman-Cohen wave function has the form

$q= pg+ & yp pppq- p

p

(2)

thus being a superposition of single and double
density excitations. Hence they concluded that the
back flow is approximately identical to taking into
account the virtual two-roton excitations. One
should expect a kind of optical potential for the
rotons whose imaginary part describes the roton
decay at large energies and whose real part re-
normalizes the excitation frequencies at low ener-
gies. The real part should also be responsible for
the characteristic variation of the resonance inten-
sity as a function of wave number.

It should be mentioned that a first-principles cal-
culation of the excitation spectrum has also been
carried out by Brueckner and Sawada. " The re-
sult is similar to the one by Feynman and Cohen'
but the theory was rejected because of internal in-
consistencies. " Attempts" have been published
to modify Bogoliubov's results' in order to get a
roton spectrum with wave function (2). The results
disagree with the Pitaevskij' theorems and show
also other deficiencies. "

An interesting consequence of the Pitaevskij sin-
gularities has been realized by Ruvalds and Za-
wadowski. " If the effective interaction for the
scattering of two rotons is attractive, there will
be a two-roton bound state below 2A. They worked
out the modifications of S(q, &u) due to such a bound

state within a simplified model. Apparently the
modifications of S(q, (d) are so small that the neu-
tron scattering data are not influenced within the
resolution available at present. For this reason
we will ignore the two-roton scattering in the fol-
lowing. The present theory does not add anything
to the previous discussions" of the excitation
anomalies in the sound-wave region and so this
point will not be touched either.

The excitation spectrum of helium has been mea-
sured by inelastic neutron scattering experi-
ments. " The neutron scattering cross section for
momentum transfer q and energy loss m is pro-
portional to the dynamical structure factor S(q, ru)

and so this quantity has been determined" for a
large area of the q-~ plane. In this paper we want
to present a theory for S(q, (e) which allows for a
mathematical formulation of MiQer et al. 's argu-

ments. Equations will be derived allowing one to
combine the back-flow phenomenon with Pitae-
vskij's scattering singularities. The solution for
S(q, e)) obtained within this theory is in better
agreement with experiment than the results
achieved previously.

In Sec. II the formal scheme for the correlation
functions is given within Mori's theory. " Then the
basic approximations are formulated and the closed
nonlinear equations for S(q, (d) are derived (Sec.
III.). In Sec. IV a modified iteration scheme is
studied and a consistent solution is obtained. In
Sec. V the results of the present theory are corn-
pared with the experiment.

II. FORMALISM

A. Correlation functions

(4a)

F((d+ i0) =F'((d) + iF "((u)

In particular

d„" ( )=d f dt '([d(t)dB]). ,

(4b)

(5a)

The fluctuation-dissipation theorem reads in the
present notation

&A*(t)B) =— dree ' '[1+n((d)]X„"z(e)),
1

(5b)

where n((d)) = 1/(e t —1) is the Bose distribution
function at temperature 7.'. If p- denotes the den-

q
sity fluctuation operator for wave number (I, the
dynamical structure factor S(q, ~), depending on
modulus q only, is given" a.s the Fourier trans-
form of (p*(t)p-), and, hence,

s(q, (o) = 2[1+n((d))]x "(q, &0),

where X(q, z) = —((p*;p-)), is the density-density
correlation function.

It is convenient to introduce also the Kubo func-
tion (t)(q, z) related to the susceptibility by

0 (q, z) = [X(q, z) —X.(q) ]/z, (Va)

q "(q, ~) =x "(q, (d)/~ (7b)

Here X,(q) =X(q, z =0) is the static density-density

As usual" we introduce the A-B dynamical sus-
ceptibility

x„z(z) = —((A*;B))„

where the Zubarev function is defined as the La-
place transform of —i([Ad'(t), B]). X(z), like all
functions analytic off the real axis and decaying for
large z fast enough, can be written as spectral in-
teg rais:
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response. Introducing the scalar product (A IB)
= x»(z =0) in the linear space of dynamical vari-
ables, P»(z) is the Laplace transform of (A(f)IB).
With the Liouville operator 2 defined by ZA = [H, A]
one can represent then the Kubo function as a re-
solvent matrix element,

d (q, z) =(pql($-z) Ipq).

d'(S —z) d' =d'[d'Ze —z

Taking the p- —p- matrix element one gets

z) Xo(q
m (q, z)/X, (q) —z '

where

(19a)

As usual one verifies

d "(q, ~) = d "(q,- ~) = d "(q,~)' - o. (9)

From Eq. (8) one gets the asymptotic expansion

y (q, z) = —[X,(q}/z] [1+A,'(q)/z'+ O(1/z')],

where X,(q)A,'(q) = (p, lg'lp, ). Using the general re-
lation

(10)

(&I&IB)= &[A+, B]},
the continuity equation Qp- = —q j ((1), where j„(Q)
denotes the current operator, and the known com-
mutation relation

[j*.(I|),pp) = —(p./m)pp q,

one finds

(12)

(p-ql&'I p-, }=q'/m

Therefore, the characteristic frequency A,(q) is
given by

(13a)

Ao(q) = q'/m xo(q). (13b)

Expansion (10) due to Eq. (4a) is equivalent to the
sum rules

d&~ 'X "(q, &) = lXo(q),
1T 4p

1 1
d(u (ux" (q, oo) = q'.

1T Qp 2m

(14)

(15)

Equation (14) is the static sum rule for X" and Eq.
(15} represents the f-sum rule. Furthermore, one
obtains from Eq. (5b) the expression for the struc-
ture factor s(q) =(p& p-):

q

1 i+ Oo

W V'p
d(o coth —X"(q, (u) = s(q).2T (15)

B. Polarization operator

To introduce some effective potential for the
propagation of density modes, which are described
as resonances of P(q, z), we use Mori's" theory.
Denoting with 6' the projector on p-„

( ) Xiq
M(q, z)+z '

with x,(q}= (Zp-I Zp q} =q'/m, and

M(q, z)x, (q)

(19c)

=(&'Z&Wp-, l(Z'C&ZZ'-z) 'lZ'Z&Z&p-, ) (19d)

Here ' is the projector perpendicular to Sp-. One
verifies

(20a}

4'4$&SP
q

= 4C'P q. (20b)

Summarizing the preceding formulas and Eqs. (7a)
and (13) one arrives at the following expression
for the susceptibility

x(q, z}=
~

—q'/m
z —Ao(q) +zM(q, z) (21)

The correlation function is represented in terms
of a polarization operator M(q, z):

M(q, z) =(~-,l(g'~g'-z) 'l~-„}

M(q, z} is the correlation of the incoherent fluc-
tuating force

(22)

q -„=ZZ'p = 2'p-„—A, (q)'p-„ (23)

whose time evolution is restricted to a space per-
pendicular to p- and Zp-. Since the one phonon
resonances are projected out in M, this quantity
can be expected to vary smoothly. Hence M is a
good candidate for approximations.

C. Elementary excitations

Later we will see that there are elementary ex-
citations in agreement with Landau's' reasoning:
X"(q, &u) has a sharp resonance for ru=e(q), and
there are no excitations below s(q). This means

m(q, z) = —(&Spql(&S&-z) 'IZSpq) (19b)

is another resolvent matrix element. Since p- is
orthogonal to gp-„one gets gp-=gp-„. Repetition
of the preceding procedure yields

d'= lp;)xo(q) '(p;I (17) e (q)' —A, (q)' = —q (q)M'(q, s (q)) (24)

and with g its orthogonal complement one can
write M"(q, (o) =0 for l(a&l (o(q). (25)
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The preceding equations determine the elementary
excitation spectrum. M "(q, &o) is even in sr and so
one gets from E|l. (4) the Kramers-Kronig relation

NX, Y, , p, p,
= (Pl(, Plj, lPp, Pp, )

and of the propagators

(31b)

,
( )

2(u M (q, e)
7T & p

6' —QP
(26)

|jx,t, ,-„„() =(Pt;, P&,l(z'&z'- ) 'lp-, p, ).

(31c}

f(q) = Z(q)/s(q), (28a)

Since M" is positive, Eq. (25} implies that M'(q, s&)

is positive and increasing with ~ for 0 «o & s (q).
Hence s(q) &A, (q). Expanding the denominator of

Eq. (21) around e(q) one gets

X (q ~) Z(q)715((tP &(q))+X,"(q, (g). (27)

Here y,"describes the smooth continuous part of
the susceptibility due to M"(q, &u) x0; Z(q) is the
intensity of the one excitation peak in the scatter-
ing cross section. Introducing the relative strength
factor

Since we are not interested in such fine-structure
effects of P which might be due to roton-roton res-
onance scattering we approximate the two-mode
propagation by the independent propagation of two
single modes, i.e. ,

&
(e*"a'py, pg, )*p-„p-„)

= &pg, (f)*pp,&&pl;, (f)*pp, ) + (p, - p ) (31d)

A similar factorization is carried out for the re-
versed time order occurring in the definition of the
scalar product. With Eqs. (5a) and (5b) one then
finds for the approximation

one finds

a', (q) 1 10',(q) 18M'(q, etq}))
s(q) 2 2s'(q) 2 sa)

(28b)

yg', k2 p, p
((u) =(5g, p 51 p +p, -p2)it "(k,k,(o),

(32a.)

where
At zero temperature the sum rule (16) implies

1 f(), d X. (q, )
s „0 s(q)

(29}

1 ~" 1
(o g "(k,k,(o) =— ' d(u, — ch), n 5((u —&u, —(u, )

7T p 7l

x{[1+n (ru, )][1+n(sp, )]—n (ap, )n (&g,)]
The preceding formulas and discussions are ex-

act. The problem consists of calculating M "(q, &o).

In the simplest approximation M"= 0 one gets
X,"(q, &o) = 0. Then the sum rules fix the dynamical
susceptibility":

f(q) =1,

Xo(q) = 2s(q)/s (q),

s(q) = Q, (q),

and s (q) is the Bijl-Feynman value (1b).

(30a)

(30b)

(30c}

(g'gg'-z)-'=6, (g'Z g'- z)-'6 „ (31a)

where t projects on the space spanned by pg pg;
Evaluation of the right-hand side of Eg. (31a) re-
quires knowledge of the normalization functions

III. TWO-MODE APPROXIMATION

A. Two-mode propagation

The space in which r&Q) moves under action of
Q'IQ' can be imagined as spanned by a complete
set of operators of even parity under time rever-
sal. The simplest of such vectors are the two den-

sity fluctuation modes pg pg, . The latter opera-
tors create those parts of the wave function (2)
used in the Feynman and Cohen description of the
backflow. The simplest reasonable approximation
thus consists of neglecting all other vectors by
writing

x X"(k,~,)X"(k,~,). (32b)

Hence the two-mode propagator (31c) has been re-
duced approximately to a convolution of single-
density correlation functions. The static response
function (31b) is given in terms of g"[see E|ls. (7b)
and (4a)]

Ng, g, p, p, =(5g p 5g p +p, -p, )N(k, k,),
where

N(k, k,) =— dry g"( ,kk&u)
1

(32c)

(32d)

xN(k, k,} '(pt; pg, l. (33)

B. Two-mode decay vertex

The determination of M according to Eqs. (23)
and (33}requires the evaluation of the vertex

V(tl k,k,) = (7g) lPg,Pg, )/N(k, k, ). (34a)

Momentum conservation yields zero unless
g=k, +k,. The first contribution to the numerator
due to Eq. (23) is easy to calculate with Eqs. (11)

As final result one arrives at the following approx-
imation for expression (31a)

(0'&g' —z) '=2 Q Ipg,pg, ) N(k, k, ) 'q(kp~)
1
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The second contribution to the numerator is given
by the static correlation (p-)pg pg ). It is the
change of the two-particle correlation (pg,pg) due

to an external zero-frequency field varying with
wave number fl. According to Sec. IIA one can
write

(p„lpzpz, }=-- ««p-', PXpv, »."~ ' (34c)

The quantities N(k, k, ) and (p-~pg pg ) entering
the vertex are only certain frequency averages and
therefore the lowest approximation for the under-
lying susceptibilities can be considered as reason-
able. To calculate the normalization function

N(k, k, ) we substitute the Bijl-Feynman approxima-
tion (30) into Eqs. (32d) and (32b) to get at zero
temperature

N(k, k, ) = 2s(k, )s(k,)[e,(k,) +e,(k,)] '. (35)

Further, we replace A, (q) in Eq. (23) by its zeroth
approximation (lb) e,(q). To evaluate the three

and (12)

(&'p-„lc Xpx,}= &[—q.i.(q}* pr pr, ]&

=6- g, g (I/m)[fik, s(k, )+qk, s(k, )].

(34b)

density correlation function (34c) we assume
&(p-„; p-„,pg, »" to have resonances at e,(q) and

c,(k, ) + e,(k,). Hence one approximates

(&p-,*; pzpz, »."=r»(~ e.-(q»

+ z B5&(o —e,(k,) —e,(k,))—(&o ——(o).

(36)
Here we have used ((p-; pg pp )&" to be odd in &u

since p(r) is Hermitian and invariant under time
reversal. The coefficients A and B are determined
by sum rules. For instance

(Q'p-~pg pg ) =2Aeo(q)+2B[e, (k,)+e,(k, )). (37a)

The left-hand side of this relation is given by Eq.
(34b). Furthermore, the fluctuation-dissipation
theorem (5b) yields for zero temperature

&p-, pvpt, &=A+B.

The three-particle static correlation (34c) is then
determined by

(37b)

(p , lp%,p%-) =2A&~0(q}+»i[co(kl}+~0(k2}] (37c)

Equations (37a)-(37c) express the three density
correlation functions in terms of the equal time two
particle and three-particle correlations.

For the vertex (34a) one then finds

(38)

To get the final formula for V some approxima-
tion for &p~pg, pg, & has to be made. The standard
Kirkwood superposition approximation cannot be
applied, since it yields a wrong long-wavelength
behavior. ' Jackson and Feenberg" have proposed
the convolution approximation

& p-'pj; pg &=s(q)s(k, )s(k,),

which will be used in the following.

(39)

S(q, ~) = 2X"(q, ~), (40)

The susceptibility can be split into its single ex-
citation part and a continuum contribution accord-
ing to Eq. (27), The latter term follows for u w e(q)
from Eq. (21) to be

II( ) ~ (AM (q y (0}
m [&' —n, (q)'+ ruM'(q, (o)]'+(o'M"(q, &u)'

'

(41)

C. Self-consistency equations

The approximations specified above together with
the formulas of Sec. II provide closed equations for
the dynamical structure factor S(q, &u). At zero
temperature one gets for Eq. (6)

It is determined by M", M', and 0,. The single
resonance parameters e(q) and Z(q) are given by
M'(q, &u) and Ao(q) according to Eqs. (24) and (28).
Since Eq. (29) provides a transcendental relation
connecting s(q) and Q, (q) everything has been re-
duced to M(q, z) and s(q). The real part M'(q, ru)

of the polarization operator is determined by its
imaginary part M "(q, &u) due to the causality re-
lation (26). Finally, for the latter function in the
preceding section the following formula has been
derived:

M "(q,&g}=, p —' de y(fl, p)'

P

x-,'[sgn(e) + sgn((u —e)]

x X "(p,e)X"(1~1- pl, ~ —e).
(42a)

According to Eq. (27) we split this expression into
three contributions (+ & 0):

M "(q, &u) =M,",(q, ru) + M,",(q, ra&) +M,",(q, &o),

(42b)

with the single-excitation-single-excitation term
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M,",,(q, ~) =2, p q@,p)' z(p)z(lfl- pl)
P

x»4- e(p) —e(lq- pl)),

the single-excitation-continuum term

(42c}

M,",(q, &o) =, P cR cp(q, p)'
2g (d p

x x,"(p,e)x."(Iq - pl, ~ —e)

(42e)

M,"..(q, ~) =2, p q(q, p)'

P

x[z(p}x."(lq-pl, ~ —~(p))+p-q-p],
(42d)

and the continuum-continuum term

point of an iteration procedure for the self-consis-
tency equations. However, a straightforward iter-
ation is not successful as demonstrated in Appendix
A. To avoid a mathematical instability of the iter-
ation procedure it is necessary to switch on the de-
cay vertex gradually. The instability and the mod-
ified iteration are discussed more explicitly in Ap-
pendix B analyzing a simplified mathematical mod-
el. So the following iteration scheme is set up.
The nth approximation of the kernel M and static
susceptibility determines the correlation function
according to Eqs. (2'I), (28a), and (41),

X„"(q&u)/ws(q) =f„(q)5(a& —e „(q)}+X,'„'(q, &o)/ws(q),

(44a.)

where for aye e„(q)

x.".(q~)
ws(q)

The vertex is expressed in terms of s(q)[see Eqs.
(38), (39), and (1b)]

2(df 0(q) M„"(q, ru)

[co' —Ao„(q)'+ ~M„'(q(o)]'+ (o'M„"(q, &u)'

2

q(q, p) =
2 [~.(q)+~.(p)+s.(lq -pl)]

q(q —p"
q's(p) 'q's(I~I- pl)

(43)

(44b)
The nth approximation for the single excitation
resonance follows from Eq. (24)

II',„(q)/e„(q) —z „(q) =M „'(q, z„(q)). (44c)

The static structure factor s(q) we take from x-ray
scattering experiments. " Since there are good
first-principles calculations for s(q)" this proced-
ure does not ruin our claim to present a micro-
scopic theory. Equations (42d)-(42e) express M"
in terms of X" and so the system is closed.

The contents of the preceding set of Eqs. (41}to
(43) is obvious. According to Eq. (21) density fluc-
tuations feel a self-consistent static restoring
force corresponding to the frequency Q, (q) and a
coupling to the reservoir of the other modes in the
system. The influence of the reservoir is de-
scribed by the polarization operator M(q, z) rep-
resenting the correlations of the random force 7(q).
The transfer of energy from the coherent motion
to the incoherent one is approximated here by the
decay of single modes into pairs according to Eq.
(42a). The pair modes are real excitations of the
system and have to be determined consistently with
the excitations expressed by the poles of x(q, z).
The preceding self-consistency equations are sim-
ilar in spirit to the ones suggested by Jackson" but
a detailed comparison does not seem possible be-
cause of different mathematical frames.

IV. SOLUTION OF THE SELF-CONSISTENCY EQUATIONS

A. Iteration scheme

The Bijl-Feynman approximation M, (q, z) = 0 for
the correlation function will be used as starting

The solution of the self-consistency equations of
Sec. III C automatically obeys the two sum rules
(14) and (15). Instead of fixing f„according to Eq.
(28b) one can use sum rules also. We found it
most convenient to determine f„(q) with Eq. (29):

f (q) 1 d~ Xcn q~"( ~)
ws(q)

(44d)

Then Eqs. (44b) and (44c) fix f„,e„ in terms of Q,„,
i.e. , X„"(q,~) is a given function of 0, „. To deter-
mine Qp, one can use the f sum rule

&,(q) =&„(q)f„(q)+
4 p

d~ 4'Xc.n(q ~ ~)
ws(q)

(44e)

This transcendental equation can be solved graph-
ically. With equal reason one can use sum rule (14)
to fix 0, „(q)

e.(q) f (q); d
+ X'. (q a), (44f)

Q,„(q)' e „(q), ws(q)

We calculated Ap „ in such a way that the sum of
numerical errors in solving Eqs. (44e) and (44f)
was minimal. Having thus fixed X„"(q,ru) one gets
the (n+ 1)st approximation for the kernel from Eqs.
(42a}-(42c)

t" 4)

M„", ,(q, s&) =, g — de q „,, (q, p)' X,'(p, &)X,„"
2g Q) 7T gp

P

(44g)
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Here

9..i(q p)'=&..&9(q p)' (44h)

is the vertex (43) switched on with the factor 1„.
Eight iterations have been carried out. Ne have

chosen X, = &,A. , = z, A. 4
= z, A. , = g, and A.„=1 for

n~6. In Figs. 1(a) and 1(b) the results for s„and
f„are represented. The curves for the iteration
6, 7, and 8 demonstrate, that indeed a solution of
the nonlinear equations of Sec. III has been found
consistent within about 4%. With similar aeeuracy
the three sum rules (14), (15), and (29) are ful-
filled. No particular significance should be attrib-
uted to the iteration result for n = 1, . . ., 6 but we
find it satisfactory to show explicitly in Fig. 1 how
the final result develops gradual1. y starting with the
simple Bijl-Feyman formulas s,(q) = q'/2ms(q)
and f,(q) = 1. The convergence is shown more
clearly in Fig. 1(c) where for some representative
values of q the iteration results are plotted in the
e f plan—e. There we have also shown the result
for the straightforward iteration with A. , = A., = 1.

B. Technical details

A computer has to be used in order to carry out
the various integrals entering the iteration scheme
of Eq. (44). The time necessary to evaluate

M'(q, ra) as Hilbert transform (26) and the sum-
rule contributions [44(d)-44(f)] is negligible com-
pared to the time necessary to determine the con-
volutions in Eq. (44g). These convolutions have
been carried out for 16-20 q values and 150-200 co

values for each iteration. The M,",(q, ro) contribu-
tion (42d} and the M,",(q, &o) term (42e) have been
evaluated with a Gaussian integration procedure
and linear interpolation of the integrand. The
M,",(q, &o) contribution turned out to be so small
that it was sufficient to include it for the last iter-
ation step only.

The most interesting contribution to M"(q, +) is
the decay part into two single excitations which,
according to Eqs. (42c) and (43) reads

oo a+@
M,",(q, ~) =— g ~ dkC, (p, k)"

I -~l

x 6(&u —e (p) —e (k)). (45)

Here the sum in Eq. (42c) has been converted into
an integral according to

apdk-
(2s) n &0

/ p/
P

with n = 0.0218 A ' denoting the helium particle
density. The coupling function is given by Eq. (43)

C,(p, k}= [~,(q) + s,(k) + e,(p)]'

x [(q'+p' —k')s(k) + (q'+ k' -p')s(p) —2q's(k)s(p)] f(p)f(k) Ip/[126vq's(p)s(k)mn]. (46)

The integral in Eq. (45) is calculated with a modi-
fication of the Gilat and Raubenheimer technique. "
One introduces a square grid (p, , k~) for the inte-
gration area with axis parallel to the integration
boundaries k =q +p and k =

~q -p
~

with a mesh area
5'=(0.05 A ')':

"a+ D

r dp
"1a -~l

dkC, (p, k)6(ra —E(p, k) ) = g i~q(&),

I,~((u) = ' du Jl dvC(~(u& v)5(ru —E;~(u, v)).
a 0 0

(47b)

dvC;i(u, v)5((u —E,, (u, v))

Here (u, v} denote the integration variables for the
area (i,j), C, &(u, v) abbreviates the corresponding
coupling function, E„.(u, v) =s(k)+s(P) is the fre-
quency sum for momenta in the area (i,j). The in-
tegral over v can be carried out explicitly

bilinear interpolation formula [E,~ =E(p, , &&)]:

E;~(u, v) =E,q(1 —u)(1 —v)+E. ..,(1 —u)v

xEg y y gu(1 v) +E +& g &y guv (47d)

For the integration over u restricted by the re-
quirements 0 & u & 1 and 0 & v'(u, ar) & 1 we approxi-
mated the smooth function C, &(u, v') on the right-
hand side of Eq. (47c) by its value in the middle of
the integration interval; the remaining u integral
was carried out elementarily. The frequency steps
have been chosed as 1 deg.

An IBM 360/91 machine has been used. For one
iteration step, 3 min of calculation time was nec-
essary: 1 min for the My y contribution and 2 min
for the M,",term. For the last iteration step the
accuracy has been improved (frequencies in steps
of 0.25 deg) with a corresponding increase of com-
puter time used.

( 0( )) sEii&(u& v (u&4&))

Bv
(47c)

V. DISCUSSION

A. Elementary excitations

if the zero v' of the equation ru = E„(u,v') can be
found elementarily. For this end we have used the

In Fig. 2 the result for s(q) is plotted in com-
parison with experiment" and earlier theo-
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FIG. 1. (a) Excitation spectra &„(q) for the iteration steps n =0, 1, .. . , 8. (b) Strength factors f„(q) for the iteration
steps n =0, 2, . . . , 8. (c) Iteration results e„-f„for various q values. The crosses (3) mark the results for the straight
forward iteration with && = ~&= 1. Shaded area is the experimental result Puef. 21).
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z(q)

1.0

0.5

10

2

q (k)
2

q (k')

FIG. 2. Excitation spectrum ~(q) (solid line) compared
with the experimental result of Cowley and Woods (Ref.
21) (dashed-dotted curve). The dashed line is the Feyn-
man-Cohen result (Ref. 7); the dotted line is the Jackson-
Feenberg curve (Refs. 10, 11, and 2S).

0
ries. '"" For wave numbers between 0 and 2 A '
only a slight improvement has been achieved by
the present work. The roton energy is 6= 11'K in
comparison with 11.9 'K of Feynman and Cohen's
calculation. It is about 20% above the experimental
value. While the earlier work has an error in-
creasing rapidly with q larger then 2A ', the pres-
ent result shows the Pitaevskij bending in qualita-
tive agreement with experiment. The relative er-
ror of e(q) does not increase with momentum. The
spectrum terminates at about 4A '. The qualita-
tive features of e(q) have been understood before."

The directly measurable single excitation inten-
sity Z(q) is shown in Fig. 3(a). In Fig. 3(b) the re-
sult for the strength factor f(q) is plotted. The
main contribution to M"(q, tu) due to M,",(q, (u)
starts to be appreciable at the Pitaevskij singular-
ity w =26. There M' diverges logarithmically and
aM'/Bw even stronger. The greater O, (q) =e,(q)
the closer e(q} comes to 2h and the stronger will
be the renormalization of f(q}. This explains why

f(q = I A ') is smaller than f(q =2 A ') and also why

f(q) drops rapidly towards zero for q exceeding
2 A '. So the characteristic oscillation of the ex-
perimental f(q) is explained qualitatively by the

0.5—

q(A )

FIG. 3. (a) Single excitation strength Z(q) = f(q)z(q)
(solid curve) compared with experiment (Ref. 21) (dashed
dotted). The dotted curve is the Jackson result (Ref. 11).
The structure factor Zp(q) =s(q) used here is due to
Achter and Meyer and Hallock (Ref. 25). (b) Strength
factor f (q) (full curve) compared with experiment (Ref.
21).

present theory. In comparison with experiment the
errors of f(q) are of the same order as those for
e (q).

The static susceptibility y, (q) or equivalently the
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corresponding frequency Q, (q) shown in Fig. 4
yields the inverse first frequency moment of the
dynamical structure factor S(q, cu). Like 1-f(q)
the frequency difference e,(q) —Q,(q) gives some
information about the continuous excitation spec-
trum S,(q, u}.

Finally, let us stress one feature already ob-
vious from Figs. 2-4. Expanding the vertex (43)
for fixed p in the limit 11-0 one obtains q1(I|-0,p)
= q1(p)q' and hence Eq. (42c) yields

M "(q,~) = O(q') (48a)

for the 1-1 contribution. Equation (41) then leads
to

8. Pitaevskij sinluhrities

In Fig. 5 the three contributions to M "(q,v) ac-
cording to Egs. (42) are compared. For momenta

q below 2.5 A ' the strength factors f entering Eg.
(46) are rather big; therefore the M,",(q, ~) term
dominates and M,",(q, &u) is very small. For larger
momenta the continuum-continuum contribution be-
comes important. The convolution integrals for
M,",(q, &v) and M,",(q, &v) yield rather smooth func-
tions; the structure of }t,"(q, ru) is washed out.

The function M,",(q, &u} exhibits a lot of structure

}(,"(q, a)) = (q /m2(u )M3"(q, (o), q 0. (48b) 300-

Hence the 1, t. and t.",C terms do not change Eq.
(48a). The result y,"(q, &u) = O(q') is in agreement
with the general reasoning of Miller et ul. " The
sum rules (14), (15), and (29) then yield

o -0
q=1 P

eo(q)=e(q}=Go(q); f(q) =1 for q-0. (48c)

There are no renormalization effects in the long-
wavelength limit. Also one gets'"s(q) = aq with
a = I/2et c and c denoting the sound velocity. 0

q-2k

3
Cf 0 1

50
}00-

30

I I I I
1 I 1

20
200- q=ak

10

2

q (k') I C

FIG. 4. Characteristic static frequency 00(q) (solid
curve) compared vrith the experimental results of Cowley
and Woods (Ref. 21) (dashed-dotted line). The dashed
curve is &0(q).

FIG. 5. Three contributions MP &(q, ~) (solid curve),
Mf g (q, (a)) (dashed curve), and M,",(q, cu) {dashed-dotted
curve) to the imaginary part of the polarization operator.
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M,"(q, (u) = A(q }[(u —e (q) ]'8((u —e (q)). (49)

This small contribution can be seen for q = 1 or
2 A ' in Fig. 6(a). The anomaly in M,'(q, (u) is a
divergent third derivative which does not show up
in Fig. 6(b).

Case b Square-. root branch points in M(q, z) due

to those thresholds with decay modes having equal
or opposite group velocity, i.e. , 0 =q+P or
k=(q -p) and v(k)=+ v(p), are numerous and dif-
ficult to localize. Therefore we restrict ourselves
to the simplest example: namely k=p =-,'q. Ex-
panding around —,'q one easily discusses the integral
(45)

M~" (q, (u) cc dp dkb((u —2e (~q) —v(~q)(bp + bk)

——,'b(-,'q)(6P'+ bk')).

Here b(q) = s'e(q)/sq' is the curvature of the dis-
persion curve. There are four possibilities.
First, v(-,'q) &0 and b(-,'q) &0 yields as singular part

M~",(q, (u) = —B,(q)[2e(—'q) —(u]'~'8(2e( —'q) —(u}.

(50a)
Second, for v(-,'q) & 0 and b(-,'q) & 0 one finds

M,",(q, (u) = B,(q) [2e (-,'q) —(u]'~'8(2e(-,'q) —(u).

(50b)

due to opening and closing of scattering channels.
The various singularities have been classified by
Pitaevski j.'

Case a. The simplest singularities are due to the
emission of soft phonons. They are given by the

p -0, k-q contributions to the decay integral (45).
For the near threshold asymptotic behavior one es-
timates

pPM"(q, (u) ~ dp l~
dxp'6((u —e(q) —v(q)x —cp}

~I v p

using the expansions e(p) =cp, s(p) =qb, e(k) =e(q)
+v(q)x. A group velocity v(q) =Be(q)/sq exceeding
the sound velocity c causes M,"(q, (u) to be nonzero
for (u & e(q), i.e. , elementary excitations would be
damped by Cerenkov emission of sound. In agree-
ment with experiment this situation does not occur
for the spectrum calculated by the preceding theory
and q & 0.25 A '. Since v(q) & c the type a singular-
ity is situated on the resonance e(q) and one finds

In all formulas the coefficients B are understood as
positive. Some of the square roots are to be seen
in Fig. 6; in particular b4 marks the lower bound
of M"(q, (u) u 0 for momenta around 4 A '. The
anomalies in M'(q, (u) in case b are symmetric
square- root functions.

Case c. There is the analog of Van Hove singu-
larities in the density of states function of two-
dimensional systems whenever E(p, k) =e(p)+e(k)
in Eq. (45} exhibits a stationary point. This is the
case if the group velocity of both decay states van-
ish. There are three possibilities. First, both de-
cay excitations are rotons; E(p, k) has a minimum
2A and Eq. (45) yields

M,",(q, (u) = C,(q)8((u —2b,).

C, (q) is positive for 0&q & 2k„k, = 1.9 A ' is the
roton momentum Fi.gure 6(a) demonstrates, that

C,(q) increases with q. The discontinuity is much
more pronounced for q around 3 A ' than for q
around 1 A '. Second, both decay excitations can
be maxons; E(p, k) has a maximum 2b, '=29 'K.
One has

(51a)

M,",(q, (u) = C,(q)8(2A' —(u), (51b)

with C,(q)&0 for 0&q&2ko; k,'=1.25 A ' is the
maxon momentum; the discontinuities in the
imaginary part imply symmetric logarithmic sin-
gularities in the real part M'(q, (u). In case cl
M'(q, (u) diverges towards plus infinity and in case
c2 towards minus infinity. Third, one excitation
can be a maxon and the other one a roton; E(p, k)
has a saddle point at 6+ 6'. One finds a logarith-
mic singularity for the integral (45)

M,",(q, ~) = C.(q) Iogl(u —A - A'I (51c)

and a corresponding discontinuity in the real part
M,', (q, (u). C,(q) is positive for 0.6 A '=k, —kt&q

The Pitaevskij classification is based on the tacit
assumption that all functions entering the decay in-
tegral (45) depend analytically on the momenta. A

nonanalyticity of e(p) at p*, for instance, would

lead to further singularities of M "(q, (u). To make
this point explicit let us assume e(p) to be para-
bolic around ko but linear for ko &P * (P. Then el-
ementary discussion of Eq. (45) yields a singularity
of the form

Third, v( q) & 0 and b( q) & 0 yields

M(3(q, (u) = —B,(q) [(u —2e ( q))'~'8((u —2e (—,'q)).
Mq

'
(q, (u) =[—D(q ) [(u —e (p *)]' 28 ((u e(p +)}-

+ D (q) [(u —e (p + ) ]). (52)

Finally, v(~zq)& 0 and b( —,'q) &0 leads to

(50c)

M&4(q, (u) = B~(q)[(u —2e (zq))' 8((u —2e (~zq)).

(50(i)

This case d singularity (52) describes a hole on a
smooth background. Further singularities of this
case could be constructed for p* & 4, or choosing
p* near the maxon. The actual spectrum e(p)
shown in Fig. 2, indeed indicates a practical change
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from quadratic to linear behavior at p™2.2 A '.
The corresponding hole (52) is clearly visible in
Fig. 6a for q =3.0, 3.5 and 4.0 k '. The case d sin-
gularity together with the c1 and b4 singularities
thus are the explanation of the pronounced low-fre-
quency peak of M,",(q, ru} for moments between 3.0
A-' and 4.5 A-'.

It should be stressed, that the momentum depend-
ence of the decay vertex in Eq. (45) is very impor-
tant. To elucidate this point the pure phase-space
contribution to the decay integral (45) is shown by
dashed curves in Fig. 6(a) for some momenta.
These curves, obtained by putting qr(ll, p} = 1 in Eq.
(42c), show the case c singularities clearly, while,
e.g. , for q between 1.5 A ' and 2.5 A ' c3 is not
visible in the realistic calculation. Voile the
phase-space contribution for q =4 A ' is at least
similar to the realistic function, it is quite dif-
ferent from M,",(q, +) for q =2 A '.

In discussing Pitaevskij singularities involving
rotons it is also of importance to be aware of the
variation of the strength factor f(q). As explained
in the preceding section and shown in Fig 3(b).,
f(q) drops rapidly for q increasing above 2 A '.
Practically there is a cut off for q around 2.7 A '.
So, after opening of the roton-roton scattering one
expects a drop of M" (q, &u) due to the cut off men-
tioned. This explains for instance the decrease of
M,",(q, ro) for q = 4 A ' for frequencies between 25
and 30 'K.

C. Continuum S,(q,u)

The shape of the continuum part of the dynamical
structure factor S,(q, v) is a direct and elementary
consequence of the properties of Q, (q) and M" (q, co).
The total percentage of neutrons creating multiple
excitations is given by 1-f(q). The dominant res-
onances in S,(q, +) according to Eq. (41) are given
by the zeros of the equation

Although the preceding approximations are rather
poor ones as demonstrated by Fig. 7 they help for
a qualitative discussion. Only those solutions of
Eq. (52a) with BM'(q, Q(q))/s&u & 0 are important
since otherwise the width I'(q) is too big.

Roughly M "(q, &u) is located between 2A and 2A'
and so M'(q, &o) is positive and increasing for ~ & A

and negative and increasing for large w. So one
gets besides the elementary excitation resonance
for low frequencies also a high-frequency solution
of Eq. (53a). For large q this resonance is close
to Q, (q) = e,(q) and the width is given by I'(q)
=M"(q, Eo(q)). Decreasing q from 4 A ' to 2 A
this resonance decreases and becomes sharper as
shown in Fig. 8. For q decreasing below 2 A ' the
resonance does not decrease because of a repulsion
effect between the level Q, (q) and the double excita-
tion states.

Function M"(q, ru) exhibits a resonance structure
and this yields a further solution of Eq. (52a) as in-
dicated in Fig. 6b. So we predict, at least for some
momenta, a double peak structure of y,"(q, ro). It
should be worthwhile to check this consequence of
the present theory by neutron scattering experi-
ments. The many small bumps to be seen in Fig.
8 are due to the strong variation of M "(q, &o).

It should be remembered that the frequency steps
underlying Figs. 6 and 7 are 0.25 K. So one can
not take serious anomalies on a frequency scale of
0.5 'K; such anomalies might be purely due to in-
terpolation and rounding errors. For example, the
case a singularity (49) implies an increase of
S,(q, &u) proportional to [&o-e(q)]e(&u —e(q)). It can
be seen quite nicely in Fig. 7 for q=1.5A '. For
q =2.25 A ' or q =2.75 A ', however, the continuum
yields an erroneous high-frequency tail of the el-
ementary excitation peak. %e have not eliminated
this artifact, since in experiment due to finite res-
olutions and nonzero temperature, such tails will
be observed anyway.

Q.(q)'/Q(q) =M'(q, Q(q)). (53a)
D. Bending phenomenon

2e, (q }/Q(q)
1+Q,'(q)/Q'(q) + aM '(q, Q(q))/s(u

and the resonance half width is given by

I'(q) = kF(q}[Q(q)/e. (q)]M "(q, Q(q))

(53b}

(53c)

These formulas apply if the resonance can be ap-
proxirnated by a Lorentzian

x,"(q,&) I'(q)
( )

s(q) [(o —Q(q))'+I'(q)' (53d)

If it is allowed to approximate the functions in the
preceding equations by the first Taylor coefficients
one finds for the strength of the resonance similar
i'o Eq. (28b)

S,(q, &u)/s(q) = vf(q)6(e —e(q)) (54a)

Let us consider once more the frequency range
close to 2h. The logarithmic singularity of
M'(q, ~) due to the discontinuity (51a) prevents the
spectrum e(q) to cross 2A. B As soon as Q, (q)
=so(q} approaches 2A for q &2.3 A ' e(q) bends. In
the present theory, neglecting vertex corrections,
e (q) has a case 5 endpoint' slightly above 2k,
= 3.8 A '. Since e,(q) increases so quickly, how-
ever, the strength f(q), according to Eq. (28b)
drops sharply. So the inelastic neutron cross sec-
tion for the emission of a single excitation of liq-
uid helium, being proportional to
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FIG. 8. Resonances of the dynamical structure factor
S(q, (d). The low curve is the elementary excitation
spectrum. The two upper curves are the dominant reso-
nances of S, (q, &) with indicated half-width.

is very small for q-—3.5 A '.
The solution of Eq. (53a) slightly above 28, , which

is due to the branch of the symmetric logarithm
for co & 26, does not yield a resonance because
sM'/s&u is negative there.

Approximately, one can write the continuum part
of the structure factor according to Eq. (41)

1.5

(b) 2.5

2.0—

2.5

S,(q, a&) 1

( )
0(q) [ 2 g2( )]2 (qt (54b)

Remembering Eq. (42a) as the relevant contribu-
tion, one can interpret Eq. (54b) as follows. The
neutron is scattered by a virtual excitation. The
prefactor of M"(q, ro) in Eq. (54) is the square of
the off-shell propagator of this intermediate boson.
The intermediate boson then decays with a vertex
proportional to q&(q, p) into two real liquid-helium
excitations with momenta p and |1-p.

In Sec. IV 8 it has been shown that for q between
3.0 and 4.5 A ' the cross section (54b) exhibits a
resonance above 2A and 2e(q, 2), respectively.
This resonance is visible on Fig. V. It is also evi-
dent from the figure, that the resonance strength
in the bending region is comparable with the
strength f(q} of the single excitation peak.

In the experiment a convolution of the sum of the
cross sections S,(q, ro) and S,(q, &u) with the resolu-
tion curve is observed. Assuming a Gaussian res-
olution of half-height half-width of 1'K the result-
ing cross section is shown in Fig. 9(a}. For

1.5

q(A )

FIG. 9. (a) Solid curves are the normalized dynamical
structure factor for q =3.0 and 3.25 A ~. The dashed
curves are the convolutions with a resolution function of
half-width 2 'K. (b) Dashed-dotted curve is the experi-
mentally observed (Ref. 21) dominant resonance. The
solid curves are the theoretical elementary excitation
spectrum and the two-excitation resonance, respectively.
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APPENDIX A: FIRST APPROXIMATION

Considering the Bijl-Feynman variational solu-
tion M(q, z) = 0 as zeroth approximation one would
get a first approximation by substituting

)(o (q, (d) = s(q)t6((d —Eo(q))

into Eq. (42} for M" (q, +):
(Al}

30

20

10

q = 3.0 A ' the smeared out single-excitation reso-
nance can just be seen as separated from the
smeared out two-excitation resonance. Already
for q = 3.25 A ' the elementary excitation is no
longer detectable but the two excitation resonances
(54b) above 2A dominates the curve. So the present
theory explains why the effective resonance ob-
served by Cowley and W'oods" exceeds 26 for mo-
menta exceeding about 3 A '.

M('(q, ~)=
2 p q(q, p)'&s(P)s(Ill-pi)

P

&«(~ s—.(P) —~.(lt|- pl)}.

(A2}

The real part of the polarization operator is ob-
tained readily from Eq. (26)

M,'(q, aP) = (otter) g q'(4, p)'s(p)s(Ill - pl }

&(~.(p}+~.(lq- pl}] '

&&I:~'(f }+~'(l(1-pl)'- ~'1 '.
(A3)

Then the formula (24) for the first approximation
of the excitation spectrum e,(q) has the typical form
of a second-order Born approximation expression.
The first approximation Z, (q) follows from (28).
e,(q), Z,(q) and }(,",(q, u&) are given in terms of A, (q)
whose first approximation Qo, (q) is obtained then
by solving Eq. (29). The result for the excitation
spectrum is represented as full curve in Fig. 10;
it is practically identical with the result of Jack-
son and Feenberg, showing that there are no real
contradictions between the present theory and the
earlier approaches' '" for q(3 A '.

The result X,(q, z) is not a solution of the self-
consistency equations of Sec. IIIC, of course. On
the contrary, since there is a large difference be-
tween e,(q) and e,(q) one would expect the first ap-
proximation to be a rather crude one. A reason-
able statement concerning the error can be made
only by working out the next correction. This has
been done with the result, that e,(q) differs con-
siderably from e,(q). e,(q) differs considerably
from e,(q) and is considerably below the experi-
mental spectrum, etc. Indeed the straightforward
iteration seems to be converge toward the collapse
solution e(q) = 0. Hence we conclude: either there
is no reasonable solution for the self-consistency
equations or there is one but it cannot be obtained
by the straightforward iteration procedure dis-
cussed. In any case, there is no justification to
attribute a physical meaning to the first approxi-
mation.

APPENDIX 8: SIMPLIFIED MODEL

q (A')
FIG. 10. First approximation e&(q) for the excitation

spectrum. Dotted curve is the result of Jackson {Ref.
11);dashed curve is the Feynman-Cohen spectrum (Ref.
7). Dashed-dotted line is the experimental result Puef.
21).

To understand the origin of the iteration collapse
and to get an idea how to solve the self-consistency
equations let us consider a simplified mathematical
model. Let us lump the whole noise spectrum to
one frequency &o, so that M"(q, &o) is proportional
to 6(e -&u,). The coefficient of proportionality
should be compatible with the sum rule
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FIG. 11. Graphical solu-
tion of the self-consistency
equation ~ (ug =A2~& for
effective couplings C =3.5,
4.0, and 4.5 in (10'K)3.
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+ po

da ~M" (q, ~) = —, P q (4, p)'s(P)s(14- pl)
W Jp g

P

(82)

where

2E ~
= (fop+ (dp+ 2C/GJp)

6 [(Ilp (0p+ 2C/cop) + SC(dp] (84)

The low resonance & represents the elementary
excitation while the high resonance e, simulates the
continuum part. In Fig. 11 the resonance e is
plotted as a function of cop for Ap = 15 K and some
representative values of Q. The numbers for Ap

and C roughly reflect the realistic situation for the
roton. The resonance ~ is always smaller than
Qp and dec rease s with dec reasing up and inc reas-
ing C. The spectrum of M" (q, pp), given by two-
mode excitations, is well peaked at twice the ener-
gy of the one-mode excitations. Thus one can sim-
ulate the crucial self-consistency equations (42) by
the requirement

E (tdp) = p(alp. (85)

following from Eqs. (42a) and (29}. So we write

M" (&o}= v(C/(up}[5(a) —(op) + 5((u+ru, )]. (82)

From Eq. (21) one finds the susceptibility for the
model to be

Equations (84} and (85) then fix &op and e as func-
tions of C and Ap.

The solution is envisaged most clearly by looking
for the intersection of the e vs cop curve with the
vp/2 vs &op line in Fig. 11. There is always the
collapse solution llpp ~ 0 If the coupling C is
larger than a critical value (about 4 in Fig. 11) the
collapse solution is the only one. Iteration pro-
ceeds via Ep 6y 6g . . in steps of almost equal size
towards zero. If the coupling C is smaller than the
critical value there are two further solutions: a
large one (indicated by 0 in Fig. 11) and a small
one (indicated by p in Fig. 11}. The small one
cannot be obtained from ep by switching on C' con-
tinuously; therefore it has no physical meaning.
This unphysical solution cannot be obtained by iter-
ation; it is unstable in this respect. The large so-
lution should be considered as the physical one; it
can be obtained by iteration, whenever the iteration
starts with ~p above the unstable unphysical solu-
tion. If the iteration starts below the unstable so-
lution it yields again the collapse. Taking the self-
consistency equation (29) into account lowers e
but does not change the preceding discussion quali-
tatively.

One important feature is missing in the model so
far. The presence of a continuum part g,"(q, m) im-
plies f(q) & 1 in Eq. (29). So one has f & 1 whenever
e(q) &ep(q). Now it is essentially only the 1-1 con-
tribution in Eq. (42b) causing the peak of M "(q, ru)

around 2e. The other terms in M "(q, ar), in lowest
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approximations, can be considered as a constant
contribution in M'(q, &o). Hence one should not con-
sider Q as a constant but impose the further self-
consistency equation

C=CD/ i (B6)

where f = (a/e )/[o/e + (1—o.)/e, ] is the strength
factor of the model. We do not want to discuss the
equation in detail but restrict ourselves to the fol-
lowing reasoning. Possibly Cp is larger than the
critical value, say Cp 4 5 in the units used in Fig.
11. Then a change of f to 0.88 would be sufficient
to yield C = 3.5 with a reasonable solution e . Iter-
ating the self-consistency equations, however,
would probably not yield the solution; in the first
step f,=1, i.e. , a much too large C is used. In the
second step f, still will be too big, etc. Hence the

iteration may pass the unstable solution and run
into the collapse.

So the model can exhibit three types of behavior.
Case (i): The decay vertex is so small, that there
is a physical solution which can be obtained by
straightforward iteration starting with M" = 0.
This case is not realized for liquid helium as
shown in Appendix A. Case(ii): The decay vertex
is so big, that there is the collapse solution ~ =0
only. Then the whole discussion leading to the self-
consistency equations loses its basis. Case iii:
There is a reasonable solution, but iteration runs
into a mathematical instability. In this case, one
should find the solution by slowly switching on the
vertex, allowing for an appropriate adjustment of
the important strength factor f Case.(iii) simulates
the liquid-helium situation as is shown in Sec. IV.
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