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Contributions to the specific heat per component of an n-component two-dimensional Ginxburg-Landau field

are computed to order g for n = ce, where g 0: X'/ [8T,(x)]'), is a measure of the strength of the system

inhomogeneity and X g g is the range of correlations for variations 8 T,{%)in the local transition temperature.
For a two-component alloy we find g ~ c{1—c)(d ln T,/dc)', where c is the concentration of one component.
The order-g contribution Cs~ is compared to the order-1/n contribution C "" to the specific heat of the

homogeneous system. %e find that C ff is negative in the temperature range for which C~"" is positive, and

tends to cancel the peak in the specific heat associated with ihe 0{1/n) contribution. This result may explain

why no peak was observed in the experiment of Zally and Mochel.

I. INTRODUCTION

It has long been an interesting question whether
superconducting films exhibit any specific-heat
anomaly at the transition point. The theoretical
interest centers on the fact that a superconducting
film, with thickness much less than the coherence
length, is a physical realization of a two-dimen-
sional system for which the number of components
of the order parameter is greater than one (namely
two: the real and imaginary parts of the complex
order parameter). It has long been known that the
traditional type of phase transition, with broken
symmetry and long-range order in the low-tem-
perature phase, is impossible for such systems. "'
This does not rule out, however, a phase transi-
tion of the Stanley-Kaplan type' in which the re-
sponse to an external field, coupled to the order
parameter, becomes infinite at and below a criti-
cal temperature, but with no long-range order. At
present it is not known whether such a transition
is accompanied by an anomaly in the specific heat.

On the experimental side, the results of Zally
and Mochel' indicate no anomalous behavior, with
the specific heat a monotonically decreasing func-
tion of temperature in the critical region. Such
behavior was observed to be in good agreement
with existing theory. ' The theory, however, is
equivalent to the exact solution of the n-component
Ginzburg-Landau model in the limit n-~, whereas
a superconductor corresponds to n= 2. The use of
this approximation (Hartree approximation) was
motivated by the lack of an exact solution for finite
n, and by the reasonableness of the results. Fur-
thermore, the n= limit serves as a basis for ex-
pansion in powers of 1/n. ' " When order-I/n con-
tributions to the specific heat are included, how-
ever, a peaking of the specific heat is predicted, "
and the good agreement with experiment disap-
pears.

All of the above considerations apply to homoge-

neous superconductors, for which the transition
temperature is uniform throughout the system. In
the present paper we wish to broaden the discus-
sion to include inhomogeneous systems for which
the transition temperature T, can have local varia-
tions 6T,(x). We have in mind specifically the
case of two (or more} component alloys, for which
the transition temperature usually depends on the
relative concentrations of the components. In the
experiment of ZaQy and Mochel, for example, a
Bi-Sb alloy was used, for which the transition
temperature varies from 6.1 to 0 K as the Sb con-
centration varies from 0 to 70 at. /0. A given alloy
will not be perfectly uniform, and this will lead
to local variations in T,. %'e will show that such
variations can explain why no specific-heat peak
was observed in the Zally-Mochel experiment. Our
approach will be to take the n = ~ limit of the homo-
geneous system as starting point and to use per-
turbation theory to compute corrections to order
I/n and to order g, where

g [x/&(0)]'([5T,(x)j'),/T, (nT, )

is a measure of the amount of inhomogeneity in the
system. Here A. is the range of the correlations in
6T, (x), ((0) is the bare (T = 0) correlation length
for fluctuations of the order parameter, &7, is the
width of the critical region for the homogeneous
system, and ( ), means a configuration average
over an ensemble of distributions 5T,(x). We as-
sume that X«$, the temperature-dependent cor-
relation length. As mentioned above, the O(1/n)
contribution C" "' is responsible for a peak in the
specific heat. We will find, however, that the O(g)
contribution C'~' is negative in the temperature
range for which C'" "' is positive, and tends to
cancel the peak.

The plan of the paper is as follows. Section II
is concerned with a presentation of the model in
terms of the usual Ginzburg-Landau parameters,
a reduction to dimensionless variables, and the
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solution of the model for n= . In Sec. III we com-
pute the corrections of O(1/n) and O(g) to the spe-
cific heat. In Sec. IV the perturbation theory of
Sec. III is used to motivate a self-consistent type
of calculation which is expected to be more ac-
curate than simple perturbation theory for inter-
mediate values of the parameters, 1/n, g-l.
Finally Sec. V contains a discussion of the results.
Here we show that for a binary alloy the param-
eter gcc c(1 —c)(d lnT, /dc)', where c is the concen-
tration of one component. An order-of -magnitude
estimate for the Zally and Mochel experiment gives
g-1. This is of the correct order to account for
the lack of a specific-heat peak in their results.

g„= D2y x e-~'""' (2.1)

where JD'(l((x) ~ means a, functional integration
over the real and imaginary parts of the order pa-
rameter g(x) and the free-energy functional F[(l(]
is given by the GL form

&((I=", f~"(~ I(=(x(I" ~ I~((x(l*

~
2 ~ I(Ix(l' ~

"
l((x(l*)

Here e,5, P are the usual GL parameters,

(2.2)

o. = 5e/P(0), 5= 1/2m, P = g,'/nm)~( )0, (2.3)

where

II. n-COMPONENT GINZBURG-LANDAU MODEL AND

LIMIT n~~

In the Ginzburg-Landau (GL) model of an inhomo-
geneous superconductor the partition function is
given by

scale large compared to the film thickness d, i.e.,
that $» d and X»d. The latter constraint is not
essential but is a convenient assumption for the
time being. Then Eq. (2.2) becomes

r(yl =sfd'*(y I
y

I

*+
y I

v('I

.—,v~ 1('I" '(,*'I('I'). (2.5)

In the usual way it is convenient to rescale the or-
der parameter and length variables so as to re-
duce Eq. (2.5) to a simple dimensionless form. To
this end we set

/=a(II, x= by, (2.6)

and choose the scale factors a, b so that the coef-
ficients of the terms in IV/ I' and I @ I' are & and

8, respectively. This yields

g = (T/2M)~12 5 = (52d/PT)~('2

and gives

(2 7)

(2.9)

Here k~ is the Fermi momentum and p, is the Fermi
energy, and we have made the usual simplification
of replacing T by T, except in the factor &; w' is
given by Eq. (2.9}with n, e replaced by a', z',
respectively.

The model is now conveniently generalized to an
n-component GL theory by writing

((I(l-f ~*( IVI('(v(l ~ '-1~(((&l'

+ —,'
~
P(y)~' + —,' 7'(y}~ @(y)~'], (2.8)

where

$(0) = (0—0.133vr/T, , (0 « l

$(0) = 0.99(),l)' ', $, » l
(2.4)

N

d2y Qf 2+ Q2 g + gg + p2
4=x /= i

is the bare (temperature-independent) coherence
length. " In Eqs. (2.3) and (2.4), c=(T —T,)/T„
where T, is the mean transition temperature, m
is the electronic mass, n is the conduction-elec-
tron density,

vobis

the Fermi velocity, and l is the
electronic mean free path. We use units such that
the velocity of light, Boltzmann's constant, and
Planck's constant divided by 2z are all unity. The
coefficient o('(x) in Eq. (2.2) represents the fluctua-
tions in transition temperature produced by the
inhomogeneities and is given by a'(x) =[5/
$'(0)]a'(x), where &'(x) = 5T,(x)/T, .

We now make the assumption of "two dimension-
ality, " namely that both (l((x) and n'(x) vary on a

(2.10)

with partition function

(2.11)

The superconductor is the case n= 2.
Consider first the homogeneous system with v'

= 0. In the limit n-~ (Hartree limit) the problem
is readily solved. " For then the component ~t), is
acted upon by an interaction averaged over all the
other components. The coefficient of $2& defines
an inverse correlation length ~, by
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tl

K( = T(&+ —Q (Q }
j= 1

=v' +G(0). (2.12)

d2
28'P e (2.13)

with the Fourier transform having the Ornstein-
Zenike form

Z(P) = (P'+ xl) ' (2.14)

Angular brackets denote thermal averages. The
order -parameter -order -parameter correlation
function, or propagator, G(y) (which is indepen-
dent of j because of the isotropy of the model) is
given by

G(y}= &0 (y)e, (0)}

III. ORDER-1/n AND ORDER-g CONTRIBUTIONS TO THE
SPECIFIC HEAT

The calculation of the order-1/n contribution
C" "' has been given in Ref. 11. We repeat the
derivation here in order to emphasize the simi-
larity between the O(1/n) calculation and the O(g)
calculation which follows. The expansion in powers
of 1/n is most easily performed by graphical
means (see, for example, Ref. 13). The interac-
tion vertex associated with the quartic term in Eq.
(2.10) is of order 1/n, while each closed loop ap-
pearing in the graphical expansion contributes a
factor n. The Hartree free energy F is of order
n, so the correction of order 1/n relative to I'
which we seek is of order unity and is contributed
by the ring graphs depicted in Fig. 1. The graph
with r loops has rotational symmetry r. Hence
the sum over ring graphs gives

The integral in Eq. (2.13) diverges for y= 0 and
requires a Debye cutoff at the maximum wave num-
ber pD. With p~» Ky we find

F(1/n) & ~ r (3.1)

G(0) = (1/2w) ln(pv/x, ) . (2.15)

The cutoff can be absorbed into the renormalized
temperature variable

where

= —Q ln [1+w0(q)],
1

2. (3.2)

~( = r, + (1/2w) 1npv,

in terms of which Eq. (2.12) becomes

(2.16)

.(()=p(.(P)(;(i 4)= (, *) 2, )
P

(3.3)

x', = r( —(1/2w) In», , (2.17)

independent of the cutoff. Differentiating Eq. (2.17)
gives l(x)=» '(1+x') '~'In[»+(I+x'}'~']. (3.4)

is the "polarization propagator. " Performing the
integration in Eq. (3.3) gives

dK~ 27TK~

dT0 1+4m',
' (2.18) Differentiating Eq. (3.2) gives the O(1/n) contribu-

tion to the entropy per component as

Introducing the thermodynamic free energy F
= —lnZ, one sees on differentiating inside the func-
tional integral of Eq. (2.11), that the entropy per
component is related to the propagator by

(y/ & 1dF'"'1= —v(0) Q v(q)T(q),
g dTp R

where

(3.5)

S= — = --.'G(0) = ——ln —'1 dF 1 1 PD
n dTD 4w

(2.19}
v(q) = [1+w, (q)] ' (3.6)

Differentiating Eq. (2.19) and using Eq. (2.18) gives
the specific heat per component in the Hartree
limit as

dS 1
dTD 1+ 4 7TIPj

(2.20)

where the factor 2 serves to normalize the specific
heat to unity in the low-temperature range T, « -1.
C is a monotonic function of T„decreasing smooth-
ly from its asymptotic value of unity for T1«1
to (4w7, )

' for 7, »1. The full dependence of C on
T, is shown by the curve labeled "C" in Fig. 3,
where the abscissa is labeled T, rather than T„
for a reason which will become clear in Sec. III.

&(q)= —— ', =Jr'(p}g(P+q)1 dwa(q)
2 d(x', )

1+ I(q/2», )
16wx', I+ (q/2», }2

'

(3.7)

(3.8)

FIG. 1. Graphs for the free-energy contributionF
Solid lines represent the Hartree propagator, short-
dash lines the quartic interaction in the GL functional.

In the limit q —~, v(q} -1, and T(q) —(4wtc', q') ' so
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that the integration in Eq. (3.5) fails to converge
and has to be cut off at p~ in the usual way. The
evaluation of the integral is simplified, however,
by writing

( I/n)
nC

0.5—

——v(0) Q [1 —v(q)]T(q) .1
n

4f

(3.9)

" udu l(u)[1+ l(u)]
1+u' 4ww', + f(u)

(3.11)

We now show that it is possible to remove the
dependence of S" "' on the cutoff by making a fur-
ther order 1/n renormalization of the tempera-
ture variable. We set

T~=T —5T
y Kj =K —QKy (3.12)

where 6v, 6e will be O(1/n) Subs. tituting into Eq.
(2.17) and demanding that the Hartree relation

The second integration now converges, so the upper
limit may be extended to infinity. The first inte-
gration is readily performed by using the right-
hand member of Eq. (3.7) and performing the sum
over q first. The result is

S" "'= (1/2wn)(1+ 4ww', ) '[ln(pv/w, ) I(x,)],-
(3.10)

where

c()
g

-0.5-

FIG. 2. Contributions of O(1/n) and O(g) to the specific
heat of the two-dimensional GL model, where g is the
"inhomogeneity parameter" given by Eqs. (3.31), (3,31a),
and (3.31b).

result of a numerical computation of nC" "' is
shown in Fig. 2. The effect of adding C" "' to the
Hartree specific heat C is shown in Fig. 3, for the
special case n=2, by the curve labeled "C+C" "'."
The total specific heat exhibits a peak, in contrast
to the Hartree specific heat C, also shown in Fig.
3.

Of particular interest is the low-temperature
limit T « —1, when we can use the asymptotic form

( I /n )

(1/2w) in~

hold also between the new variables yields

6w= 2wv(1+4wx') '6v.

(3.13)

(3.14)

In terms of the new variable K, the Hartree entro-
py, Eq. (2.19), becomes

S = -(1/4w) ln(pv/x) —(1/4w) 6w/x

= -(1/4w) in(pv/x) --,'(1+4ww') '6r. (3.16)

Now in Eq. (3.10) we may repla. ce w, by z, since
the resulting error is O(1/n'). Then the final term
in Eq. (3.15) exactly cancels the cutoff-dependent
part of S" "' provided we choose

I

—I.O
I

-0.5
I

0.5

67' = (2/n)(1/2w) ln p,
giving

7' = 7'o+ (1+ 2/n)(1/2w)ln pv. (3.16)

The remainder of Eq. (3.10) is cutoff independent
and gives

S"~"'= (1/2wn)(1+4ww') ' [jn(1/x) -f(g)]. (3.17)

The specific-heat contribution is obtained by dif-
ferentiating Eq. (3.17), C" "'=2dS" "'/dv, . The

FIG. 3. Specific heat of the two-dimensional GL model.
The curve labeled C is the Hartree theory. That labeled
C +C " includes O(1/&) corrections with n =2 taken, as
appropriate for superconductors. The curve labeled
C +C ~ includes O(g) corrections to the Hartree theory
withg = 1 taken. The curve labeled C +C " +C ~ in-
cludes both O(1+) and O(g ) corrections (with n = 2, g= 1)
and qualitatively resembles the Hartree result C. The
shoulder in the total specific heat is presumably a result
of using perturbation theory beyond its strict region of
validity. It is much less pronounced in Figs. 7 and 8, ob-
tained from the self-consistent calculation of Sec. IV,
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(3.18)

l(x) x-' ln2x in Eqs. (3.3) and (3.8) to give (with
K~~K}

w, (q) = (1/wq') ln(q/K)

Q+$Q+Q Q+$Q+"
0 6-0

T(q) = 1/4wK'q'

Using also v(0) = 4wK', and approximating

v(q) = [1+(1/wq') ln(q/K)] '

by

v(q) = q'/(q'+ q„'),

with q„determined seU-consistently from

q„'= (1/w) ln(q„/K),

Eq. (3.5) becomes

(3.19)

(3.20)

(3.21)

(3.22)

FIG. 4. Graphs for the free-energy contribution F ~ .
The crosses represent the inhomogeneity term in the
GL functional. The long-dash l,ines represent "conser-
vation of momentum" after averaging over all configura-
tions of the inhomogeneity distribution.

crosses indicate that momentum is conserved "on
the average, " i.e., that only the diagonal terms
(v'(q)v'(~)), survive when we take the configura-
tion average. Note that the graphs of Fig. 4 are
strikingly similar to those of Fig. 1, the principal
difference being that the graphs of Fig. 4 have no
rotational symmetry. Their contribution to the
free energy is

The term in lnpa may be absorbed into a renormal-
ization of the temperature variable, as described
above. Then the cutoff -independent part of Eq.
(3.22) is

—.'n 'q, ~ q~ -q, .
1 + wp(q

(3.2V)

F"'= - ,'ng(--1)""g[,(q)]"(v'(q)~'(-q)),
r=l a

S" "'= —(1/2wn) lnq„= —(1/4wn) ln~w~,

giving

C"" =(2 ~&~), 7' -1 ~

(3.23)

(3.24)

Differentiating Eq. (3.21) gives the contribution to
the entropy per component

(,) 1 dI'"'
n d7'0

This behavior is to be contrasted with that of the
Hartree specific heat [Eq. (2.20}with K, -K] in the
limit v« -1:

C = 1 -4gg'

1 4ge (3.25)

(3.26)

The sum C+ C" "' is therefore greater than unity
for sufficiently large negative v, and the specific
heat therefore exhibits a peak, no matter how large
we choose n.

We return now to Eq. (2.10) and consider the
case 7'(y) &0, in the limit n- ~. The extra term
in P[p,] becomes, in Fourier-transformed vari-
ables,

= —pv(0) gv'(q)T(q) (r'(q)v'(-q)), . (3.28)

Now the correlation function (7'(y)7'(0)), is peaked
about y = 0 with width -X/b, where b is the length
scale parameter of Eq. (2.V). Therefore its Four
ier transform (~'(q)v'(-q)), is peaked about q= 0
with width kp

- b/X. On the other hand, the varia-
tion of the product v'(q)T(q) with q is on a scale
set by v = v' ' for T» 1 and on a scale set by q„
= (2

~

r
~

)'~' for v « —1. Therefore, provided k,
» ~v

~

'~', which is equivalent to the condition A.

«$o„= $(0)/
~

e
~

'~', we may replace (7'(q)v'(-q}),
in Eq. (3.28} by its value g at q = 0, and take it
outside the integration, k, playing the role of a
large-momentum cutoff on the logarithmically di-
vergent integration. Thus

This acts as a one-body "scattering potential"
which we represent diagrammatically by a cross
and treat in perturbation theory. Since (v'), can
be taken zero without loss of generality (a nonzero
(7'), can be absorbed by a redefinition of vp), the
leading terms are the second-order contributions
to the free energy depicted in Fig. 4. As before,
the short-dash lines represent the quartic inter-
action in 8:[P,]. The long-dash lines joining the

S"'= —pgv(0) g»'(q)T(q),
@&kg

where

(3.29}

(3.30)

(3.31)
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4m' ~
cy

where we have converted to microscopic param-
eters via Eq. (2.3}. Using n=k'r/3v' yields

A p A.
' ( [5T,(x)]'), (3.31a)

Alternatively, g can be expressed in terms of the
"width of the critical region" for the homogeneous
system, &T„obtained by setting &0= 1. Using Eq.
(2.9) we find

(3.31b)

The dimensionless parameter g depends on two
parameters —the range of correlation X and the
mean-square fluctuation ([5T,(x)12),—which may
not be known at all accurately experimentally. In
most applications, however, the randomness is on

an atomic scale. In Sec. V we give an argument
to show that for binary alloys the dependence of

g on these two variables reduces to a dependence
on the single variable c(1-c)(d lnT, /dc)2, where
c is the concentration of one component of the
alloy. The dependence of T, on c is easily deter-
mined experimentally and in fact is known for the
Bi-Sb alloy used by Zally and Mochel.

Returning to the evaluation of S~~~, the sum over
q in Eq. (3.29) may be carried out in entirely
analogous fashion to the evaluation of S '~" . That
is, we write

S" = —~gv(0) P T(q) +~gv(0) g [1 —v (q)]T(q)
ao

= —(g/4n }(1 4vz+', ) '[In(k, /~, ) —J(~,)], (3.32)

where

udu f(u}[1+l(u}][8wa', + l(u)]
1+u' [f(u} +4w~', ]' (3.33}

The term in ink, in Eq. (3.32} can be removed by
renormalizfng the temperature variable [cf. Eq.
(3.16)) to

7o(+I+2n/)(1 2/w) lnPv —(g/2s) lnko,

leaving the cutoff-independent form

(g/4w)(1+4w~') '[In(1/~) -Z (x}],

(3.34)

(3.35)

with z related to 7 by Eq. (3.13). Differentiating

the numerical coefficient A depending on the pre-
cise form of the correlation function. For exam-
ple, if (r'(y)v'(0)), ~exp[-(k/X) ~y~], then A= 2v.
Substituting for b and v' in terms of the GL param-
eters from Eqs. (2.7) and (2.9), we find

g=A(X'd/PT) (n"),

= ——ln —' (3.36)

The cutoff-independent part gives, on differentia-
tion,

C"' = g/4w ill, r « I . (3.37}

Combining Eqs. (3.24), (3.25}, and (3.37) yields

C+C~'/" +C = I+(2/n -g)(I/4nr~), r« —1.
(3.38)

Hence if g& 2/n, the total specific heat approaches
unity from above for large negative v and there-
fore exhibits apeak. If g&2/n, however, the spe-
cific heat approaches unity from below, indicating
that the broad peak associated with C" "' is wiped
out by the inhomogeneity term. For finite n, there
may, however, be a sharper structure around v

-0 which is only seen when all orders in 1/n are
included in the calculation. It is quite possible
that such structure, if it exists, will not be re-
moved by inhomogeneities. We will discuss this
point further in Sec. V.

IV. A SELF-CONSISTENT APPROACH

So far we have used perturbation theory to cor-
rect the Hartree limit for the effects of finite n

gives the specific-heat contribution C'~' = 2dS"1/
d~o. The result of a numerical computation of
(2/g)C~ 1 is shown in Fig. 2. Note that in the low-
temperature range, where C '~" is positive and

leads to a peak in the total heat capacity, C is
negative and, if & g is of the same order as or
greater than I/n, tends to cancel out the peak.
This is demonstrated in Fig. 3, where g =1 has
been used. The curve labeled C is the uncorrected
Hartree result. That labeled C +C~'~" includes
the O(1/n) correction for n = 2. The curve labeled
C+C ' " +C' includes both O(1/n) and inhomoge-
neity corrections and resembles qualitatively the
uncorrected Hartree curve. Finally the curve
labeled C +C includes the inhomogeneity cor-
rection only, and demonstrates the effect of in-
homogeneities in broadening the transition. Note

that the term C~ ~ leads to a shoulder in the total
specific heat which is presumably an artifact of
using perturbation theory beyond its strict region
of validity. This shoulder was not observed ex-
perimentally4 and is much less pronounced in the
self-consistent version of the theory which we

introduce in Sec. IV.
Of particular interest is the low-temperature

form of C'~ . Using Eqs. (3.19) and (3.20) together
with v(0)=4@le', Eq. (3.29) becomes, for v« —1,

2

(q2 +q2)2
a&40
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and inhomogeneities. However, we wish to apply
the results to cases in which the "small param-
eters" of the perturbation theory, I/n and g, are
not strictly small, i.e., n=2, g-1. In this sec-
tion, therefore, we present a self-consistent cal-
culation which is expected to be more reliable than
simple perturbation theory for these intermediate
values of I/n and g.

The exact propagator gs(p) has the form

Zz(P)=[~. +P'+c(f }] ', (4.1}

where a(p) is the self-energy. Hartree, O(1/n) and

O(g) contributions to a(p) are shown in Figs. 5(a}-
5(c). Here a single bold line represents the Har-
tree propagator, Eq. (2.14), while a wavy line rep-
resents the "screened potential, " defined in Fig.
5(d), and the shaded circle is the vertex function
defined in Fig. 5(e}. If q is the momentum carried
by the wavy line, then the graphical equation of
Fig. 5(d) is easily solved to yield for the screened
potential (-I/n)v(q), where v(q) = [1+v, (q)] ' was
introduced in Eq. (3.6). Similarly, the graphical
~nation of Fig. 5(e) yields for the shaded circle
(g)'~'v(q), where q is the momentum carried by
the long dash line and we have associated a factor
(g)'~' with each cross after carrying out the con-
figuration average.

The calculation is made self-consistent by using,
in the computation of o(p), self-consistently de-
termined propagators instead of Hartree propaga-
tors. Then we get the self-energy graphs shown
in Fig. 6, where double bold lines represent self-
consistent propagators g„(p). Thus

(a) ,'(b) (c)

(d)

(e} I = X +

replacing a„(P) by o'„(0) in Eq. (4.2). Then g„(p)
has the Ornstein-Zernike form

z..(P) = (~'+P') ',
where

(4.5)

~' = ~, + o„(0)

2
= ~, + Qg„(q)+ —Q v(q) g„(q)n,

-g v'q g„q (4. 'I)

v(q) = [1+(I/4m')l(q/2~)] ', (4.8)

FIG. 5. Graphs for (a) Hartree self-energy; (b) O(1/)
contributions to the self energy; (c) O(g) contributions
to the self-energy; {d) the screened potential (-1/n)
v (q); (e) the vertex function appearing in (c) . In all
cases continuous lines represent Hartree propagators.

Z..(f )= [&.+ f'+&..(P}] '

where

c„(p)= gg..(q)+ —g~(q)Z. .(&7+0)
2

-g Q v'(q) g„(j+p),

v(q) = [1+w, (q)] ',

(4.2)

(4.3)

(4.4)

with l(x) given by Eq. (3.4}. To extract explicitly
the dependence on the cutoffs pD and k, we write

& =To+ ~ac q + sc q -~ &sc q
2

——g [I -5(q)]g..(q}+ag [I -~'(q}]8;.(q) .

(4 9)

and

v, (q) = Qg„(k}g„(k+q) (4.5)

The first two sums in Eq. (4.9}are cutoff at p~,
the third sum at k„while the remaining two sums
are convergent. Thus

is also determined using self -consistent propaga-
tors. This approach has been rather successful in
describing the specific heat of the one-dimensional
homogeneous GI. model. " It has also been used
as an approximate scheme for determining the
critical exponent g for dimensionalities D in the
range 2~D ~4." The set of coupled integral equa-
tions (4.2)-(4.5) is rather intractable as it stands.
We therefore make the further simplification of

FIG. 6. Self-energy graphs for the self-consistent
calculation of Sec. IV. Double lines represent the self-
consistently-determined propagator.
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x2 = v, + (1+ 2/n)(1/2w) ln( p~/w) —(g/2w) In(k 0/x) u - [w(4w}'~'] '[In(1/~}j'~', (4.15)

where

—(I/nw)K(w)+ (g/2w)L(w),

" udu l(u}

0 u +g4wK +l(u)

(4.10)

(4.11)

for which 4ww' may be neglected compared to l(u).
If 4mK' is so neglected, then the integrals defining
K(w} and L(w) are identical, and diverge logarith-
mically at their upper limits. To logarithmic ac-
curacy, therefore,

K(w)- L(w)-Inu -ln(l/a)+-', Inin(1/K) Ic«1.
"udu l(u)[8ww'+l(u)]

, u'+ —,
' [4ww'+ l(u}]2

(4.12)

Substituting in Eq. (4.13) gives

(4.16)

Hence

g' = v + (1/2w)[(1+ 2/n -g) ln(1/w) —(2/n)K(a') + gL (w)],

(4.13)
where v = 7, + (1+2/n)(1/2w) in pn —(g/2w) ink, is the
same renormalized temperature variable that ap-
pears in Eq. (3.34). The entropy per component
1S

K - 7+2 ln — — —-2 lnln—

The specific heat is

dS dr
C =2—= 2n'K-

ENT {gK

(4.17)

(4.18)

S= ——Qg (p)= -(1/4w) ln(p /x).
1

(4.14)
We use Eq. (4.17) to compute dv/tfw:

1 1 g 1
1 — ——— ln —,g «1. (4.19)

4K 25K ~ n 2 K
Differentiating, and using Eq. (4.13) to determine
dw/dv, yields the specific heat. The results of a
numerical computation, for different values of n
and g, are presented' in Figs. 7 and 8. The sal-
ient features are that, as expected, increasing g
has the effect of broadening the transition and that,
for n= 2, the peak associated with the g= 0 case is
virtually wiped out when g= 1.

In the low-temperature range 7 « -1 we can ob-
tain analytic results. For then 4n'K'- 0 and can be
neglected compared to l(u) in Eqs. (4.11) and (4.12),
except when u is so large that l(u)-u 'ln2u 4ww'-
This defines a maximum value of u,

Therefore, in the low-temperature range 7 « -1,

C =1+ ——— ln—

= I+(2/u g)1/4wi7-i, ~« -1. (4.20)

Thus the low-temperature behavior agrees with
the perturbation-theory result Eq. (3.38). If
g& 2/n, C approaches unity from above; If g& 2/n,
C approaches unity from below. In Sec. V we pre-
sent a mean-field-theory argument which suggests
that Eq. (4.20) is exact.

g=O

I

-I.O -0.5
I

0.5 (

-I 0 -0.5
I

0.5

FIG. 7. Specific heat of the two-dimensional GL model
as given by the self-consistent cal.culation of Sec. IV,
with e = ~, for three values of the "inhomogeneity par-
ameter" g. The g = 0 curve is the Hartree result. As
expected, the transition broadens with increasing g.

FIG. 8. Specific heat of the two-dimensional GL model
according to the self-consistent approach, with n = 2,
for three values of g. For g & 1 the peak associated with
the g = 0 curve disappears so that the specific heat re-
sembles qualitatively the Hartree result labeled C .
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V. DISCUSSION

5N - [c(1 -c)]'/'(n„d)'/'X' . (5.2}

The statistical uncertainty in the concentration is

The effect of inhomogeneities on the specific
heat of a superconducting film depends on the
dimensionless parameter g, given by Eq. (3.31).
It is clearly important to estimate the value of g
for a typical system. Consider, for example, a
two-component alloy for which T, depends on the
relative concentrations of the components. If the
components are well mixed, as in the case for the
Bi-Sb alloy used by Zally and Mochel, ' then the
inhomogeneity occurs at the atomic level, that is
we may regard the two types of atom as being
arranged randomly on the atomic sites. Then the
correlation length A. appears to be of the order of
the atomic separation. We say "appears" because
it is clearly nonsense to associate a local T,(x)
with a single atom. There is obviously a minimum
volume of the system, containing many atoms, re-
quired for a meaningful definition of a local T, .
Suppose a characteristic length X' (assumed»d
for the moment) defines such a minimum volume
(-dX''-), and imagine the film to be divided into
square slabs of side X' and thickness d. Then 5T,
is completely uncorrelated for neighboring slabs
and we have X-X'. The number of atoms in each
slab is

N-nq&' d, (5.1)
where n& is the number of atoms per unit volume.
If c is the concentration of one component, then
the well-known properties of the binomial distri-
bution give the statistical uncertainty in the num-
ber of atoms of this type as

For the alloy used by Zally and Mochel, Bip 4Sbp

an order of magnitude estimate using A-2~,
7.', /p, -10 4, d lnT, /dc -10 yields g-1. Hence the
inhomogeneity effect can explain the absence of a
specific heat peak in their experiment.

So far we have assumed that the characteristic
lengths ~, X' are large compared to the film thick-
ness d. What happens in the opposite limit
A. , X'«d& Then the two-dimensional integration
of Eq. {3.30) has to be replaced by a three-dimen-
sional integration, normalized by a factor b/d
Then g is modified by a factor X/d and the constant
A may also change. But now the characteristic
volume necessary to define a local T, is also
modified, by a factor X'/d- X/d. These two effects
cancel to give the same result, Eq. (5.6), for g
apart from a factor of order unity.

We have also assumed throughout that X«g«
= ((0)/~e~'/', which is appropriate to the usual
experimental situation. It is of pedagogical inter-
est to consider also the opposite limit, X» $«, of
very-long-range fluctuations in the transition
temperature. Recall that the inhomogeneity con-
tribution to the free energy is given by Eq. (3.27),

(5.7)~ 1+w,(q)

The function (7'(q)r'(-q)), is now sharply peaked
about q =0 with width ko-b/X« ~v~'/'. The factor
w, (q)/[1+wo(q)] may therefore be evaluated at q = 0
and taken outside the integration. But w, (0)/
[1+wo(0)] =(1+4ww') ' is just the Hartree specific
heat C . Therefore

F" = ——,
'

nC g (&'(q)&'(-q)&, = —4nC(7"), .

5c = 5N/N- [c(1 -c)]'/'(n„d} '/'(&')

which leads to a statistical uncertainty in the
transition temperature of the slab equal to

(5.3) (5.8)

The inhomogeneity contribution to the heat capacity

is then

&T
dTc
dc

2 d p g
( 2}

d C (5.9)

-[c(1-c)]'/' ' (n„d) '/'(X') ' (5 4)
dT

where dT, /dc is the rate of change of transition
temperature with concentration for the homoge-
neous system. Using A.

- X' we see, therefore,
that the product X'((5T,}'),appearing in g is
independent of X' and given by

x'((5T,)'},-c(1-c) dT, 21
dc n„d

Substituting in Eq. (3.31a) yields

(5.6)

This result may also be derived using elementary
arguments. If the transition temperature is con-
stant over many correlation lengths then the sys-
tem may be regarded as composed of subsystems
with different, but uniform, transition tempera-
ture. If the heat capacity of a single subsystem
is C(r, + v') then the specific heat of the whole sys-
tem is

cj C
(C(so+ r')), = C(ro) + '(r' ) — + ~ ~ ~

P 7 '~O

(5.10)

The linear term in the Taylor-series expansion
vanishes since (&'), = 0 by assumption (without loss
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of generality). Note that since the second deriva-
tive of C vanishes more rapidly than C itself in the
low-temperature range [when O(1/n) terms are in-
cluded in C] this type of long-range inhomogeneity
is incapable of canceling the peak in the specific
heat of the homogeneous system.

Most recent work on the theory of phase tran-
sitions in inhomogeneous systems" "is based on
the renormalization-group approach, "allied to
expansions of the critical exponents in powers of
4 —D where D is the dimensionality of the system.

While this approach can say nothing about the D
= 2 case considered here (since the two-dimension-
al phase transition is, for n &1, qualitatively dif-
ferent from that usually encountered), the results
do have some bearing on the interpretation of the
results presented in this paper. By way of illus-
tration we present a mean-field-theory calculation,
for arbitrary dimensionality, of the specific heat
in the low-temperature range «&-1.

Recall the free-energy functional for the inhomo-
geneous system

(5.11)

If the condensation is (say) in the "1"direction, we set P, (y) = a+ )(y), where a= (n ~7 ~)'!' is the mean-field-
theory value for the order parameter of the homogeneous system, and r„(y) is a small fluctuation. Expand-
ing to second order in the fluctuations t'(y), (t), (y) (i —2), and r'(y) yields

()= —,
' (e(' ~

&
e e(2( (v (v() +E( 'e)e'(e'e' e e(

4
(5.12)

Introducing the Fourier transforms of f, Q, , and 7' yields

(' ~ )e* '(o) ~
e E ()

I I e )((e()((~ e(*) ~ e E-(;(e()*e( e() ~ e (;(-e()"( e()) . -
a

(5.13)

The cross term" (the final term in the large parentheses) is removed by transforming to the variables
p(q) = f(q)+ax'(q)/(2~&~ +q') to give

(5.14)

Integrating over the fluctuations p(q) and (t), (q) (i —2) gives the thermodynamic free energy

E= ) ' ll dp( )liet(), (t())e
C gap

,n~7'~'+ ~a7'(0) —g—,+—gin(2~7'~ +q')+ g ln(q ).
a' 7'(q)v'(-q) 1 n —1

0 e

(5.15)

On taking the configuration average, the term lin-
ear in v' drops out, and we replace (&'(q)7'(-q)),
by g. Using a'=n~7'~ we compute the specific heat
per component

2 d'F
n d7'

n ~ (21m I+q')' ~ (21&l+q )3'
!5.16)

(5.17)

where Kn=41'(2 —&D)/(4v)~!' For 2&D&. 4, Eq.
(5.17) gives the exact low-temperature behavior.

Note that it also agrees with our Eq. (4.20) for the
two-dimensional problem, suggesting strongly that
this result is also exact. Equation (5.17) shows
that, for all D in the range 2&D&4, the specific
heat approaches its mean-field value from below
provided only the g is sufficiently large, g &4/nD
However, Lubensky has shown, "using the (4 —D)
expansion methods, that if the specific-heat expo-
nent of the homogeneous system is negative, n &0,
then the inhomogeneous system has the same crit-
ical exponents as the homogeneous system, where-
as if n &0, there are a new set of "random" expo-
nents. In either case the exponents are indepen-
dent of g, in accordance with the idea of univer-
sality. Therefore, the behavior of C in the low-
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temperature range «&- 1, which depends ong, is
no guide to what happens in the true critical re-
gion.

Bearing this fact in mind we will attempt to
place our results in perspective. They can be
summarized as follows. First, as is well known, '
the specific heat in the Hartree theory (n- ~} is a
monotonically decreasing function of temperature
in the critical region. Second, also known pre-
viously, " the leading correction, of order 1/n, to
the Hartree theory leads to a peak in the heat ca-
pacity, in qualitative disagreement with experi-
ment. ' Third, the effect of inhomogeneities,
treated in lowest order, is to cancel this peak and
thus to restore qualitative agreement with experi-
ment, provided that the "inhomogeneity parame-
ter" g is large enough, g& 1. An order-of-magni-
tude estimate gives ag of about the right size to
account for the absence of a peak in the Zally and
Mochel experiment. A self- consistent calculation
(Sec. IV} also produces a peak for the homogeneous
system, and removes it if g& 1. The appearance
of a peak to order I/n is due in ls.rge part to the

"slow decay" of C ' "' in the low-temperature
range below T„C" "'~1/~7'~. The cancellation
of the peak by the inhomogeneities is due largely
to the cancelling behavior of Ct" ~ —1/

~

&
~

in this
range. It is possible that an xact calculation for
finite n would show a sharp structure (e.g. , a
cusp) in the specific heat as opposed to the broad
peak appearing at order I/n (I have no prejudice
either way on this point). If the sharp structure
has ct &0 (e.g. , a cusp), then it seems likely" that
this structure would survive the introduction of
inhomogeneities into the system. If a &0, on the
other hand, the results of Lubensky" suggest that
the introduction of inhomogeneities will lead to a
renormalized exponent n„, independent of g. The
value of g in this case determines where the
"crossover" into the true critical region occurs.
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