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Density dependence of the roton spectrum in liquid 4Het
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The density dependence of the roton spectrum in liquid 'He is calculated using Brillouin-Wigner perturbation

theory. The trial ground-state wave function is an extended Jastrow function, including three-body factors.

The three-body factors produce an improved density dependence over the pure Jastrow trial function. We

note, however, that the amount of improvement depends upon the particular approxi~~tion chosen for the

three-particle structure function, St ~(f„Ttr, f3). Specifically, better agreement with experiment is obtained by

using an approximation for S& & which has been obtained recently in the density-phase variable theory of the

weakly interacting Bose gas, when compared to the convolution approximation for S '.

The study of the density dependence of the ele-
mentary excitation energy in liquid 'He has re-
ceived much attention in the past few years. Die-
trich et al. ' have studied the elementary excitation
spectrum in liquid 'He as a function of pressure by
inelastic neutron scattering. A theoretical study of
the density dependence of the roton parameters has
been done by Bartley et al. ' using the Brillouin-
Wigner theory first employed by Jackson and Feen-
berg. ' Similarly, Padmore and Chester' have ex-
tended the backQow calculation of Feynman and
Cohen' to finite pressure. Both of these calcula-
tions"' have obtained a weaker density dependence
of the roton gap & and a stronger density depen-
dence of the roton curvature p. than observed ex-
perimentally, where the roton spectrum is para-
metrized as

,(k) =d +its(k- k,)s/2it.

In this note we investigate several possible explan-
ations for this discrepancy.

The Feynman-Cohen' and Jackson- Feenberg'
theories of the elementary excitation spectrum
are both based on a trial excited-state wave func-
tion 4-„in the form of an admixture of single-pho-
non and two-phonon states:

+a = Ik&+—Q &s, f Ik- »~& (2)
lAOs g

where single-phonon and two-phonon states are de-
fined as

Ik& = ~e,/[NS(k)]' ',
lk —1,1)=p"„tpt'k /[N'S(lk- Tl)S(l)]'~s (4)

where

elan, rt

represents the density Quctuation operator for the
N-particle system, 4o is the ground-state wave
function,

H@fO = Eo@o

and S(k) is the ground-state liquid structure,

s(k) = (1/N)&s'.
I p.p. I

k. ) .
The single-phonon state is the well-known Feyn-
man wave function with Bijl-Feynman excitation
energy ec(k), where

&klHlk) =~.+~.(k),

a, (k) = 5'k'/2mS(k) .
Feynman and Cohen choose a form of A„-; in Eq.
(2) which is motivated by a dipolar back flow mod-
el. ' Jackson and Feenberg use the Brillouin-Wig-
ner perturbation theory form for Aj

(k-f, l lfiHlit&

e(k) —e,(lk-f I) —e,(l) ' (1O)

The interaction matrix element in this equation
can be expressed as

where

6H = H —Ec —ac (k) .
The corresponding Brillouin-Wigner energy &(k) is
given by the solution of the transcendental equation

'2;~-„.(k) a, (lk il) .,g).

&k r, rlfiHlk&='[NS(k)s(lk rl)s(l)]- ~

x k k- SE +k k- S'" k- j. , l,
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S"'(k- I I -k) =S(lk- I l)S(I)S(k). (15)

Currently available experimental information
about S(k) at finite pressure is inadequate for the
purpose of carrying out these calculations at high-
er density. Consequently Bartley et al. ' and Pad-
more and Chester4 employ a Jastrow trial function
of the form

N
eg(f'iy) / 2

J' Jg
i&j

(16)

in place of the ground-state wave function O', . The
most commonly used single-parameter trial func-
tion

u(r) = (b/r)'- (17)

was used in both calculations, '4 with b chosen at
each density to minimize the expectation value of
the Hamiltonian in 4'~.

The poor density dependence of the roton spec-
trum may be attributed in part to the inadequacy of
the trial ground-state wave function. That con-
clusion is supported by the fact that Padmore and
Chester carried out their calculations by using a
Monte Carlo procedure, thereby avoiding the ne-
cessity of approximating the multiparticle corre-
lation functions in terms of S(k}. To investigate
the effect of improving the wave function, we take
the extended Jastrow function as the trial function,
which has the form"'

e"p~ "ig) / et'~&$1'y ~j2) / (18)

where

S "(k 1,1, -k)= (I/N)(Col p-„ I p;p -„l4o) (14)

is the three-particle structure function which is
kinematically related to the ground-state wave
function.

The original calculations of the energy were
carried out at equilibrium density, p, = 0.0218 A '.
The three-particle structure function S'" (and in
the Feynman- Cohen calculation the four-particle
structure function) was approximated in terms of
the liquid structure function S(k), which is avail-
able from experiment. In particular, Jackson and

Feenberg used the convolution approximation

such as Eq. (17), it is a more sensitive indicator
of the density-dependent structure. Sz(k} has a
higher and sharper major peak than that obtained
from the simply parametrized Jastrow function, in
better agreement with experiment at p, . This low-
ers the roton energy, as can be seen most readily
by noting the close association between the major
peak in S(k) and the roton minimum [viz. Eq. (9)].

Once u, (r) is determined, it is fixed, and u, is
obtained by minimizing the expectation value with

respect to u, .' The formal results are presented
in Ref. (7), where it is also seen that the resulting
S(k) calculated at equilibrium density p, has a high-
er and sharper major peak than Sz(k), improving
agreement with experiment still further. More im-
portantly for the purposes of this note, this effect
becomes more significant as density is increased. '

In order to solve Eq. (12) for e(k), one still needs
to know the three-particle structure function
S"'(k —1, 1, —k) with u, included in the ground-
state wave function. One could simply take the
convolution approximation of Eq. (15). Since the
uncertainty involved in using this approximation
is hard to estimate, we use another approxima-
tion obtained from the linked cluster expansion
of S"' in terms of S ~"' and the Fourier transform
of u, .' Taking only the first two terms in the
expansion, we find

So~(k„ko, ko) =S~ '(k„k„k,)

+SJ (k,}S~(ko)S~(k,)Co(k„k„k,),

k, +k, +k, =0 (19)

where

If we then use the convolution approximation for
the Jastrow three-particle structure function S~ ',
an approximation which has some support in nu-
merical studies of Jastrow functions" and cluster
analysis of Jastrow functions, "we obtain

We determine u, and u, by a functional variational
procedure described elsewhere. ' In brief sum-

mary, we first let u, be zero and carry out the
self- consistent paired-phonon analysis in conjunc-
tion with the HNC approximation to determine the
optimum Jastrow function and the corresponding
liquid structure function S~(k). Since this proce-
dure is independent of any simple parametrization

S"'(k„k„k,) =S~(k,)S~(k,)S~(k,)[1+C,(k„k„k,)],

k, +ko+ k, = 0, (20)

a result first obtained by Feenberg and Kilic based
upon an analysis of the Schrodinger equation for
the extended Jastrow function. " Using the ex-
pression for C, from Ref. 7, Eq. (20) becomes
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S'3'(k„k2, k3) = —fk, 'k,S~(k,)[l+S~(k,)S~(k,)]+k2 k,S~(k,)[1+S~(k2)S~(k3)]

+k, k,S~(k,)[1+S~(k,)S~(k,)] S~(k,) S~(g) S (k ) (21)

15— A

13—

Several authors have obtained this form of S"' in

the density-phase variable theory of the ground
state of a weakly interacting Bose fluid. '+" Par-
ticularly noteworthy is Berdahl's observation that

Eq. (21) has the correct long-wavelength behavior
(consistent with Landau's theory of quantum hy-

drodynamics) while the convolution approximation

[Eq. (15)] fails this test. " We should emphasize
here, however, that our derivation of the approx-
imation as it appears in Eqs. (19) and (20) is

purely kinematical, having nothing to do with the
Hamiltonian.

Our calculation is done at three densities,
p=0.02185, 0.02388, and 0.02571 A '. At a given

density we first carry out the self-consistent
paired-phonon analysis to obtain the optimum
Jastrow wave function and the corresponding
liquid structure factor Sz(k). The convolution
approximation is used for the three-particle
structure function Sz"'(k„k„k,). The excitation
energy is obtained by solving Eq. (12). The den-
sity dependence of the roton parameters 4, k„
and p. are plotted as curve A in Figs. 1, 2, and 3

respectively. Curves 8 iw these three figures are
obtained by including u, in the ground-state wave
function and using the convolution approximation
for S"'(k„k„k,). In curves C, however, the
approximation given in Eq. (21) is used for S"'.
Curves D of the three figures are the experi-
mental results of Dietrich et al. at low tempera-
ture. '

It is clear in these figures that the inclusion of
three-particle factors in the trial ground-state
wave function improves the density dependence of
the roton spectrum. Note from the comparison of
curves B and C that the roton parameters depend
sensitively on the choice of approximation used
for S"', especially at high densities. This sug-
gests the need for further assessment of these
approximations by a more accurate procedure

2.1—
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FIG. 1. Density dependence of the roton gap 6, Curve
A is obtained by using optimal Jastrow wave function for
the ground-state wave function and using convolution
approximation for S {f&,f2, f3). Curve B is obtained
by including U3 in the ground-state wave function and

using the convolution approximation for S~ {ff f2 fg).
Curve C is obtained by including V& in the ground-state
wave function. However, the approximation given in Kq.
(21) is used for S ~ (fj, f2, f3). Curve D is the experi-
mental results of Dietrich et aL. (see Ref. 1). The theo-
retical values are at the densities of the solid circl.es.
The curves are simply guides to the eye.
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FIG. 2. Density dependence of the roton momentum ka.
Curves A, B, C, and D as in Fig. 1.
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