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The density dependence of the roton spectrum in liquid *He is calculated using Brillouin-Wigner perturbation
theory. The trial ground-state wave function is an extended Jastrow function, including three-body factors.
The three-body factors produce an improved density dependence over the pure Jastrow trial function. We
note, however, that the amount of improvement depends upon the particular approximation chosen for the
three-particle structure function, S®(k,, k,, k,). Specifically, better agreement with experiment is obtained by
using an approximation for S which has been obtained recently in the density-phase variable theory of the
weakly interacting Bose gas, when compared to the convolution approximation for .

The study of the density dependence of the ele-
mentary excitation energy in liquid “He has re-
ceived much attention in the past few years. Die-
trich et al.! have studied the elementary excitation
spectrum in liquid *He as a function of pressure by
inelastic neutron scattering. A theoretical study of
the density dependence of the roton parameters has
been done by Bartley et al.? using the Brillouin-
Wigner theory first employed by Jackson and Feen-
berg.® Similarly, Padmore and Chester* have ex-
tended the backflow calculation of Feynman and
Cohen® to finite pressure. Both of these calcula-
tions*>* have obtained a weaker density dependence
of the roton gap A and a stronger density depen-
dence of the roton curvature p than observed ex-
perimentally, where the roton spectrum is para-
metrized as

€roe(B) =D+ T2(k — ko)?/ 2. (1)

In this note we investigate several possible explan-
ations for this discrepancy.

The Feynman-Cohen® and Jackson- Feenberg?®
theories of the elementary excitation spectrum
are both based on a trial excited-state wave func-
tion ¥; in the form of an admixture of single-pho-
non and two-phonon states:
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represents the density fluctuation operator for the
N-particle system, ¥, is the ground-state wave
function,

HY =E ¥, (6)
and S(k) is the ground-state liquid structure,
S(k)=(1/N)X¥,|p;pz|¥,) - (7)

The single-phonon state is the well-known Feyn-
man wave function with Bijl- Feynman excitation
energy €,(k), where

(K|H|k)=E,+¢€, (k) , (8)
€,(k)=12k2/2mS (k) . (9)

Feynman and Cohen choose a form of A; 7 in Eq.
(2) which is motivated by a dipolar back flow mod-
el.> Jackson and Feenberg use the Brillouin-Wig-
ner perturbation theory form for A; ;.

(k-1,7|oH[k)

A el e (R-TD- @) (10)
where
SH=H - E - ¢€,(k). (11)

The corresponding Brillouin-Wigner energy €(k) is
given by the solution of the transcendental equation

l&-T,T|sH|k)|?

€(k) - €(|k-T])-¢,0)° 42

€(k)=€,(k) +% ’E_

1#0,k

The interaction matrix element in this equation
can be expressed as

SOE-1,1,-B), )
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where
SOE-T,T, - %)= (/N |psiriril¥) (14)

is the three-particle structure function which is
kinematically related to the ground-state wave
function.

The original calculations of the energy were
carried out at equilibrium density, p,=0.0218 A3,
The three-particle structure function $‘® (and in
the Feynman-Cohen calculation the four-particle
structure function) was approximated in terms of
the liquid structure function S(¢), which is avail-
able from experiment. In particular, Jackson and
Feenberg used the convolution approximation

SOE&-T,T, -K)=S(|k-T|)s@)s(r). (15)

Currently available experimental information
about S(&) at finite pressure is inadequate for the
purpose of carrying out these calculations at high-
er density. Consequently Bartley ef al.? and Pad-
more and Chester® employ a Jastrow trial function
of the form

N
¥, = H eri/2 (16)
i<y

in place of the ground-state wave function ¥,. The
most commonly used single-parameter trial func-
tion

u(r)=-(/r)° (17)

was used in both calculations,®* with b chosen at
each density to minimize the expectation value of
the Hamiltonian in ¥ ,.

The poor density dependence of the roton spec-
trum may be attributed in part to the inadequacy of
the trial ground-state wave function. That con-
clusion is supported by the fact that Padmore and
Chester carried out their calculations by using a
Monte Carlo procedure, thereby avoiding the ne-
cessity of approximating the multiparticle corre-
lation functions in terms of S(k). To investigate
the effect of improving the wave function, we take
the extended Jastrow function as the trial function,
which has the form®’

N
\I,zﬁeuz(r”)lz I'I eua(ii,?'j,?k)/z. (18)
i<j i<j<r

We determine «, and u, by a functional variational
procedure described elsewhere.””® In brief sum-
mary, we first let u, be zero and carry out the
self-consistent paired-phonon analysis in conjunc-
tion with the HNC approximation to determine the
optimum Jastrow function and the corresponding
liquid structure function S;(%). Since this proce-
dure is independent of any simple parametrization

such as Eq. (17), it is a more sensitive indicator
of the density-dependent structure. S,(¢) has a
higher and sharper major peak than that obtained
from the simply parametrized Jastrow function, in
better agreement with experiment at p,. This low-
ers the roton energy, as can be seen most readily
by noting the close association between the major
peak in S(k) and the roton minimum [viz. Eq. (9)].
Once u,(r) is determined, it is fixed, and u, is
obtained by minimizing the expectation value with
respect to #,.” The formal results are presented
in Ref. (7), where it is also seen that the resulting
S(k) calculated at equilibrium density p, has a high-
er and sharper major peak than S,;(k), improving
agreement with experiment still further. More im-
portantly for the purposes of this note, this effect
becomes more significant as density is increased.®
In order to solve Eq. (12) for €(k), one still needs
to know the three-particle structure function
$®(k 1,1, - k) with u, included in the ground-
state wave function. One could simply take the
convolution approximation of Eq. (15). Since the
uncertainty involved in using this approximation
is hard to estimate, we use another approxima-
tion obtained from the linked cluster expansion
of $® in terms of S { and the Fourier transform
of u,.'° Taking only the first two terms in the
expansion, we find

S(”(l.zl, Eg, Eg) zs“,‘”(i;l, Ez, Ea)

"”s.l(k1)s.r(k2)s.r(k3)cs(§n Ez’ Ea),

> -

k,+k,+k;=0 (19)
where

1 . )
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Kk B3

If we then use the convolution approximation for
the Jastrow three-particle structure function S$,
an approximation which has some support in nu-
merical studies of Jastrow functions'' and cluster
analysis of Jastrow functions,'? we obtain

-

SOK,, K, K,) ~S,(R)S, (k,)S, (k)1 +C,y(K,, Ky, k)],
k, +k,+k,=0, (20

a result first obtained by Feenberg and Kilic based
upon an analysis of the Schrdodinger equation for
the extended Jastrow function.’® Using the ex-
pression for C, from Ref. 7, Eq. (20) becomes
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->

SOK,, K, K,) ~ = {K,+ K,S, (k) [1+5,(k,)S , (y)] + K, KoS , (R))[1 +S 5 (R,)S 5 (k;)]

+K, K,S, (B,)[ 1+ ,(

Several authors have obtained this form of S in
the density-phase variable theory of the ground
state of a weakly interacting Bose fluid.'#'> Par-
ticularly noteworthy is Berdahl’s observation that
Eq. (21) has the correct long-wavelength behavior
(consistent with Landau’s theory of quantum hy-
drodynamics) while the convolution approximation
[Eq. (15)] fails this test.'* We should emphasize
here, however, that our derivation of the approx-
imation as it appears in Egs. (19) and (20) is
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FIG. 1. Density dependence of the roton gap A. Curve
A is obtained by using optimal Jastrow wave function for
the ground-state wave function and using convolution
approximation for S® (£, K,,K). Curve B is obtained
by including U, in the ground-state wave function and
using the convolution approximation for S® (£, &, §).
Curve C is obtained by including U4 in the ground-state
wave function. However, the approximation given in Eq.
(21) is used for S® (£, K, K;). Curve D is the experi-
mental results of Dietrich et al. (see Ref. 1). The theo-
retical values are at the densities of the solid circles.
The curves are simply guides to the eye.

st

2 k2 2 ..
RCAREAN ,(k3)> E, +K, +K, =0.

(21)

—_—

purely kinematical, having nothing to do with the
Hamiltonian.

Our calculation is done at three densities,
p=0.02185, 0.02388, and 0.02571 A™®. At a given
density we first carry out the self-consistent
paired-phonon analysis to obtain the optimum
Jastrow wave function and the corresponding
liquid structure factor S;(k). The convolution
approximation is used for the three-particle
structure function S, ®(k,, k,,k,). The excitation
energy is obtained by solving Eq. (12). The den-
sity dependence of the roton parameters A, k&,
and p are plotted as curve A in Figs. 1, 2, and 3
respectively. Curves B in these three figures are
obtained by including #, in the ground-state wave
function and using the convolution approximation
for S®)(k,, k,,k,). In curves C, however, the
approximation given in Eq. (21) is used for S®.
Curves D of the three figures are the experi-
mental results of Dietrich ef al. at low tempera-
ture.!

It is clear in these figures that the inclusion of
three-particle factors in the trial ground-state
wave function improves the density dependence of
the roton spectrum. Note from the comparison of
curves B and C that the roton parameters depend
sensitively on the choice of approximation used
for S®, especially at high densities. This sug-
gests the need for further assessment of these
approximations by a more accurate procedure
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FIG. 2. Density dependence of the roton momentum k.
Curves A, B, C, and D as in Fig. 1.
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FIG. 3. Density dependence of the roton curvature
parameter u. Curves A, B, C, and D as in Fig. 1.

such as a Monte Carlo integration as in the treat-
ment of the pure Jastrow trial function by Pad-
more and Chester.* We note, however, that the
approximation in Eq. (21) produces better over-all
agreement with experiment than the convolution
approximation.

In the present work we have simplified the cal-
culation of the roton parameters by three approx-
imations: First, we neglect the slight nonorthog-
onality of the single-phonon and two-phonon states;
second, we consider only the three phonon vertex
[Eq. (13)]; and, third, we neglect third- and high-

er-order terms in the Brillouin-Wigner energy
series. In this regard we note that Lee and Lee
have recently done an extensive calculation at
equilibrium density by including four-phonon
vertices and considering the nonorthogonality of
single-phonon, two-phonon, and three-phonon
states.’® They calculate the excitation spectrum
to fourth order and find a roton gap which is only
one degree above the experimental value. They
begin with the optimum Jastrow function and then
include three-phonon contributions to the ground
state by perturbation theory. In that manner they
have included some of the effects of three-body
factors which we include in this note. They also
include corrections to the convolution approxima-
tion for S when it appears in lowest order. Con-
sequently their procedure includes some of the
important features of our present calculation,
and we expect that if their calculation were car-
ried out as a function of density it would provide
further improved agreement with experiment. We
note, however, that an intermediate procedure
whereby one begins with the optimum extended
Jastrow function including three-body factors

[Eq. (18)] would simplify their calculation some-
what and would put their roton spectrum at p, even
closer to the experimental value.

Finally we note that all of the recent theoretical
calculations®* ¢ including the present one use the
Lennard-Jones 6-12 potential in the Hamiltonian.
We cannot exclude the possibility that a more
realistic interaction would bring about further
improvements.
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prior to publication.
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