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The microscopic theory of the Josephson efFect is reformulated in the time domain. The four terms in the

usual theory are seen to be necessary consequences of intrinsic junction delays. The tunnehng current flowing

in response to a voltage pulse is shown to rise in a time 5/2d and undergo Amped energy-gap oscillations

before approaching the expected supercurrent. The theory provides a technique for calculating junction
behavior when connected to an arbitrary circuit.

In his original paper Josephson' described a
formal framework which included essentially all
of the details of the effect he was predicting. It
has remained for others to develop those details.
For example, Werthamer' generalized Josephson's
work to include time-dependent voltages across
the junction and showed that there are two complex-
valued frequency-dependent terms, I,~ and I~, in
the tunneling current. At low temperatures and
voltages one of these terms, ReI~, sometimes
called the sine term, describes the tunneling of
pairs and gives rise to Josephson's effect; another,
ImI, , describes the tunneling of quasiparticles
(elementary excitations in a superconductor) and
leads to the nonlinear current-voltage character-
istic discovered by Giaever. ' Approximations to
these two terms have been incorporated into a
phenomenological theory' (called the resistively
shunted junction model) which has been used with
success to describe a substantial number of ex-
perimental results.

The remaining two terms in the time-dependent
theory are important only when the voltage or
frequencies at the junction are higher than approx-
imately the energy gap. One of these terms is the
cosine term, ImI~, which has been the subject of
a great deal of current interest. ' Recently
Harris" has shown that, in the small-sinusoidal-
signal limit, the cosine term and the remaining
reactive part of the quasiparticle term, Re I, ,
can be interpreted as opposite-phase parts of the
sine and quasiparticle terms, respectively.

Because of the success of the phenomenological
theory, these latter two terms have been omitted
from most analyses of the Josephson effect and
their importance has not been widely pursued. Un-

fortunately, however, a model limited to two terms
is incapable of describing the detailed behavior of
Josephson devices used in new applications where
the frequencies are above the energy gap and in-
trinsic junction delays are significant. Therefore,
in this paper we will demonstrate that all four
terms are required to discuss the detailed time
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dependence of the Josephson effect and show that
their frequency-dependent structure determines
an intrinsic junction response time of order
@2A '

We note first that in linear systems it is useful
to deal with Fourier coefficients of, for example,
the current density J(~) flowing in response to an
electric field E(~) applied to the system. A fre-
quency-dependent complex-valued proportionality
coefficient (the conductivity) relates the two: Z(~)
=&r((())E(&u). It is well known that the frequency de-
pendence of a'(&o) is a reflection of time delays in-
herent in the system. ' In fact, if the disturbance
is a pulse (a I) function), the time-dependent re-
sponse is just proportional to the Fourier trans-
form of o(~) into the time domain:

~())= J ~( )

Similarly, the frequency dependence of each of
the four terms in the Josephson tunneling current
is a reflection of intrinsic delays in that system.
Unfortunately, the nonlinearity of the junction
makes its description somewhat more involved.
However, the formalism resulting from a descrip-
tion of these delays adds new intuitive understand-
ing of the behavior of the device and provides a
computational technique for finding the response
of a junction to any electrical stimulus.

To examine the time response of the Josephson
junction we rewrite in the time domain the non-
linear microscopic high-frequency theory of the
effect2 o6 ivy &os && ~

I(t)= —Im U*(t) I, (t —t') U(t') dt'
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In the derivation of this equation, it is assumed
that at all times the superconductors on each side
of the insulating barrier are described as equili-
brium superconductors of negligible spatial extent.
Equilibrium is also required indirectly because
tunneling is introduced using a perturbation ap-
proach, producing a result that is strictly valid
only in the limit of low coupling between the two
superconducting electrodes. In some real junc-
tions in which the coupling is not small, additional
effects may occur as equilibrium is disturbed for
the large currents which flow in them.

We comment briefly on each of the quantities
in Eq. (1). First U(t) is a solution of the time-
dependent Schrodinger equation with Hamiltonian
eV=e(V~ —Vs), where L and R refer to the left
and right sides of the junction, respectively. U(t)
is analogous to the product of the macroscopic wave
functions discussed by Feynman'~: gg P~. The
phase Q, (I) of U(t) is, however, that for a single
electron, and is thus half of the usual pair phase.
The quantities I, (f} and Ii(t) are the Fourier trans-
forms of the corresponding quantities in the fre-
quency domain. " Since I, (k~} and Ii(h ~}obey
I (-8 &u) =I *(h m) and the Kramers-Kronig rcia
tions, "the corresponding quantities in the time
domain are real and vanish for times prior to
zero. ' The two complex-valued terms (four al-
together) in the frequency domain thus collapse
into two real ones in the time domain.

We have obtained analytic forms for I, (t) and

Ii(t) using Werthamer's formulas for I,~(h&u) and

Ii(h&u) when the superconductors on each side of
the barrier are identical and at absolute zero.""
To evaluate the functions in the time domain it is
first helpful to think of the quasiparticle term as
divided into a part which is a pure resistance R„
plus whatever correction is necessary. The pure
resistance gives rise to an instantaneous response;
the remaining part is delayed by the internal dyna. -
mics of the junction. Thus, we find that

junction at time t=0: V(t)= V,r5(t)." Note that the
voltage is zero at all other times. The phase dif-
ference P, (t) across the junction decreases at
t=0 by hP, =-eV,v/h. For simplicity we choose
Q, (t)=0 for I&0. Thus p, (f)=np, =-eV,v/h for
t& 0. Now one simply evaluates Eq. (1) and finds
the following:

I(f) = (V,T/R„) a(f)+ [S„,(t) —S,(f)] sin(~y, )

—[- vn. /2eR„S,-(f)] sfn(2ny, ) . (3)

Here
t

S, ,(t) = — —— I, ,(t') d I',
2eR~ 2m

and

The integrals S(t) are plotted in Fig. 1. Both the
delayed part of the quasiparticle current S, ,(t)
and the Josephson current Si(t} rise from
-w6/2eR„, oscillate at the energy gap frequency,
and approach zero. They differ in that S,»(t}
initially rises linearly while Si(t) rises with in-
finite initial slope because of a logarithmic sing-
ularity in Ii(t) at t=0. One can now see clearly
that while the Josephson part of the current does
not turn on as fast as the instantaneous part of
the quasiparticle current, the Josephson current
does rise in a time comparableto )f/2h (0.23x10 "
sec for niobium). The delayed part of the quasi-
particle current S, ,(t} rises on the same time
scale but somewhat more slowly.

Having defined the quantities in Eq. (3), we can
turn to that result itself. The total current it de-
scribes is plotted in Fig. 2 for the case of a pair
phase difference 2hP, of -& m. The figure shows
the instantaneous part of the quasiparticle current

0.5

I„(f) = -2v (a/eR„) 3'(f)+I„,(t), (2a}
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I(t)= J,,(
—
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We also find
0.5—

(2b)
- Tr/4—

20

The J„and Y„are the nth-order Bessel functions
of the first and second kinds.

Given the formal result of Eq. (1) we can now

consider the case of a voltage pulse applied to the

FIG. 1. Josephson {Sz) and delayed quasiparticle
{S&pp) parts of the current through a tunnel junction as
a function of time.
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PEG. 2. Total current through a Josephson tunnel junc-
tion as a function of time. Junction is subjected to a vol-
tage pulse at time zero sufficient to change the pair phase
by —&n'.

at time zero described by the 5-function term of
Eq. (3). At later times the total current rises
rapidly to the expected supercurrent, undergoes
damped energy-gap oscillations, and stabilizes
at the supercurrent. The second term in Eq. (3)
(in square brackets) contains both Josephson and

delayed quasiparticle contributions. It is transient
in the sense that both contributions vanish for
large times. 'The third term is the one which ap-
proaches the expected Josephson supercurrent for
large times. The argument of the sine function is
2hQ, , the usual pair phase difference since b,P,
is the phase difference per single electron.

It is interesting to consider the energy Qow in
this problem. The energy delivered electrically
to the junction from time t to t+ b, t is of course

g+ b,t
I (t') V(t') d t' .

Since the voltage is zero at all times except t= 0,
all of the electrical power which flows into the
junction does so at time zero. It may at first
glance seem somewhat surprising that the current
continues to change with time after the energy has
been delivered to the junction. Clearly energy
storage and dissipative processes must be occur-
ing without being reflected in the electrical portion
of the system. One can see from Fig. 2 that most
of the stored energy is released within a time
ht-II/2n. . If the energy uncertainty nE is of the
order of the gap 2b, , then hE bt-S, and the un-
certainty principle applies properly. Dissipation
is closely connected with the remark in Ref. 7
that the theory is derived assuming that the wave
functions on each side of the insulating barrier
retain their equilibrium values even after the
current is allowed to flow through the junction.
If this is to be the case, then an implicit mechan-
ism is assumed which permits the instant thermal-

ization of excess quasiparticles injected by the
current into the electrodes. This implicit trans-
fer of energy is what allows the oscillations in
the junction current to damp out after all of the
electrical energy has been delivered at t= 0.

The simple calculation we have discussed is
useful for a number of reasons: First, it shows
quantitatively that there is an intrinsic response
time in a Josephson tunnel junction, namely,
k/26. It also reveals damped energy gap oscil-
lations in the response.

Second, it makes clear that in the frequency
domain both the real and imaginary parts of the
response, given for example by I~(ku&), derive
from the delayed response in the time domain
I~(t). Thus in the frequency domain it is necessary
to use both real and imaginary parts to completely
describe the delays inherent in the system. There-
fore in a complete analysis neither the cosine term
nor the reactive part of the quasiparticle current
may be omitted. On the other hand, although both
real and imaginary parts must be retained in the
frequency domain, neither term contains any in-
formation not revealed in the other because the
two are connected by the Kramers-Kronig rela-
tions. As an example of this discussion, the
Riedel peak" in the sine term is simple a reflec-
tion of the damped energy-gap oscillations in
I~(t). The step in the cosine term at the gap fre-
quency is a reflection of the same oscillations
and thus contains no information about the response
which is not manifested also in the Riedel peak.

Finally the time domain formulation of the theory
provides a new tool for computations. To develop
this tool one projects the junction voltage ahead
in time and calculates the current through the
junction self-consistently with the voltage and cur-
rent for the circuit to which the junction is attach-
ed. This approach has already been used to cal-
culate points on the time-averaged I-U curve of a
current-biased tunnel junction. " The results
achieved were in agreement with a calculation of
the same I-U curve, but done in the frequency
domain by McDonald, Johnson, and Harris. "

Experimental observation of the result in Fig. 2

has partly been achieved, in the sense that the
quasiparticle current' and the Riedel peak in the
sine term" have been observed. These observa-
tions were, however, in the frequency domain.
One may be able to observe the delays directly
using a matex'ial having a small energy gap to
keep the intrinsic response time as long as pos-
sible. " One must also keep the junction capaci-
tance small so that the current of interest will
not be shunted. " Finally, the voltage pulse in the
conceptual problem may need to be replaced by a
current step, or some more readily achievable
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shape. One would then examine the voltage re-
sponse. While extremely difficult, this experi-
ment may be within the scope of present techno-
logy.

In conclusion it is clear that, in theory at least,
the Josephson tunnel junction is a very fast de-
vice by present standards. However, the theory
is limited to devices in which the currents are
small enough that equilibrium within the elec-
trodes is not substantially disturbed. Recent de-
vices of potentially great technological importance,
such as that reported by Broom, Jutzi, and Mohr, "
have rather high current densities and probably
are not accurately described by the present theory.
There is therefore a significant need for high-
frequency theories of tunnel junctions whose elec-

trodes are not in thermal equilibrium. Further-
more, there are no existing high-frequency theor-
ies of such commonly used devices as micro-
bridges, proximity effect bridges, and point con-
tacts. These devices may involve substantial de-
partures from thermal equilibrium and high-fre-
quency theories of them are needed also.
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