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An experimental study under uniaxial stresses and a theoretical analysis of the zero-phonon lines of the lowest
T, level of Mn** in ZnSe are reported. We first show that a classical model in which vibronic interactions are
neglected must be rejected since it predicts a zero-stress spectrum of the zero-phonon lines consisting of three
absorption lines with relative dipole strengths of 14, 7, and 9 although only two absorption lines at 19597 and
19607 cm™! are observed. Then, in order to interpret this unusual structure we consider Ham’s effect
corresponding to Jahn-Teller interactions of the *T, electronic state with E vibrational modes. It is shown that
the hypothesis of strong Jahn-Teller interactions is consistent with the zero-stress spectrum but inconsistent
with pressure-induced splittings and polarizations. Finally a model permitting a correct interpretation of all
experimental results has been elaborated by considering a medium coupling to E vibrational modes. We show
that the observed lines at 19597 and 19607 cm™! correspond, respectively, to transitions from the 4, ground
state to the |T'4(5/2)) and |I'¢)> fundamental vibronic levels of the *T; state. Furthermore, a careful
analysis of the dipole strengths of the zero-phonon lines and phonon-assisted lines shows the importance of
intensity transfer from the zero-phonon lines to the phonon-assisted lines. The case of Mn** in ZnS is also

briefly considered.

[. INTRODUCTION

Transition-metal ions with a half-filled external
shell, and particularly Mn** ions, have been ex-
tensively studied during the last two decades.
These studies were often concerned with the elec-
tronic levels as well as with their interactions with
the lattice.

For example, the problem of covalent bondings
for Mn*™ and the interaction of electronic states
with odd-parity vibrational states in centrosym-
metric complexes have been studied for a long
time.»? The relation between covalent bondings
and the Jahn-Teller effect have been considered by
Lohr.®> The magnon sidebands and the Jahn-Teller
effect on magnon sidebands of Mn** in antiferro-
magnetic crystals were studied more recently.*
Except for the last example, the fine structure of
the optical multiplets did not intervene explicitly
in these works.

In numerous studies concerning optical levels of
Mn™*, the nature of the fine-structure lines was
determined by comparing the experimental and
theoretical splittings of pure electronic states.’
However, in the case of Mn* ions, this fitting
procedure must be used with caution since, as
demonstrated by Solomon and McClure,’ the Jahn-
Teller effect can be of importance.

More specifically, in the case of Mn™ in ZnS,
some lines appearing in the optical spectra of
highly concentrated crystals have been tentatively
associated with pair lines,® but as demonstrated by
Langer and Ibuki’ most of the lines appearing in
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the lowest bands of Mn** in ZnS can be associated
with zero-phonon and phonon-assisted transitions
of noninteracting Mn** ions. However, the spectra
are often complicated by the presence of Mn** ions
in stacking faults so that it is not a simple matter
of recognizing clearly the lines associated with the
various centers,'®!!

Therefore, being interested in the structure of
the lowest *T, band of Mn**, we studied concom-
itantly Mn** in ZnS and in ZnSe. The fact that the
lines appearing in the *T, band of the latter are
well resolved was of great help in obtaining clear
experimental results under uniaxial stresses and
therefore in understanding the structure of the
T, zero-phonon lines.

Simple symmetry considerations show that in
T, symmetry a *T, level decomposes into four
levels, two Kramer’s doublets I'y; and I, and two
Ty levels [denoted T'y(2)and T'y(3)] (see Fig. 1).
For Mn" in ZnSe and ZnS the spectrum of the
zero-phonon lines of the *T, level is composed of
two lines separated, respectively, by 10 and 3
cm™, (Fig. 2). Thus the first problem encountered
was the identification of the observed lines. The
uniaxial-stress experiments reported in Sec. I
were performed for this purpose.

In Sec. III we recall the classical theory of a
triplet state in a static crystal field of T, sym-
metry. This theory will permit us to obtain the
order of magnitude for the splitting of the lowest
‘T, state of Mn** by spin-orbit interaction. We
also set up general formulas permitting the cal-
culation of the relative dipole strengths of the fine-
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structure lines for a *T, state (these formulas will
be used with minor modifications in their inter-
pretation when vibronic interactions are consid-
ered). In Sec. III E we show that the two lines ob-
served experimentally could be interpreted as
transitions from the °A, ground state to a I'y and
I‘B(%) electronic level. However, this classical
model is unable to give a correct explanation for
the nonobservation of the °A, —~ I'y(3) transition.

In an alternate model presented in Sec. IV, we
consider the influence of weak and strong vibronic
coupling to E vibrational modes and show that the
presence of only two lines in the experimental
spectra could be due to strong vibronic interac-
tions. However, we show that this model predicts
uniaxial-stress effects which are in disagreement
with those observed.

Finally, in Secs. V and VI we elaborate a model
permitting a correct interpretation of all experi-
mental results, In particular, by carefully analyz-
ing the influence of the vibronic interations on the
zero-phonon lines as well as on the phonon-as-
sisted lines, we show the importance of intensity
transfer from zero-phonon to phonon-assisted
lines.
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FIG. 1. (a) Lowest energy levels for Mn** in cubic
symmetry. (b) Splitting of the 4T2 level due to first- and
second-order spin-orbit interactions. (c) Effect of vib-
ronic interactions with an E vibrational mode. (d) Energy
levels and intensity transfer predicted by the model of
Sec. VI for Mn** in ZnSe and ZnS.
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II. EXPERIMENTS

A. Samples and apparatus

The samples of ZnSe:Mn were grown by Semi-
elements. The Mn** concentrationwas 1073 mole%.
The samples were cut and mechanically polished.
The dimensions of the crystals were as follows:
2.75x% 1,55 % 3,60 mm?, the surface S perpendicular
to the [001] direction being (1.55+0.01) X (2,75
+0.01) mm?; and 2.87X%1.93X6.50 mm?3, the sur-
face S perpendicular to the [110] direction being
(1.93+0.01) X (2.87+0.01) mm?; and 2.70X 3.45
x 3.55 mm?®, the surface S perpendicular to the
[111] direction being (2.70+0.01) X (3.45+0.01)
mm?,

For our experiments on ZnS:Mn we used the sin-
gle crystals described in a preceding paper.'® Al-
though these samples possess Mn** centers in
stacking faults the zero-phonon lines of the low-
est levels of Mn*™* in cubic and axial sites are suf-
ficiently well known'! and sufficiently separated
for the *T, band so as to create no problem in our
interpretation. Furthermore, it has been shown
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FIG. 2. Spectrometer recordings of the absorption
lines appearing in the vicinity of the zero-phonon lines
of the 4T2 level for zero applied pressure and calculated
positions and dipole strengths resulting from the model
given in Sec. VI. In the case of ZnSe:Mn (a), no sharp
line was observed in a region extending from the zero-
phonon lines to the phonon-assisted lines at 19760 cm™.

In the case of ZnS:Mn (), the lines appearing near
19770 cm™ are due to Mn** in stacking faults.
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tresses on the zero-phonon lines reported in Fig. 2.
(b) ZnSe:Mn P||[110]. (c) ZnS:Mn, P|[170].

(a) splitting and shifts for
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in Ref. 10 that the presence of axial sites in our
samples does not perturb stress effects on the
cubic sites. The dimensions of the crystals were
as follows: 8.25X%2.85% 1,55 mm?®, the cross-
sectional area S perpendicular to the [110] direc-
tion being S =(2.85+0.01) X (1.55+0.01) mm?; and
5.00 X 1.25 X 0.82 mm?, S being perpendicular to
the [111], direction, S=(1.25+0.01) X (0.82+0.01)
mm?,

The stress rig was the same as that used pre-
viously.'®!? The samples were directly immersed
in liquid helium. The measurements were per-
formed at 4.2 and sometimes at 2.2 K in order to
avoid the bubbling of liquid helium. The spectra
remained unchanged when passing from 4.2 to
2.2 K. The measurements were performed with
an HRS-2 spectrometer manufactured by Jobin-
Yvon. The resolution used in our experiments
was 1.5 cm™ at 20000 cm™.

B. Experiments

The studied lines are represented in Fig. 2. For
ZnSe:Mn, the lines are located at 19597 and 19 607
cm™, in agreement with Langer and Richter’s re-
sults'® (19598 and 19608 cm™). The lines appear-
ing in the spectra of ZnS:Mn near 19780 cm ' have
been attributed to Mn** ions in stacking faults.'*
Thus the zero-phonon lines of the *T, level are
those appearing at 19 682.5 and 19685.5 cm™, in
agreement with Langer and Ibuki’s results® (19 683
and 19685.9 cm™). The interpretation of the very
weak line appearing at 19717 cm™ will be left until
later (this line is too weak to give clear results
under stress).

For Mn** in ZnSe a shift of all lines and a split-
Emg of the line at__lower energy appeared for
P||[001] and for P ||[110] even for a relatively low
pressure (P ~3 X 10® dyn/cm?) [Figs. 3(a) and 3(b)].
We observed no splitting and no broadening, but
we did observe a shift for the line at higher ener-
gy. For P||[111] no splitting and no measurable
broadening was observed.

In the case of Mn** in ZnS, for small values of
the applied pressure, P<8x10° dyn/cm?

(P 11[110]), the two lines existing when P=0 are
no longer resolved [Fig. 3(c)], (this was not a
broadening due to nonuniaxial stresses whose
presence or absence was checked by preliminary
experiments on the fine-structure lines of the

‘E level). For sufficiently high pressures (P> 8
X 10® dyn/cm?), two lines appeared. No splitting
g.nd no measurable broadening was observed for
P|l[111], even at the higher pressure used (P =36
X 108 dyn/cm?).

Figure 4 represents the shifts and splittings in
terms of the applied pressure. The solid theo-

retical curves result from the theoretical con-
siderations of the following sections. Figure 5
represents the polarization effects for ZnSe:Mn
(P|1[001] and P |I[110]). The electric field is ei-
ther perpendicular or parallel to the applied pres-
sure. These experiments show a strong polariza-
tion effect for the lines at lower energy.

The experimental results led us to consider first
two simple models concerning the structure of the
‘T, level: (i) The level at lower energy, being
split by [110] and [100] stresses, could be a pure
electronic I‘a(%) level, the level at higher energy
being a Kramer’s doublet I';. (ii) The presence of
only two lines when P =0 could be explained by
Jahn-Teller interactions leading to a strong
quenching of the first-order spin-orbit split-
ting.'#'* The fact that no measurable splitting
appears for P||[111] indicates that the *T, level
is not coupled predominantly to the two T, vibra-
tional modes existing in T, symmetry but rather
that it could be coupled to the E vibrational mode.
These two models are studied in detail in Secs. III
and IV,

III. ASSUMPTION OF PURE ELECTRONIC LEVELS
A. Energy levels in T, symmetry

For a *T, level it can be easily shown that the
first-order spin-orbit coupling gives only three
distinct electronic levels whose energies are

W(T,) = W(Ty(3) = - (1/2VI0)R
W(T,) =+ (V5 /6V2)R,
W(Ty(3))=+(1/3VIOR,

the energy of the T, level being taken as refer-
ence. R is the reduced matrix element of the spin-
orbit Hamiltonian ¥g, within the *T, level. The
above energies show that the ratio of the spacings
between adjacent levels is simply 3. The mixing
parameters af, B!, and y! are defined as

*T) = o |CD)T,) +81 | CF)T,) +v{ | (O)T,) .

R is given by
R = (3V30/VT)p,Bly! - (8V10/VD)p,alB!,

Py being the spin-orbit constant for Mn**,

In order to calculate the second-order spin-
orbit interaction by taking into account all the
relevant multiplets of the 3d® configuration, it is
convenient to work in the spinor group 7§ by mak-
ing full use of the symmetry properties. First,
we can note that the matrix elements intervening
in the calculation of the second-order spin-orbit
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. FIG. 4. Splitting and shifts of the zero-phonon lines reported in Fig. 3, in terms of applied pressure. (a) ZnSe:Mn,
P [001]. (b) ZnSe:Mn, P|/[110]. (c) ZnS:Mn P |/[110].
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interaction

KET )t [5ego |25 T T)|?
sGir W(4T2) __W(25+1h)

are diagonal in £7 but not in JJ”’ (the notations are
those of Griffith'®). Then using the @ of Griffith!®
and defining coefficients {25*'},

4 2S+1 2S5+1 4
essy) - N CTallCso 1% )23l so I°T, )
{ h} = Zl: W(4T2) — W(2$+§h) ’

we easily obtain the diagonal and nondiagonal ma-
trix elements of the second-order spin-orbit inter-
action (see Appendix). The complete calculation
must be performed by taking into account all 35
relevant multiplets *T(3), *T,(3), 2E(7), 2T,(8),
2T,(10), 2A4,(3), *A,(1) of the 3d°® configuration!”
(the number of multiplets of given spin and sym-
metry are indicated in parentheses), since they

all give a non-negligible contribution to the second-
order spin-orbit splitting of the *T, level consid-
ered here.

ZnSe:Mn sAj —-t'Tz
(a) T.22K
0
LP, 5x 1(;|8[g£|1]=lcm2
] Eumo] | Enpool I ]

nfy10)
(b) P.. 1 x 108dynem?

Elljooy] | Elna]
o

FIG. 5. Polarization effects for (a) P || [001] and (b)
Bl (110].

B. Uniaxial -stress effect

For P||[110] and P||[100], the nonzero linear
combinations of the strain tensor are respective-
ly,

€A)=(s;,+2s,)P, €(E,)==(s;; -SSP,
€(Ty) =35, P

and
€(A)=(s,,+2s,)P, €(E)=2(s,, -SSP,

where the s;; are the elastic-compliance constants
of the crystal. A glance at the coupling coefficients
in T, symmetry and the seniority number of the
spectroscopic terms intervening in the *T, state
shows that the degeneracy of the I'y levels can be
lifted by the first-order effect of the deformations
of E, and T,, symmetry. As usual, the splittings
of the I'y levels and the shifts [except those due to
€(A))] of the Ty, and T, levels will be described by
two parameters A and B defined in terms of the
variation AV(E,) and AV(T,,) of the crystal field
in the following manner:

A=_(T,|AV(E)|*T,),
B=(T,|AV(T,)|*T,).

C. Dipole strengths in 7, symmetry

The problem of calculating the dipole strengths
for d” ions has been studied for a long time.,#"2°
These early works considered mainly the inter-
actions between the d" and odd-parity configura-
tions via either the internal crystal field or the

odd parity odd parity
configuration configuration
odd parit I}TZ &
configuration ?TZ by X )
I\

L e n Kodd

—1 by 6y 6y

(a) (b) (c)

FIG. 6. Schematic representation of the interactions
used in the description of the relative dipole strengths
of the fine-structure lines of the 7, level. Schemes
(a), (), and (c) represent third-order perturbation pro-
cesses. At this time, no equivalent operator to permit
reducing the order of the perturbation in cases (b) and
(c) exists.
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internal vibrations. Several schemes have been
criticized by Griffith,?! who has remarked in par-
ticular that an unrealistic closure theorem was
sometimes used and that only one excited config-
uration was considered. Griffith also gave a meth-
od to permit calculating the dipole strengths from
symmetry adapted wave functions,??

Since the works by Rohrlich using Racah’s for-
malism,?® more powerful formalisms concerning
configuration interactions have been elaborated
which include the promotion of an electron from a
filled shellto an empty shell or to a half-filled
shell and the promotion of an electron from a half-
filled shell to an empty shell.?*?” Thus most of
the theoretical inconsistencies or deficiencies
recognized by Griffith are now removed.

with
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However, calculating in a rigorous manner all
possible contributions to the dipole strengths of a
d® ion is a formidable task which will not be done
here. Rather, we will consider the symmetry
properties of various schemes intervening in the
interpretation of the dipole strengths and elaborate
a parametrization procedure permitting an inter-
pretation of polarization experiments.

Several perturbation schemes can be considered
in order to explain the relative dipole strengths of
the fine-structure lines of a *T, level. Those given
in Fig. 6 correspond to the following expression:

O CA)~t'(T)]= 3. 3 |A+B+cCl?,

Capr dryr

as 3 SCANTICG | GTMITXGT WiT 6, | (T )

W(A) - WGT))
drrer

B= 2 Z (CA T Iml(eTzodd)tT> ((°T poqa)tT |3Cso ' (T 20aa)t ) (T 504a)tT |3coddl (T )t'7")

CTyoqq)t7T (ATp0qq)tT

X {[W(*T,) = WET o0 IIW(ET,) - WET, 0011,

c= X X

CAj0qa)tT (ATyoqq)tT

(CADET |3Cogq | (PA 10t T) {(PA 10a)?T | o0 l (T 100t T) (T 1 oot T lfm l (T )t't’)

x{[WCA,) - WCA, ) I[WCA,) - WET, WD,

The notations are those of Griffith,?' with
t=T,A,), Ty(°A)) and ¢’ =T,(*T,), T,(*T,),
To(3)(*T,), To(3)(T,).

The A, B, and C terms correspond to classical
interactions relating the fundamental A, level to
the T, level. InA, ¥, is an equivalent operator®
arising from the composition of the electric dipole
moment I with the odd part 3C, of the crystal
field and spanning the T, representation of the
spinor group T},

. =23n|\1/°dd>(\1fm|scm+:sc W ogq) (W oge 19T
) WED) - WY o

The B and C terms arise from a third-order per-
turbation via the °T .4, *Toqq and A, 44, *T'10aa
states of the excited configurations of odd parity.

These schemes are in fact the simplest contrib-
uting to the dipole strengths of the *T, level. Other
schemes can be elaborated when covalency or rel-
ativistic effects are taken into account. However,
all schemes linear in 9N have the same symmetry
properties.

For example, expressing the terms A, B, and
C in terms of three reduced matrix elements, and
neglecting the splitting of the °A, ground state,?
we get the following relative dipole strengths:

6[°A, -~ T,(D(T,)]=14,
G[°A,~T,(*T,)]="1,
®[*A,~T,(*T,)]=0,
G[°A, =~ Ty(3)(*T,)]=9

(for P=0 and for electric dipolar transitions).

D. Polarization under pressure

The components of the eigenvectors of the ma-
trices describing the pressure effects will be
written (¢ 7,J)in the following. The relative dipole
strengths 8(EI[100]), G(ElI[110]), and (E[I[1T0])
corresponding, respectively, to light polarized
along a [100], [110], or [170] crystallographic axis
are given by
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®(EN[100]) = (1/N3)[] (1/3VZ)(Ts3) - (1/V10) (Tg3, 3) - (4/3V10) (Ty3, 3) |2+ [(3/5V2)(Ty - 3, 3)
- (1/5V2)(Ty -3, 3) |+ | - (2V2/3VB)(Te3) +(1/5V2) (g3, 3) - (11/15V2)(Ty3, 3)|]

and

® = (1/4N2){| [$(Te3) + (1/2V5)(T3, 3) + (2/3V5)(T,

, D](1£1) + [(V3/2VB)(T, - 3, 3+ (2/VIB)(T, - 3, DI(1F4) 2

+[[@VIB)(T62) - (V3/10)(Ty3, D) - (2/5V )Tz, DI F4) 4[= H(Ty = 2, De 3(Te = 5 D)1 £4) |°
+[[(2/3VB)(Ts3) +2(Tg3, 3) = $(Ted, D1 £4) + [- (VB/10)(Ty = £, 3)- (2/5V3NT, - 3, D(1F4) |7,

where the upper signs correspond to @)(Ell[llo])
and the lower signs to ®(E||[170]). N is a normal-
ization constant.

E. Comparison with experiments

For Mn** in ZnSe, the splitting of the *T', elec-
tronic level has been calculated from the following
values for Racah’s parameters and for the cubic
field splitting'®: B =740 cm™, C =2740 cm™, and
Dq =- 405 cm™. Although very tedious, we per-
formed the calculation of the second-order spin-
orbit interaction in order to get the order of mag-
nitude for this interaction. The results given in
Table I show that the calculated over-all splitting
of the *T, level is of the order of 120 cm™ and that
the second-order spin-orbit coupling shifts all lev-
els by roughly 25 cm™. More precisely, neglect-
ing the spin-spin interactions,? the energy levels
are W(I'y)=- 68,3 cm™, W(I',)=+42 cm™,
W(Ty(3))=+5.6 cm™, and W(I'y(3))=- 62.9 cm™,
with respect to the *T, level. Thus the calculation
gives a lower T level separated from the Tg(3)
level by 5.4 cm™. This result is in contradiction

—

with experiments under stresses which indicate
that the lowest level cannot be a Kramer’s doublet.
Furthermore, this model predicts a relatively
strong °A |~ I"a(%) transition which is not observed
in experiments, and it must be rejected.

For Mn** in ZnS, the values of the B, C, and
Dgq parameters are close to those of Mn*™ in
ZnSe (B =730, C =2880, and Dq = — 420 cm™),*
and the results given in this case by the classical
model are as bad as for Mn** in ZnSe (see Table I).

IV. DYNAMIC JAHN-TELLER EFFECT:
ENERGY LEVELS

A. Weak vibronic interactions

The Hamiltonian governing the vibronic states
of a ‘T, electronic state coupled to E vibrational
mode is of the form

3=3Cy +3C, +3Cg0 +3Coy +3C g +3Csp

where 3G, is the free-ion Hamiltonian, 3¢, is the
Hamiltonian in a cubic field, ¥Cgy is the spin-orbit
Hamiltonian., JC,, and 3C, are, respectively, the
elastic and kinetic energy associated to the vibra-

TABLE I. First-order and second-order contribution of the spin-orbit interaction to the
splitting of the *T, level of Mn** in ZnSe and ZnS. Superscripts @ and b refer, respectively,
to the first-order and second-order contribution of the spin-orbit interaction. The Racah
parameters and Dg are given in Sec. IIA. The 4T2 level is taken as reference. Spin-orbit

parameter: pg =300 cm™.

ZnSe
T Iy L(3) T3(3)

T -46.80° —21.,50°

i) +78.01° — 35.96°

L@ +31.20° - 25.62°  +1.80°

G3) +1.80° —46.80% —16.11°
ZnS

I; -48.30% —21.41°

I +80.49° — 38.73°

L(3) +32.19%-19.86° +1.79°

+1.79° —48.30% —15.42°
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tional mode @,, @, belonging to E, explicitly,
Ko =3 hw(Q3+QDY, 3y=(1/2p)(PE+P3)4,

the P’s being the momentum conjugates to the @’s;
g is the unit matrix, and p and w represent, re-
spectively, the effective mass and angular fre-
quency for an effective E mode. 3G, is the inter-
action Hamiltonian given by

JCJT = V(Qoge +Qe£ e) ’

&, and &, being orbital operators belonging to E.
V represents the strength of the Jahn-Teller cou-
pling and is related to the Jahn-Teller energy by
E;pn=V%/2pw?,

In the case of a weak coupling to the E vibra-
tional mode, 3C;; is considered as a perturbing
Hamiltonian acting between the fundamental vi-
bronic states | Ty, 00), |T,,00), |T'y(3),00), and
|T'4(3), 00) and the excited vibronic states with one
quantum excited, the vibronic states being prod-
ucts of the electronic states J¢7 by the wave func-
tion for an undisplaced two-dimensional oscil-
lator,3%3!

The shifts of the energy levels given in Sec. IITA
are obtained from the following perturbation:

(Jt7,00|3C;y | I 7!, ngn,))?

(
AWUIT)= D g e

t'r'ngn

Explicitly, we get
AW(T,) = - & [W(Ty($) - W(T,) + 7]
- 5 [W(T4(3)) - W(Ty) + 7],
AW(T(3)) = - & [W(T) - W(T4(3)) + Aw] ™
- 2[W(T,) - W(Ty(3)) + ]
- 2 (w)™ = A[WATy(3) - W(Ty(D) +Fiw] ™,

AND GENDRON 13

AW(Ty(3)) = - 2[W(T,) - W(Ty(2)) +w]™
- &[W(T,) - W(Ty(3)) + Fiw] ™
- 2[W(T(3)) - W(T(3) + w]™ = 2(w) ™,
AW(T;) = = 2[W(Ty(3)) - W(T,) +Hw]™*
- A[WA(T4(3)) - W(T,) + Bw] ™,

in units of $V?i/pw.

B. Strong vibronic interactions

We now consider the case of a strong Jahn-Tel-
ler interaction between the *T, electronic state
and the E vibrational mode, that is, ¥Cg, is con-
sidered as a perturbing Hamiltonian acting on the
vibronic eigenfunctions of the Hamiltonian
3 +3C, +3Cy; +3C, +3C;r. We will recall the main
results of this well-known problem.

As demonstrated by Ham,'® the first-order spin-
orbit interaction within the fundamental vibronic
state is given by the reduced operator

(1) _ ,=3E 2
W =e-3Bsr/Roge

Ham also considered in a very detailed manner the
second-order perturbation effects on a vibronic
triplet owing to interactions with the vibronic
states of the given triplet. Sturge!* considered
second-order perturbation effects connecting dif-
ferent multiplets. When E; is greater than the
spin-orbit splitting of the electronic triplet and
when the spacings between the electronic levels
involved are greater than E;;, the second-order
spin-orbit interactions on a fundamental vibronic
triplet *T, may be written

4T mc |28-‘1 2S+1 4.
(T, 00[850 [T, 00) = _%b» 2 Ty [%eso | *To0) (T 350 [T+ 22 s %[c;( T ;h) ;’(’S}fll;s:so a
i#] 2S+1 2/ =
h

for the diagonal matrix elements. f, =¢™G(x) with x =+ 3E;;/Aiw and*®

G(x): Z mxm)-.

n=1

In the second term, the summation must be performed on all of the relevant multiplets 25*'k connected by

¥so to the *T,, triplet.
For the off-diagonal matrix elements we obtain

4
- T
(*T 4y, 00|33 | 4T 5, 00) = — (fo/ B)(*T 55 | 3Coo | *T5) (*T 5y | 3o | 4T o) +€7%/2 Z (

211%s0 125°h) (51 13Cao | *T )
W("Tz) — W(zsam

280].’l
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with f, =e™*G (3x).

Given the number of multiplets intervening in
the calculation of the second-order spin-orbit
interaction for a *T, level of Mn**, we did not use
the method of equivalent operators. Instead, we
used the fact that the matrix elements of 32, are
known in the 25*'4J¢T scheme. First, the matrix
elements of 3%, are written in the real tetragonal
system 25*1,M0; we then take the diagonal matrix
elements in this scheme and, finally, we calculate
these diagonal elements in the ?S*'aJ¢7 scheme.
Thus the contribution of the diagonal (in the real
2541y M scheme) matrix elements to 3%, are given
interms of the matrix elements of 3%, in the *T Jt7
scheme (see Appendix).

The contribution of the off-diagonal matrix ele-
ments is

(#TT|520 [T o peaiag = XTI |3C20 | t77)
— (47T |33 |47 ) gta -

/?_70 Energy (cmi)
08 )
.-5%
<0 B
-100 '7(\%)_\:\
B N2 E
@’(;)\/::\\\:i [IOcm]
L-150
-200
._250 N X

FIG. 7. Influence of weak, medium, and strong vib-
ronic interactions. Case of a coupling to an E vibrational
mode. The energy levels are given in terms of
x=3V?%/2ukiu? for weak interactions and x=3E ; /fiw for
strong interactions. The solid curves were obtained
from a perturbation method. The dashed curves are
drawn approximately in the region where the pertur-
bation method is no longer valid in order to get an idea
of the shifts before doing a diagonalization of the vib-
ronic Hamiltonian. The parameter R (defined in Sec. III
A) is 295 em™. 7Zw=75 cm™!,

This method permitted us to determine in a simple
way the contributions to 32, of the diagonal and
off-diagonal matrix elements arising from all
multiplets connected to the *T, level (see
Appendix).

C. Comparison with experiments

Although we performed calculations where the
energy of the effective E-mode phonon was succes-
sively chosen to be 240, 220, and 75 cm™ from
phonon density of states, phonon frequencies and
symmetries obtained by Hennion ef al.%? from neu-
tron inelastic scattering experiments, we will
present, for conciseness only, the results ob-
tained with an effective phonon energy of Zw =175
cm™! (anticipating the results of Sec. VI, this will
be the value finally adopted to account for all ex-
perimental results). The parameter R describing
the first-order spin-orbit coupling is simply cho-
sen to be R =295 cm™ as given by the crude crys-
tal-field model of Sec. IITA,

In the case of weak and strong Jahn-Teller inter-
actions, the energy levels are given, respectively,
in terms of x =3V?/2pfiw® and x = 3E;;/Fiw in Fig. 7.
In the case of strong Jahn-Teller interactions, the
conditions for validity of the perturbation treat-
ment are verified for x >3. When Ham’s effect is
restricted to the studied level, the splitting of the
two lowest levels decreases monotonically from 7
to 3 cm™ when x increases from 3 to 9, the
|T4(3)00) level being the lowest. The contribution
to this splitting of the second-order spin-orbit
interactions with all other relevant multiplets of
the d® configuration is less than 2 cm™ for
3<x <9,

The most important result appearing in Fig. 7
is that strong vibronic interactions corresponding
to x ~4 could explain the presence of only two ab-
sorption lines separated by 10 cm™. Unfortunately,
the results of the uniaxial-stress experiments will
lead us to reject this hypothesis. In fact, in the
case of a strong Jahn-Teller effect, the two ob-
served lines in T, symmetry correspond to the
almost degenerate |I';,00) and |T4(3), 00) levels
for the line at higher energy and to the almost
degenerate [T, 00) and |Tg(3),00) levels for the
other line. Therefore, neglecting any small split-
ting of the |T,, 00) and |T4(3),00) levels as well as
any splitting of the |T, 00) and |T4(3), 00) levels
when P =0, we obtain the energy levels in terms
of the A parameter for Mn** in ZnSe as represented
in Fig. 8 (see also Table IIA). A comparison with
the experimental splitting given in Fig. 4 shows
that this model cannot describe correctly the
stress effect. Furthermore, given the strong mix-
ing of all vibronic levels under an applied pres-
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sure P|[[110] or P||[001], at least four lines
should be observed when P#0.

To summarize, we have shown that neither the
hypothesis of pure electronic levels nor the hy-
pothesis of a weak or strong Jahn-Teller coupling
to E vibrational mode give a satisfactory inter-
pretation of the experimental results. Therefore
these preliminary studies led us to carefully con-
sider the influence of medium Jahn-Teller inter-
actions on the energy levels and on the dipole
strengths. In order to avoid the limitations of a
perturbation method, we calculated the wave func-
tions of the fundamental and excited vibronic lev-
els by diagonalizing the vibronic Hamiltonian.
The results of this calculation are given in Secs.
V and VI

V. DYNAMIC JAHN TELLER EFFECT: INTENSITY
TRANSFER

The diagonalization of the Hamiltonian 3Cgq +3Cy;
+3Cy +3C;r defined in Sec. IV A was performed for
one *T, state. All interactions between the *T,
state and others multiplets of the d® configuration
were neglected; in particular, our results will
not reflect the spin-orbit interactions with other
multiplets as it was the case in Sec. IV.

The matrix elements of 3Cgo, &, and &, were

Splitting (cm™)
40

30

40

FIG. 8. Theoretical splitting of the ‘T, level of Mn**
in ZnSe in terms of A, in the case of a strong coupling
to an E vibrational mode. The parameter A is defined
in Sec. III B.

g

-

®s
0 lqj)\mmm
3 10

E(%)/’//s =08
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0 8(7) .
5 10
[%% ___—  s-16
-
\
0 .
Magnified 5 10
2 times S=4

e )/
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FIG. 9. Relative dipole strengths of the zero-phonon
lines for a *7T, state in terms of R, for different values
of S R is defined in Sec. IITA and S in Sec. V). The in-
dexation of the zero-phonon lines is that of pure elect-
ronic levels obtained by continuity when S—0.

calculated in T}. The dimension of the matrices
were 3(n’+1)(n’ +2), n’ being the number of pho-
nons introduced in the calculation. The diagonal-
izations were performed with either three or five
phonons, the choice of the number of phonons be-
ing governed by the convergency of the mixing

TABLE II. Matrix elements of the pressure-induced
crystal field for P || [100]. A is defined in Sec. IIIB.
’Bhe a(tJ) are the diagonal matrix elements when
P =0 (owing to the first-order and second-order spin-
orbit interactions). B is the nondiagonal term owing to
the second-order spin-orbit interaction. The shift
common to all levels owing to the variation of Dg is
omitted.

L3 L3 +3 L) =3
i3 a(Iy)  F(3/2V5) . +(1/2V5)A
L)+ al@)-54  +fA+p
LS =3 a[3)]+54

L3 L3 #3 Li(3)+3
L3 a(ly)  F(1/2V5)4 s F(3/2V5)A
L8 +3 ally(d)l+54 -FA+B
G3)*3 o[L33))-54
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parameters (*T,, t7J, n, ng,) of the vibronic
wave functions

|*T,,n) = (T, 17T, n,ngn,) |*T,, t77,ngn,)

)

ty Ty Jongene

where n refers to the nth vibronic level.

Before giving the results concerning the intensity
transfer in a *T, state, we must remark that the
products of matrix elements intervening in the
formulas giving the relative dipole strengths (Secs.
IIIC and IIID) may be simply multiplied by the
mixing parameters (*T,, t7J,n,00) when we are
concerned either by the zero-phonon levels of the
4T, state or by the phonon-assisted levels of this
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state. Of course, this simple procedure is valid
only when the spacings between the electronic lev-
els involved are greater than the Jahn-Teller en-
ergy associated with these levels. In particular,
we will use directly the formulas given in Sec.
IIID by replacing the (t1,J) by the (4T,, t7J, n, 00).
Figure 9 shows the calculated relative dipole
strengths in terms of the parameter R/%Zw mea-
suring the spin-orbit splittings of the T, state
(R is defined in Sec. III A) for different values of
the Huang-Rhys factor S=E;./fiw. This figure
shows that for a given S the dipole strengths of
the ®A, - 'y and °A, - I';(3) zero-phonon lines re-
main almost constant for increasing values of R
while the dipole strength of the °A, ~ [';(3) line

INTENSITY (an)
R =2 R =6 R =10
ENERGY (M) S =04 S =04 S =04
I hjl A ‘ L'l A |
o 1 2 o 1 2 0 1 2 i
R =2 R=6 R =10
S =08 S =0s8 S =08
| L |
L I L 1y s s
[ 1 2 o 1 2 o 1 2
R=2 R=6 R <10 FI'G. 10.' Energy levels
S =16 S =16 S -16 and intensity of the zero-
phonon lines and phonon-
assisted lines for a *T,
state. Points indicate
zero or negligible dipole
strengths. R is given
L . | | L l |, |  inunits of f.
0 1 2 o 1 2 o i 2
R =2 R=6 R =10
S =24 S =24 S =24
lL i l l ) | , ' l L l. |
0 1 2 o 1 2 o 1 2
R =2 R=6 R=10
S =4 S =4 S =4
h l lln . l l_ll 1
] 1 2 0 i 2 0 T 2
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decreases monotonically for increasing values of
R. On the other hand, this figure shows that for
a given R the dipole strengths of the zero-phonon
lines decrease monotonically from the values 14,
7, and 9 (for S=0) to the almost proportional val-
ues of 1.5, 0.7, and 0.8 (for S=4 and R /fiw =2)
when strong vibronic interactions occur.

In order to get a deeper insight of the mechanism
leading to the intensity transfer, we show in Fig.
10 the positions and the relative dipole strengths
of the zero-phonon lines and one-phonon-assisted
lines for different values of R /#w and S. In Fig.
10 we do not try to give an indexing for the phonon-
assisted lines since they depend on too many mix-
ing parameters having the same order of magni-
tude.

VI. STRUCTURE OF THE LOWEST *T, LEVEL
FOR Mn* IN ZnSe AND ZnS

By using the results of Sec. V as a guide, we
have elaborated a coherent model to interpret all
experimental results reported in Sec. IIB.

The experimental results to be fitted were the
energy levels and dipole strengths for the zero-
pressure spectra and for the pressure-induced
spectra and the dipole strengths for polarized
light. The main parameters intervening in our
model were the Huang-Rhys factor S and the pa-
rameter R describing the first-order spin-orbit
splitting of the T, level. Although the crystal-
field model permits us to calculate R (Sec. IITA),
we considered it as a parameter to be fitted to
experiments for the following reasons: First,
we cannot verify the correctness of the calculated
value for R since the first-order spin-orbit split-
ting of the *T, level cannot be deduced from the
observed spectra; second, it is impossible to
account for the experimental results in the case
of ZnSe when using the value for R as given by
the crystal-field model, thus indicating that co-
valency can be of importance when Se ligands are
involved.

In the case of ZnSe:Mn, we used an effective
E-mode phonon of energy Zw="75 cm™; this value
is close to that of 69 cm™ chosen by Vallin and
Watkins® in interpreting the EPR spectra for
Cr?* ions in ZnSe and identical to the value cho-
sen by Nygren et al.* in interpreting infrared
absorption for ZnSe:Cr. All our experimental re-
sults were correctly fitted by S=1.2 and R /7w =10
(this last value is 2.5 times larger than that given
by the crystal-field model of Sec. IIIA). The theo-
retical energy levels and dipole strengths for P=0
are compared with experiments in Fig. 2(a). This
figure shows clearly the very good agreement be-
tween theory and experiment for the two observed

lines; it also demonstrates the importance of in-
tensity transfer for the °A, - T'4(3) line [the point
in Fig. 2(a) represents the forbidden °A, -~ T,
transition].

The pressure effects reported in Figs. 4(a) and
4(b) were correctly fitted by taking A =3650 cm™!
per unit strain. The shift common to all lines is
11500 cm™ per unit strain. The needed elastic
compliance constants were measured at 25°C by
Berlincourt et al.*: s,,=2.26 X 10"'? ¢cm?/dyn and
$13=— 0.85 X 10"'2 cm?/dyn.

The theoretical line positions and relative dipole
strengths given in Fig. 5 (see also Table III) were
obtained by diagonalizing the vibronic and pres-
sure-induced Hamiltonian using the above values
of S, R, and A. We must note the excellent agree-
ment between theory and experiments in all con-
sidered cases.

Finally, we have checked in another way the
validity of the cluster model used in our calcula-
tions by estimating S from the pressure effects.
In tetrahedral coordination S is given by

S=(1/2ukw?)(6A/2V2R)?,

where u is the effective mass of the £ mode and
R is the nearest-neighbor distance. In our case
we obtained S=5.0, in rough agreement with the
value chosen in our calculations (S=1.2).

In the case of ZnS:Mn, we used an effective E
mode phonon of energy %Zw =100 cm™. This energy
is in agreement with that chosen by Vallin and
Watkins®? in analyzing the EPR spectra of ZnS:Cr;
it is also the energy of the low-frequency mode
chosen by Ham and Slack® in interpreting the
optical spectra of Fe* in ZnS. By taking S=0.6
and R /7w =3.5 (this last value is in correct agree-
ment with the value 3 given by the crystal-field

L TABLE IIL _Theoretical relative dipole strengths for
P [[[100] and P || [110] in the case of Mn** in ZnSe. The
theoretical and experimental results are compared in
Fig. 5.

Line Line
at higher at lower
energy Central line energy

B { [001]
P=5x10% dyn/cm?)

Dipole strengths

E | [001] 6.88 6.21 0.28
E |[[110] 4.06 3.66 6.75
P [ [110]

@ =1.1x107 dyn/cm?)
Dipole strengths
E |/ [001] 4.95 0.35 9.28

-

E || [110] 5.17 6.25 2.09
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model), we get the following energies with respect
to the T'y(3) level:

W(I's)=3.3 cm™ (experiment,3 cm™),
W(T'4(3)) =40 cm™,

and
W(I',)=45 cm™,

This model led us to tentatively associate the
small absorption line appearing at 19917 cm™

to the °A, — I'y(3) transition (this line is observed
in cubic ZnS, and cannot be an absorption line of
Mn** ions in stacking faults). The calculated posi-
tions and relative dipole strengths for P=0are
given in Fig. 2(b). The agreement between theory
and experiment is not as good as for ZnSe:Mn;
however, we must remark that the presence of
stacking faults in our samples perturbs the inten-
sity of the two lines at lower energy and, in par-
ticular, the intensity of the line at 19 685.5 cm™
is smaller than the intensity of the line at 19 682.5
cm™ in cubic ZnS.!' (Unfortunately, the cubic
ZnS:Mn crystals at our disposal were too small
to be cut and polished in order to perform uniaxial-
stress experiments.)

The pressure-induced splittings and shifts given
in Fig. 4(c) were fitted with A =3100 cm™ per unit
strain, the shift of all lines being 18 000 cm™ per
unit strain (s,,=1.786 X 1072/ s,,=0.685 X 10~2
cm?/dyn at 77 K).*® The estimation of S from the
pressure effects gives S=4, in rough agreement
with the chosen value (S=0.6).

VII. CONCLUSION

The structure of a *T, level of a d° ion in T, sym-
metry has been analyzed first in a classical model
in which vibronic interactions are neglected. Con-
venient formulas permitting the calculation of
second-order spin-orbit interactions and relative
dipole strengths have been reviewed. It has been
shown that this model fails to give the correct
relative dipole strengths in the case of Mn** in

—

ZnSe and ZnS.

In a second model we have described in a de-
tailed manner the influence of a coupling to E
vibrational modes by extending the calculation of
the second-order spin-orbit interactions to the d°
configuration. Ham’s and Sturge’s perturbation
methods were used for that purpose. This model
was considered because the existence of strong
Jahn-Teller interactions could have explained
simply the presence of only two absorption lines
observed in experiments (P =0). However, this
assumption of strong Jahn-Teller interactions was
found to be in disagreement with experimental
pressure effects.

Then, by diagonalizing the vibronic Hamiltonian,
we have given a general description of the influ-
ence of the Jahn-Teller interaction on the energy
levels of the zero-phonon and phonon-assisted
lines, and on the intensity transfer in a *T, level.
Coherent values for the Huang-Rhys factors and
for the effective phonon energies permitted us to
interpret correctly all experiments performed on
the lowest “T, level of Mn** in ZnSe and ZnS.

Finally, we must emphasize the fact that the
classical model often used until now in interpret-
ing the optical spectra of d° ions in solids must
be handled with caution, particularly when low-
energy phonons are observed in the absorption
spectra.
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APPENDIX
Matrix elements of the second-order spin-orbitinteractions in the case of strong or medium Jahn-Teller
effects are dealt with here. The notations are defined in Secs. IIIA and IV. The matrix elements for pure

electronic levels are obtained by nulling R and x:

(T )T |33 | (T )Ty == (5p+ o fOR Mo+ 2(- 1 +e )AL} + 1(- L+e™/2) LT} + (1 +e™2)T,}

+(—1-+Tloe_X/2){4E}‘+(—Eio+_1'2l_oe-t/2){4Tl}+(€16+Le-"/2){4T2}7

20

120

(T )T, |58 | (TIT ) = - (L fo+ 2k fRY/Mw + (5 + 2™/ ) A b+ B (= 147/ {4, } - 2 (1+e™/ %) PP, )

180

+1—18(-1+€_x/2){2E}+7—12(1—e_x'/z){zT;}+('1—é0+§§3€_x/2){4E}+("1—;(,+31<5—1()e-x/2){4T1}

7 11 ,"x/ 2\ [4
+(m+ﬁe ){ Tz}’
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((TIT(2) [3¢ 30 | (TITo(3)) = ~ (g — s FIR*/Tw + (1 — e/ {PA,} - (S5 + Se™ ) {4, } - (L + Ze™/D) 2T, }

~(3ks + e ™ E} + (7 - 3 "/2>{2TJ+(91t- e /W E}
~ (& + gke —1/2){4TL} +( x/2){4T I
((CTIT(3) [3¢30 | CTITo(3) = - (33 o 30 S m2/ﬁw+zi,,(1-e'*/Z){ZAz}%O(-1+e‘x/2){4A2}
+a(= L™ D PT, ) =(5h + e "B} + (1 +e™ AT} + (g +ahoe ™ *HE}

200

(T;T)T)+ . -x/z){-: 1}*‘(5&)"%6 x/2){4T }

(CT)T(3) |3C30 | CTITS(3)) = - o(fo —fIR/Hw + (1 - ™/ )4, }+ 2 (1 - e/ I {4, }+ (1 - e™/3) {7, }
_(6_10 +-13‘7,e"/"’){2E} (1+e"‘/2){2TL} (1_5'6+ e-:/z){qE}
-+ AT}« L (1= e ) {'T, ).

The contribution to 32, of the diagonal and off-diagonal matrix elements in the real 2*'2M@ scheme were
calculated in terms of the classical matrix elements of 3CZ, by the following relations:

(T4 3030 | Tohaag= HTa 3020 | Tad + HT(E) 530 | T3 + ACTa3) 15630 | To (D) - HTo(3) 1030 | T2
(T, ]330 | Tr)atag = 5T [3¢80 | o) + 4(To(2) [3050 | To(2) + 3(To(3) [3680 | Ta(2)) + (To(2) [330 | To(3)) ,
(Ty(3) | (020)* | Ty(Datas = (T 1320 | T + &I [502 | To) + 24T (3) [3020 | To(3)) + 2 (Te(D) [3620 | To(3)
2(Ts(2) 3¢5 | T5(2))
Ty(3) | (650)* | T atee = (T3¢0 | 7o) + 4T [360 | To) 4 (To(3) 3o | To(3) + 2T (3) 3626 | To(2)
+ 2 (Te(3) |35 | Tu(3)),
Ty(3) | (5030)% | To(Matag = - (T 5020 | To) + (T 3620 | T,y — AT(3) 3620 | To(2) + 2(To(®) [3020 | To(3)

+ 2 (Ty(3) 33 | To(2))
and

T 3020 |17 o guarag = ETT |3C30 |£TT7) = (4TI 3030 [T Vg1 -
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