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Theoretical investigations of the dynamic nuclear polarization (DNP) and the nuclear spin-lattice relaxation
time T„ in diamagnetic dielectric crystals diluted with electron paramagnetic impurities are reported here. The
steady-state DNP enhancement E„and the DNP pump time TDNp are calculated for the solid effect (SE), the
cross effect (CE), and DNP by the electron dipole-dipole reservoir (EDDR), assuming (i) a predominantly
inhomogeneously broadened (IHB) ESR line with uniform spin-packet widths (for SE and CE, but not EDDR
DNP), (ii) rapid nuclear spin diffusion, (iii) the electron and nuclear high-temperature limit, (iv) no phonon
bottleneck, and (v) isotropic electron impurities or axially symmetric electrons whose symmetry axis (c axis) is
aligned parallel to the applied magnetic field Ho. DNP results for IHB SE, which include DNP leakage
factors, predict E„comparable to the ideal enhancement in favorable cases, with E„vs Ho curves not
proportional to the ESR line-shape derivative at high microwave powers, contrary to early theories of IHB
SE. The effects of electron jumps between spin packets are discussed. DNP and T„are calculated for the cross
effect for both the well-resolved and unresolved limits. We get larger SE DNP and smaller CE DNP for the
unresolved CE than do Hwang and Hill, and consider CE DNP leakage factors they omitted. The inequality
T„/2 & 7DNp & T„ is found for the well-resolved CE, while vDNp T is estimated for the unresolved CE, different
from the general SE case where 7DNp & T often occurs. DNP by EDDR is extended from the pure
homogeneously broadened (HB) ESR limit to the IHB case with fast spectral diffusion, as suggested by Abragam and
Borghini, and is further extended from electronic isotropy to axially symmetric electrons with the c axis
parallel to Ho. Various limits of E„and rDNp are compared and contrasted for SE, CE, and EDDR DNP, to
enable experimenters to differentiate these three DNP mechanisms, if possible. We propose a three-spectral-
region model for wide ESR lines, which may exhibit IHB behavior in the wings of the line, HB EDDR effects
near the ESR absoption peak, and CE effects in between.

I. INTRODUCTION

Theoretical and experimental work on dynamic
nuclear polarization' (DNP) with an inhomoge-
neously broadened (IHB) ESR line is reported here
and in the following paper'0 (called II, hereafter).
Early theories ' ' ' of DNP for the case of IHB
ESR lines with unresolved satellites, which were
based implicitly on a strict shell-of-influence
model for the nuclei, predicted DNP vs magnetic
field curves proportional to the ESR absorption
derivative dG/dH, with DNP enhancements reduced
by one or more orders of magnitude from the ideal
enhancement E, Khutsishvili' and Zegers and
van Steenwinkel' pointed out the two additional
mechanisms of nuclear-spin diffusion and of elec-
tron jumps between spin packets. ' They predicted
DNP curves not proportional to dG/dH at high mi-
crowave powers, with enhancements comparable
to E, in favorable cases. In addition, Zegers and
van Steenwinkel' gave experimental results on the
DNP of ' F nuclei in LiF with V~ centers in rough
agreement with theory.

In previous work ' we have extended the theory
of Khutsishvili and Zegers and van Steenwinkel'
to include the DNP leakage factor which they
omitted, and reported experiments on the DNP of
protons in single crystals of erbium-doped yttrium
ethyl sulphate (YES:Er) at 9. 1 GHz and 4. 15 K.
A more comprehensive theoretical treatment is

given in this paper; our experimental results will
be given and analyzed in II.

In Sec. II of this paper, DNP by the solid-ef-
fect' ' (SE) mechanism for IHB ESR lines is dis-
cussed. We propose a muffin-tin model for the
rapid nuclear-spin-diffusion limit which gives
similar, though more general, results than those
in Refs. 13 and 14.

In Sec. III, we consider a competing mechanism
to SE, called the "cross effect" (CE), which
is essentially a two-electron-one-nucleus cross
relaxation that exactly conserves Zeeman energy,
and thus does not require the electron dipole-di-
pole reservoir (EDDR). ' ' Following the idea of
Borghini, we first calculate the well-resolved CE,
in which there are two narrow ESR lines separated
by exactly one nuclear Larmor frequency. This
is then extended to a single IHB ESR line with un-
resolved satellites, using different approximations
from those of Hwang and Hill, ' ~3 so that results
different from theirs are obtained. Specific ways
of distinguishing SE from CE are suggested.

Possible effects of EDDR on the DNP and nuclear
relaxation are discussed in Sec. IV. DNP with
the fast spectral-diffusion model ' is summarized
and compared with DNP by SE and CE. We give
results for EDDR effects for an axially symmetric
paramagnetic center with the applied magnetic
field Ho parallel to the crystal symmetry axis.
(Previous EDDR calculations '~' ~ 4' ~ assume elec-

13 3671

Copyright 1976 by The American Physical Society.



36'T2 DAVID S. WOL LAN 13

tronic isotropy. ) These results are used in Sec.
V to propose a three-spectral-region model for
wide ESR lines, which may exhibit IHB behavior
in the wings of the line, homogeneous broadening '

(HB) EDDR effects near the ESR absorption peak,
and CE effects in between. Finally, the summary
is given in Sec. VI.

II. SOLID-EFFECT DNP WITH IHB ESR LINES

A. Introduction

We consider a system of N„spin- —,
' nuclei per

cm in an insulating diamagnetic solid which is
weakly doped with N, paramagnetic impurities
(electrons, hereafter} per cm with effective spin

In the experiments reported in II, the host lat-
tice yttrium ethyl sulphate, Y(CzH5SO4)~ ~ 9HzO,
which has 33 hydrogen nuclei per molecule, is doped
& 1% with Er ' ions. The electron and nuclear
spins, each of gyromagnetic ratio y, &0, y„&0,
respectively, are subject to a constant magnetic
field Ho in the z direction and to a small ESR rf
field of amplitude 2H, oscillating in the x direction
at a variable angular frequency ~. The electron
Larmor frequency ~, is defined by co, =

I y, HOI, the
nuclear Larmor frequency v„by e„—= I y„HOI . This
sign convention for ur, and co„ is different from
Byvik and Wollan (denoted BW, hereafter) and
from Sec. IV and Appendix A of this paper, but
will be used elsewhere in this paper and in II. We
assume y, to be isotropic until further notice. We
use the relation g, p, ~= Iy, Ih, where g, is the elec-
tron g factor, p, ~ is the Bohr magneton, and 5 is
Planck's constant over 2g.

For use below, we consider first the case of a
homogeneously broadened ESR line whose width
4~ satisfies 4&@«&u„(well-resolved case). Ig-
noring EDDR effects, Jeffries et al. ' ' and
Borghini describe such a system by a rate-equa-
tion approach in the laboratory frame. They show

—WOP(t) -~ W'[P(t)+P(t)],
e e

p —W'[p(t) v P(t)], (2)dt T.
where at most one of the three transitions W,8" can be excited at a given ~ for fixed Ho. The
electronic polarization P(t) and nuclear polariza-
tion p(t} are defined in Refs. 1-5. The thermal-
equilibrium polarizations are P = -tanh(I&o, /2kT)
and p'= tanh(k&a„/2kT), where k is the Boltzmann
constant and T is the absolute temperature. We
define the ideal enhancement E, =——P'/p'& 0. The
electron and nuclear spin-lattice relaxation times
are denoted T, and T„. We may write "'

1/T„= 1/T + I/Ti,

where 1/T „ is the nuclear relaxation rate due to
the desired paramagnetic impurity (e.g. , Er in
YES:Er). The nuclear leakage relaxation rate
1/T„ is caused by undesired impurities and ex-
traneous modes of relaxation, but explicitly ex-
cludes CE nuclear relaxation (Sec. III} and EDDR
nuclear relaxation (Sec. IV).

The main ESR transition probability W' peaks
at or= &a, with the usual result Wo= v~, g(&u}, where
~, —= (y, H, ) and p(~) is the ESR line-shape func-
tion normalized to unity. The two satellite transi-
tions W'= v(c /(o„)(o, g((oa(o„) peak at (o= &u, +(u„,
and are usually weaker than W since a /&o„ is
ordinarily «1. This calculation is valid in the
rapid nuclear-spin-diffusion limit ' ' for an
HB line with well-resolved satellites, an isotropic
g„no phonon bottleneck, ' ' ' and no EDDR ef-
fects. ' ' Throughout this paper we assume (a)
no phonon bottleneck and (b) the electron (and thus
nuclear} high-temperature limit, 5&@,/kT «1.
Corrections for DNP and T„at low temperatures
have been given previously. ' Underlying Eqs.
(1) and (2) is the idea that the sample is broken
up into N, shells of influence of outer radius R
—= (2/4vN, ) ~ . The inner radius is the diffusion-
barrier radius d. For dilute systems each
nucleus interacts most strongly with the electron
at the center of its shell. In an HB line, each
shell is equivalent to every other. Hence, an
average over a single shell of one electron and

N„/N, nuclei is representative of the whole sam-
ple.

Consider now saturation of the W' satellite
(W =0= W ). In the limit T,«T„, N, «N„, P(t)
comes to quasiequilibrium (dP/dt= 0) in times
t«T„. We may solve Eq. (1) for P(t), and sub-
stitute into Eq. (2), using the DNP enhancement
E(t) =p(t)/p' -Eq. (2) .then becomes

TDNP
[E(t}—z.,], (4)

where the steady-state enhancement E„is

(1+f,S')+E,S'
1+S '(1+f,)

and the DNP pump time TDN p is

1 1 1+S'(1+f )
TnNr T~ 1 +f8 S

(5)

We now consider the case of an ESR line with
unresolved SE satellites whose IHB mechanisms

Equations (4) and (6) are valid for coarse-grained
times t such that T, « t«T»p. We use the DNP
leakage factor f, = N„T,/N, T„and t-he satellite
saturation parameter S'—= S"T„. DNP by the W'
transitions alone is called the solid effect. ' '

B. Strict shell-of-influence model
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„G (H) If $ is determined only by H„H, and T, processes
(and not by electron spin-spin relaxation time T2,
processes), t' is not a function of G(H). We may
then use the equations for well-resolved satellite
DNP for each independent spin packet, but weight
the nuclei by $G(H). Thus, from Eq. (5), the
sample average steady-state enhancement is

H

I

Ho H Hoo

FIG. 1. Inhomogeneously broadened (IHB) ESR line-
shape function G B).

completely dominate those due to HB. The ESR
line-shape envelope function G(H), normalized to
unity, can then be considered to be composed of a
large number of independent HB spin packets, as
in Fig. 1. For fixed co, the W transition occurs
at the variable applied magnetic field Ho, with the
ESR line center located at H22= if'/g, ps. The two
satellite transitions W' are excited simultaneously
at" H, = H, [I~ ((u„/(o, )].

We assume the physically unreasonable rectangu-
lar spin packets of width $ in Fig. 1 for ease of
the DNP analysis. Alternatively, it may be pos-
sible to use more physical spin-packet shapes,
provided that the wings of the packets fall off suf-
ficiently rapidly to insure negligible cross relaxa-
tion between packets. In this case, P may be
treated as an effective width such that [t'G(H)] N,
is the number of electrons per cm3 in the spin
packet centered at H.

The width g in Fig. 1 has been taken as'

Z„=(I—~[G(H, )+ G(H )]](I)

( )]
(I+f,S )+EBS

1+S (I+f,)

[ tG(H )] ( faS )
1+S'(1+f,)

If E, »1, Eq. (9) becomes

E(S$ [G(H ) —G(H, )]
1+S(1+f,) (10)

where S = S ' holds when $ is determined by H„
H, and T, alone. Thus Ess is proportional to the
absolute difference $ [G(H ) —G(H, )] of the spin-
packet populations. In the typical limit $ « I H,
—H2 l « [G(Hp2)] Eq. (10) becomes (by a Taylor-
series expansion} E„~dG/dH at microwave powers
S&1. The peak values of E„at S»1, f,«1, are
smaller than E, by one or more orders of magni-
tude. A schematic diagram of this case is shown
in Fig. 2, where most of the nuclei are in shells
with E„=1, while those few nuclei in the shells of
electrons in the G(H, ) spin packets are polarized
to Ess = + Ei'

A point sometimes overlooked is that in this

$-(H +H +H )'/ (7)

where H„ is the intrinsic HB width and H is the
amplitude of the magnetic field modulation applied
at frequency f Equation . (7) is valid if the con-
dition f &(T,) ', &u holds. However, if f «(T,) ',
v, the magnetic field modulation is not an HB
mechanism, and we must use

(H2 + H2)1/2

In this latter case, and assuming H &H,„, H&, the
field modulation sweeps slowly back and forth
through a series of spin packets each of which
comes to internal equilibrium in times t«(f )
Evidence for this is given in II. Throughout this
paper, we assume the condition $ & l y„/y, l H2.

In what we call the strict shell-of-influence
model, the nuclei in a given shell are influenced
only by their own electron, which is assumed fixed
in a given spin packet in time; nuclear-spin dif-
fusion between shells is assumed negligible. ' '"'

FIG. 2. Strict shell-of-influence model for DNP with
an. IHB ESR line. Bulk nuclei are defined to lie within
shells defined by the diffusion-barrier radius d and the
shell outer radius R = (3/471Ns) /3= 0. 62N~' . For pic-
torial convenience only, we take R = ~2(N, ) ' in this
figure, thus neglecting some nuclei at distances r& R
from any electron. Nuclei in shells whose electrons lie
in the spin packets G(H~) are polarized to E~=~Ei at full
microwave power and f,«1. The nuclei in all other
shells are at E~=1 in this model. See Eqs. (9) and (10)
in the text.
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model, for times t» T„ the NMR signal monitoring
the DNP will in general respond with two time
constants: rn„z, from Eq. (6) for the nuclei in the
G(H, ) packets, and T„ for all the other nuclei. It
is easy to think of DNP experiments to observe
this, e. g. , by changing Ho (at fixed (d) in times I
such that Te« t«TDgp.

C. Muffin-tin model

The assumption of no nuclear-spin diffusion be-
tween shells of influence is not physically plausi-
ble, especially in the rapid-diffusion limit. ~'3' ~

Therefore, we propose a muffin-tin model (Fig.
3) for DNP by the solid effect in an IHB ESR line.
For the moment we assume that each electron is
fixed in a given spin packet in time.

We assume that nuclear-spin diffusion is suf-
ficiently rapid so that all the bulk nuclei outside
the diffusion barriers come to a common average
nuclear polarization P (f). Thus the time evolution
equations of p(f} and P (t) can be written from Eqs.
(1)-(3), weighting the p(f) rates by the relative
spin-packet populations:

FIG. 3. Muffin-tin model for DNP with an IHB ESR
lin.e. Rapid nuclear-spin diffusion brings all the bulk
nuclei to a common polarization given by Eq. (14) in the
text. Bulk nuclei are all those lying outside their own.
diffusion-barrier radius d. For comparison with Fig.
2 only, we take R =$ Ke 3 in this figure.

e e

dp(t) 1 [P(f)-P']-(I —5[G(H.}+G(H-)ll ~T [P(f) -P']1

n n

—((()()()(' [) ())~ P (t)] ~ [()) )')])—(G(H) (W'-[(T(0-&(&)]+~
—[) (&)-) ']) (12)

[z(f) —z.,], (13)

Each independent spin packet has its own elec-
tronic polarization P(t): the two of interest for
DNP are P,(t) for the packets G(H,). In the rapid
nuclear-spin-diffusion limit, all the p(t) rate
terms are linearly additive. The first term on the
right-hand side of Fq. (12) is the nuclear leakage
relaxation rate. The second term is nuclear re-
laxation by the electrons in all spin packets except
G(H, }, and the last two terms are the DNP and
nuclear relaxation rate contributions to p(f) from
the two spin packets G(H, ).

If Te«T„and N„»N„ the two electronic polar-
izations P,(t) come to quasiequilibrium (dP, /dt
= 0) in times t«T„. We may solve Eq. (11)for
P,(t) and substitute into Eq. (12). Using S = S'
= W'T„, E(t}=p(t)/p', and Eq. (3), it is easy to
show

1 ( 1 S[([('()(,) ~ C(H )]+f ))
DNp I+f, S

If E; » 1, then E„can be written as

1+f«S+ Scuba
(16)

The infinite power (S»S,&z) no DNP leakage (f,=0)
enhancement E„, given by

G(H ) —G(H. )
' G(H, )+ G(H ) '

is proportional to E, and to the relative spin-packet
population difference '

[G(H ) —G(H, }]/[G(H,}+G(H )] .
We find E„=0.8E, in favorable cases, and note
that E„ is not in general proportional to dG/dH
The effective DNP leakage factor f,«, given by

where e

t[G(H.)+G(H )] ' (18)

and

(1+f,S)+ E,S)[G(H ) —G(H, )]
1+Sj)[G(H,)+G(H )]+f, I

(14) is larger than f,. The physical idea is that only
N,"'= ) [G(H,)+ G(H )]N, electrons are polarizing
the nuclei, whereas all N, electrons contribute to
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Sg ~ p
= 1/$ [G(H+) + G(H )] (19)

So far we have assumed that the electron in a
given spatial site remains fixed in one spin packet
in time. The essential idea of Khutsishvili'3'" and
Zegers and van Steenwinkel'4 is that the electron
may jump from one spin packet to another, a pro-
cess that is not necessarily the same as ESR
spectral diffusion (Sec. IV). (The complicated re-
lation between these two processes will not be
considered in this paper. ) They also emphasize
the important role of nuclear-spin diffusion. Let
us define an average electron spin-packet jump
time v'. Then the models discussed thus far cor-
respond to v» T„. If 7 & T„, the electron in a
given spatial site spends only a fraction )G(H, )
of its time in the G(H, ) packets. In the muffin-tin
model, Eqs. (11)-(19}remain valid as spatial
averages even when T,«v & T„. It makes no dif-
ference to the bulk nuclei which electron spatial
sites provide the DNP 8"transitions, provided
only that they are weighted by the average spin-
packet populations $G(H, ).

Xe

I

e

Xe
Ii

(b)

the nuclear spin-lattice relaxation. Thus we find

f,« = N„T,/N,"'T„. Finally, the half-power param-
eter is

We now propose a modified shell-of-influence
model defined by no nuclear-spin diffusion between
shells of influence, but 7 & T„. The muffin-tin
model and the modified shell-of-influence model
give the same DNP results for the case T,«v«T„.
For the latter model in this limit, Eq. (12) may
be viewed as a time average for a single shell of
influence. Each shell samples many spin packets
in times t= T„. Thus, each shell is equivalent to
every other, and an average over one shell is
representative of the whole sample. This model
is not valid if 7 & T„. Khutsishvili' '" and Zegers
and van Steenwinkel' have considered DNP for the
modified shell-of-influence model in the limit T,
«r«T„. However, Ref. 14 omits the S and f,
dependence of E„and does not discuss TDN p.
Reference 13 omits f, effects and gives the wrong
dependence of E» on T„.

The effects on IHB DNP of other time scales for
electron spin-packet jumps, of various inhomoge-
neous broadening mechanisms, and of nuclear-
spin-diffusion criteria have been given elsewhere.

III. DNP BY THE CROSS EFFEC'I

A. Well-resolved cross effect

The basic mechanism of the cross effect (CE}
was first discussed by Kessenikh et al. ' who

considered only the case of DNP by CE in the limit
of large microwave power. Hwang and Hill
generalized their theory to arbitrary microwave
powers. Borghini has given an excellent review
of various DNP mechanisms including SE and CE,
but omitted all DNP leakage factor effects. None
of these workers calculated TgNp We first con-
sider two identical narrow HB ESR lines separated
by exactly one nuclear Larmor frequency ur„as in

Fig. 4, where the ESR linewidth 4(d satisfies 4'
A simple model of the well-resolved cross

effect has been given elsewhere. '
The basic rate equations for CE have been given

by Hwang and Hill ' for the case of three elec-
trons S', S'+, and for a strict shell-of-influence
model of the nuclei. The Larmor frequencies of
electron S', S"' are &o,', &uta &u„(Fig. 5) with elec-
tron polarizations P„P„„respectively. The
nuclear polarizations p„p„„refer to an average
over the N„/N, nuclei in each of the shells of in-
fluence surrounding the S', S"' electrons. Hwang
and Hill's ' ' results (without the W, W' transi-
tions) are

FIG. 4. ESR absorption susceptibility p," vs ~ at
fixed Ho for the well-resol. ved CE. Electron sites S' and
S" differ in their resonant frequencies by ~„. (a) When
the allowed ESR transition W is applied at cu = w,", we
denote the S" (S') electron by 0 {+). (b) When + is
applied at e = ~,', we denote S' (S") by 0 (-).

dP$(f) 1

JI =-r "'"-
B

N
Wi, - [2&- —2P( —(P +f )]

e

+N ~i, ~.il2&i. i —~&+ (Pi+P&.i)],
N

e
(2O)
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s''
M» = +i/2

si-t term '. '" Equation (22), valid when (&u„T»,}»1,
may be rewritten

M,
' ~ + i/2

M» '*+i/2
3 g&a 1 1

10 H dR T0 2e
(23)

Tl(we+un) Atajs h(tes(-cun)

, j Mi=-i/2

Mt=+i

M" - i/2»

jl j
M»~ -i/2

M,
' '*-i/2

FIG. 5. Energy-level diagram of three electrons S»,
S»~ and one nucleus I at fixed Ho for the ~eQ-resolved
CE. This is adapted from Fig. 1 in Ref. 22 and Fig.
37 in Ref. 23.

where T», in Eq. (22} is replaced by an appropri-
ate T&, for the reasons given in Appendix A. The
mechanism of forbidden (or satellite) electron
spin-spin transitions (&Ms = a 1,&M»$ =v 1, &Mt
= + 1) causes both CE here and EDDR DNP and

nuclear relaxation (Sec. IV). Electron and nuclear
Zeeman energy are exactly conserved in CE but
not in EDDR theory; inthe latter itis precisely the
role of the EDDR to absorb (or emit) the excess
(or deficit) of Zeeman energy. a'

We nom write equations for the electron polariza-
tions Pa(t), P,(t), and the nuclear polarization p(t)
for two neighboring shells of influence, using Eqs.
(20)-(23) and adding the Wa transition. It is easy
to show from Eq. (21) that po(t) =p,(t). Hence we

define

dp, (t)
T, [p,(t—) —p']+ W, ~, ,(P, , —P, —p, }

n

p(t) -=pa(t) =P,(t)

The rate equation results then become

(24)

—W& , (1P$, $P, +p,), (21)

where T „' refers to all modes of nuclear spin-lat-
tice relaxation except CE. The W&, , u terms (see
below) are each averaged over one shell of in-
fluence with rapid diffusion assumed for each
shell. We use P ', = —tanh(1+,'/2kT} and P «
= —tanh [ji((0,' + up„)/2k T].

We now specialize these equations to the case
of two mell-resolved ESR lines separated by ~„as
in Fig. 4. For example, in a crystal with two in-
equivalent magnetic sites per unit cell, there may
be some orientation of the crystal axes relative
to Ho where this condition is fulfilled. Let there
be equal numbers (&N, per cm ) of electrons in

each of the two sites S', S". Thus we may break
the crystal up into N, uniform shells of influence,
each containing one electron and N„/N, nuclei, and

further assume that the shells of S', S" alternate.
A sample average is then obtained from an average
over one pair of shells S', S".

Consider now rf irradiation at applied frequency
&o= (d,' (or &o,")with Ho fixed, which will stimulate
the allowed ESR W transition for electron S'
(or S") and the forbidden W' (or W ) SE transition
for the other electron. We shall denote the elec-
tron (and the nuclei in its shell) at &u by the sub-
script 0, and the other electron and its associated
nuclei by the subscript a, as in Fig. 4. The CE
transitions W«„become Wo Wo, where by

symmetry Wo, = Wo
-=Wcz. Hill has shown

Wc» =(e /~'„)(Ta. ) ', (22)

where e /($(„ is the usual satellite mixing

dPO(t) 1

tN Te
=-—[P,(t)-PO]- W Pa(t)

+» (2W ) [P,(t) —Po(t) s p(t)],N

e

= -—[P,(t) -P;]
e

(as)

+~ (2W„)[P,(t) -P,(t)+p(t)], (as)

dp(t)
dt T'„

= ——,[P(t) -P'l

—w«(p(t)+ [P,(t}—P,(t)] ] . (27)

We may solve Eqs. (25)-(27} in the manner of
Sec. II to get

where

[p(t) -p..],
TDgp

0
e~~e ScE

a 1 $ (1 /') $' $")'

(23)

(2S)

1 1 Wc»(1+ S~)

rnNp T„' (1+S )(I+f ScE)$+f,ScE
(30)

S cs 1+See(I+af!}
1+Scs (1+f$$)

We note that 1~S&~q~ 2.

(31)

We have used So= W~T„S«-- Wcs T'„, f,'=2N„T,/
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Let us consider first nuclear spin-lattice re-
lmuLtion with Eqs. (28)-(31), with Sz = 0 and no
DNP. We see that P„reduces to P', and rgNp re-
duces to T„where

1 1 1
p+ CET. T' T. (32a}

1 Wcz
T 1+2f'S (32b)

Now we consider DNP by CE. When S,St:E
»1, Eq. (29) predicts p„=+Pz/(I+f,'), which
gives large DNP which can be reduced only by a
significant DNP leakage factor f', &1. Note first
that f,' depends only on the non-CE nuclear relaxa-
tion time T'„and not on Tc . The factor 2 in f,'
comes in because one electron (e.g. , S') is pumped
by WQ, while the other electron (e.g. , S"}re-
laxes to the lattice (see, e.g. , Fig. 4 in Ref. 24}.
For two adjacent shells of influence (S' and S"),
one electron S" relaxing at a rate 1/T, is servic-
ing 2N„/N, nuclei, and the CE DNP is reduced
when (2N„/N, )/T„'&1/T, . Second, since Wcz de-
pends on T2„which in turn depends on N„we see
that S«will in general vary as N, varies. How-

ever, there may be a range of variation of N, such
that Scz remains» 1, in which case E„=p„/p'
will be independent of N, . Third, E„can be re-
duced either by low microwave power (So& 1) or
by a low CE saturation parameter S«&1. These
results may be compared with the well-resolved
SE DNP in Eq. (5).

Using Eqs. (30) and (32), it is easy to show that
TQNp can be written

1 1 1+S ([I+Scz(1+f )]/[1+Sos(1+ 2fe}]]
rnzp T~ 1+S [(1+f ~S«) (/I +2f ~S)c]z

(33)
We see that ms p = T„ if f,' Scz, f ',«1 or if S «1.
We find in general

22 and 23 is essentially P= I/S«. We have treated
S« = WcET „' as a CE saturation or effectiveness
parameter here. Their use of P leakage is an al-
ternative and correct approach to our use of ScE.
However, CE DNP leakage in this paper will al-
ways refer to f', and never to P, and must be in-
cluded in a correct treatment of CE DNP.

It is easy in principle to add the W' SE transi-
tions to Eqs. (26) and (27) in order to show the
combined effect of SE and CE. However, the al-
gebra gets messy when f„f,'& 1, so we have ob-
tained no results for this general case. Borghini
has given the result for f„f,'«1.

B. Unresolved cross effect with an IHB ESR line

We now investigate CE for a single IHB ESR line
of width 4u& with unresolved satellites (EId & &u„},

as in Fig. 6, the case for which CE has been ana-
lyzed in detail previously. " ' [Parenthetically,
we note that no CE is possible for a single ESR
line with weil-resolved satellites (&to«&o„), since
no two electrons in the sample will differ in their
Larmor frequencies by ~„.] An ESR line with un-
resolved satellites must be IHB in order to have
CE, since each spin packet, e. g. , G(HO), G(H, ),
G(H„), in Fig. 6, must have its own well-defined
electron polarization. If spectral diffusion (Sec.
IV) brings the spin packets into common mutual
equilibrium in times 7 «T„ then CE is wiped
out 23,24

Since all the electron polarizations P, in Eqs.
(20) and (21) are coupled to one another by the
W«„ terms, a closed solution of those equations
is not possible. Hence, we shall ignore the W, ;„
terms in Eq. (20) but not in Eq. (21). This amounts
to ignoring the f,', f ', S« leakage factors in Tcz
and DNP. Although these are not in yrinciple ig-
norable, we do so for computational convenience,
and then extrapolate the results of Sec. IGA to
estimate their probable effect here.

The electron polarization equations for each of
1
2 Tn —~DNP T„~ (34)

This limited range of 7» p for the well-resolved
CE is to be contrasted in SE with rnzp =f,T„«T„
from Eq. (6) with S' »1, f,«1.

Although Hwang and Hill 2' 3 did not work out
the mell-resolved CE, their unresolved CE re-
sults reduce to essentially our equations in the
appropriate limit except in one respect. They ap-
plied detailed balance to the WcE transitions in
Eqs. (20), (25), and (26), obtaining a complete
cancellation of the CE terms in the electron
polarization equations. This involves adding dPO/
dt and dP, /dt, which is meaningful only if Po =P„
which contradicts an essential hypothesis of CE.
The consequence is that they get no DNP leakage
factors f,' in p„. The "leakage factor" p in Refs.

FIG
spin p
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ackets
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the N spin packets in the ESR line may now be
written as

dP (t) 1= —W'P, (t}——[P,(t) —P;], (35a)

P,(t) =P', +p',
P, (t) = P'a 2p',

P,(t) =P', ,

P~»(t} = P
&

+ P' .

(35b)

(35c)

(s5d)

(35e)

The subscripts 0, +, ++, refer to the spin packets
at H0, H, =H0(l+ ly„/y, l), and H„=H0(1+2ly„/y, l),
respectively, while i refers to all other spin pack-

ets. By omitting the W, ,» terms in Eq. (20), we
assume that all the electron polarizations except
P0(t) are at their thermal-equilibrium values in
times t» T,. On the same time scale, P,(t) at-
tains quasiequilibrium (dP0/dt= 0), so that Eq.
(35a) may be solved to obtain

J 0(t) =P0/(1+ S0) . (s6)

We now write the nuclear polarization equation
from Eq. (21) using the muffin-tin model in the
rapid-diffusion limit (or, alternatively, using the
modified shell-of-influence model with T,«r«T„).
The average nuclear polarization P (t) is then given
by

dp(t} 1 1
Tz+ TI, (p-p ) — )G(H&){W&I&+&[p—(P& —Pt+&)]+ W&~& &[p+(P& —P& &)])

n n ~1

—)G(H0)(W0 [P —(P0 —P )]+ W0, [P+(P0 —P,)])—)G(H, )(W0,[P —(P, —P0)]+ W, „[P+(P,—P„)])
—$G(H }(W0 [p+(P -P0)]+ W, [p —(P —P )]}, (37)

where the subscripts (i, i + 1) become, e. g. , (0, +)
in an obvious way for the Hp, H„spin packets.
The prime on the summation in Eq. (37}restricts
the sum to all spin packets except those at Hp H+.
In Appendix B we shall deduce an estimate for
W&, & i:

W«»=6)G(H, ») —', 0 - B, (38)g. PB 1 t'G(H, )

0 - 2'

where i refers here to all spin packets including
those at Hp, H„and H~. It is useful to rewrite
Eq. (38) as

1
cz = ~ )G(H&)(W& &,z+ W& &.&) .

Tn i~i
(44)

ds(t)
dt +Dip

[E(t}—E.,], (45)

SPE„=1+E( 0 {$[G(H0)+G(H )][W0 T„]

The unprimed sum is over all N spin packets.
Next we consider DNP, when Sp&0. We use

the enhancement E(t}=p(t)/p'. The—n Eqs. (35)-
(37} can be combined to give

G(H, )G(H„,) W~z
G(H00) G(H, )

(s9)
DNp Tn &

—$[G(H0)+ G(H, )][W0,T„]),(46)

(47)
where

2
W~z —6~G(HO) Rs t B 5 ( 00) (40)cE= ' 10 Hpp dgs T&

Note that W, « = 8"„,, We use Hpp = Hp in the
(g, ttB/H00) term and define H, —= H00(1 + I y /y, I ).

When S =0, we have the case of nuclear spin-
lattice relaxation, for which Eqs. (35)-(37) can
be combined to give

1+8 1+ScEX G Hpp 6 H

xg[G(H }-G(H.)], (48)

where T„ is given in Eqs. (42)—(44). We note E&
= —P0/P'. Using Eqs. (39), (42), and (44), Scz
= Wcz T„', and G(H, )+ G(H )=2G(H0), we can re-
write Eq. (46) as

dp(t)
dt Tn

=-—[P(t}-P'],

where

1 1 1
T =T''T" '

n n

1 1 1
Tz Tl

n n

(41)

(42)

(4s}

where the factor X is defined to be X=—(Wcz T„}
Since (T„)' is a weighted average of W,

~ „,over
the ESR line, whereas W'~"E is the peak value of

W& &» [or close toit, depending on G(H)], we expect
to findX&1. Nevertheless, because W, „,~G(H, )
&&G(H„~)Wcz, the contributions to (Tcz) ' fall off
rapidly in the wings of the ESR line, and most of
the contribution comes from the center of the line
where W'«„= W&~ . Hence we estimate X= 1. It
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We note that

3[G(H,)]',
G(H„)G(H',)- (50}

Combining Eq. (50) with X= 1 and with $ [G(H.)
—G(H, )] & 0. 1 —0.01, we see that E„will be re-
duced from E, by one or more orders of magni-
tude. The reason for the difference between SE
and CE in IHB lines is as follows: In Eq. (12), SE
is pumped by the W' transitions which are at the
experimenter's control and can be made much
larger than (T„) with sufficient ESR microwave
power. However, the rates W(), in Eq. (37), which
are intrinsic to the crystal, are of the same order
of magnitude as all the other rates W, &„, and the
low values of E„are a consequence of the small
spin-packet populations )G(Ho }, tG(H, ). This is
equivalent to the observation that vDNp «T„ is pos-
sible in SE DNP, while 7'DNp T in CE DNP. We
see in Eq. (49) that E„GG [G(HO)) (dG/dH), using a
Taylor-series expansion, so that E„falls off
faster than G(HO) or dG/dH in the wings of the ESR
line, which provides another method of distinguish-
ing CE from SE. The modulating [G(HO}] term in

Eq. (49) greatly reduces E„ in the wings of an

IHB ESR line. The reason is that in the wings the
probability ()G(H&))G(H~) = [)G(HO)] ) is very small
for finding two electrons j and k which simulta-
neously satisfy the CE magnetic field condition
(I H~ —H„I =

I y„/y, l HO) and are located spatially
near each other. Therefore, Eq. (38) is probably
more accurate than Hill's expression in the wings
of the ESR line, while the two treatments are simi-
lar near the center of the line. The DNP leakage
factors f,', f', S«can be shown' to reduce E„
from Eq. (49) and possibly change the shape of the
E„vs Ho curve (at fixed &u}. Their effect on T„s
is discussed in Ref. 32.

Finally, it can be shown' that v»~ = T„ for all
S, f,', fE'Scz values in the unresolved CE. The
basic physics is as follows: Equation (34) shows
that TDNp is never shorter than & T„ in the well-
resolved CE. In the unresolved CE, at most only
a few spin packets will contribute at a rate as fast
as 2/T„ in, e.g. , Eq. (37); most of the spin pack-
ets are not driven by W (directly or indirectly)

is worth noting that E„is a function of N, only
when S«&1. For variations of N, such that Sc~
» 1, E„is independent of N, . Comparing Eqs.
(18}and (48), we see that the microwave power
dependence of E„is essentially the same for both
CE and SE in IHB ESR lines.

Let us now examine E„at strong ESR satura-
tion (S» 1) with strong CE (Scs» 1}. Then, from
Eq. (48), we find

E„=E,. (X ') )([G(E)—G(ll)] . (49)

and thus contribute at a rate 1/T„. The latter
dominate the net proton polarization rate, so that
7'DNp T„, and in no case will 7DNp get as short as
& T„ in the unresolved CE.

We have omitted the SE W' transitions in Secs.
IIIA and III B in order to simplify the algebra.
Our aim has been to deduce the consequences of a
pure CE in order to see whether this can explain
the DNP data given in II.

We now summarize some differences between
this paper and Hwang and Hill's22, 23 in the treat-
ment of unresolved CE. First, they assume a
strict shell-of-influence model, while we assume
rapid nuclear-spin diffusion between shells. As
a consequence, they predict negligible SE DNP
in cases where the theory of Sec. IIC gives E„
peak values close to E; in favorable cases. Sec-
ond, they use a different W;;„expression from
that in Eqs. (38}-(40}which, in addition to the
first item, gives differing CE E„results. In gen-
eral, we predict much lower CE E„values than
they do. If g is big enough to give a large theo-
retical E„in, e. g. , Eq. (49), this would corre-
spond to a situation of fast spectral diffusion which
would wipe out CE. Third, they do not obtain f,',
f,'S« leakage factors because of an incorrect can-
cellation of CE terms in the electron polarization
equations. Fourth, they do not calculate 7DNp.
Fifth, they use a more sophisticated spin-packet
line-shape function than is used here. This
probably has a smaller effect on the differing CE
E„expressions than the first and second items
above.

IV. EDDR EFFECTS ON DNP AND NUCLEAR SPIN-

LATTICE RELAXATION

The transfer of energy from one spin packet to
another in an IHB ESR line, usually called spectral
diffusion (or cross relaxation), has been studied
often without definitive results. Let TSD be a
characteristic time for spectral diffusion between
the electrons in the spin packet at H; and those at
H, (1+ l y„/y, l). For DNP and nuclear spin-lattice
relaxation processes, the limit of a completely
IHB ESR line corresponds to the case T,«TSD for
all spin packets H, . Every spin packet equilibrates
more rapidly with the lattice than it does with
neighboring spin packets. In this case, the SE
and CE theories of Secs. II and III are valid. In
light of the enormous difficulties in estimating
Ts» it is not clear how to apply the criterion T,
«T SD in practice.

In the intermediate case, T,= TSD, Buishvili
et al. find that spectral diffusion in an IHB ESR
line with unresolved satellites reduces the SE DNP
enhancement by a factor [1 —exp(- k&o„}]. The
term I/k= (DT,)'~, the diffusion length in frequency
units, is the frequency distance over which elec-



3680 DA VID S. WOL LAN

tron-spin energy diffuses in a time T„which
leads to Tsn= &o„/D .They show that the spectral
diffusion coefficient D, and hence 0, depend on N,
and the spin-packet location K, in a complicated
way.

The fast spectral-diffusion model of DNP cor-
responds to the limit T,» TBD for all spin packets
H, . For this case (and assuming unresolved satel-
lites), Abragam and Borghini6' 4 have shown that
the ESR line may be treated as being essentially
homogeneously broadened with EDDR serving as
the main DNP mechanism. The physical idea is
that the HB mechanisms are comparable to, or
dominate, the IHB mechanisms, so that electron-
spin energy diffuses rapidly (compared to T,)
throughout the entire ESR line. DNP by EDDR has
been discussed elsewhere' ' ' '; we use the re-
sults and notation of BW here. (In particular, we
use ~, = —&,KO and &u„= —Z„KO in this section and
in Appendix A. ) We assume that all the equations
in BW remain valid in the fast spectral-diffusion
model, except that every co~ in BW is replaced by
Qz given by

Q z = (u z+ (T~/T, )(u zss, (51)

where T~ is the EDDR spin-lattice relaxation
time, coL, 3M» M~ is the HB second moment, and
~ ~~ is the second moment of the IHB frequency
distribution relative to its mean frequency. Bor-
ghini points out that pure HB EDDR theory is not
exactly the same as IHB theory with fast spectral
diffusion, in particular, with regard to the micro-
wave power dependence of the ESR saturation,
which implies that the DNP leakage factors differ.
We shall assume that these differences are negli-
gible.

The enhancement E„for DNP by EDDR is given
in Eq. (21) in BW, which has a different micro-
wave power dependence S, S' from that in Eqs.
(14}, (46), and (48) of this paper. At low micro-
wave powers (S', S '«1), Eq. (21) in BW predicts

Eq. (23) of BW, rePlacing every &uz therein by
2.Q~:

(d~+
' &'+(T,/&g)~z+ ~'zss+f, ~'„' (58}

where & = co, —co. We find enhancement peak
values E~~ of

E~ = E &n
j 2[(T /T )~2 ~ z / 2]1/z

1 1 S"
(55)

where T„ is relaxation by all modes except EDDR,
and the term (S /T„)/(1+ S f~C„) is nuclear relaxa-
tion through EDDR. In Secs. II and III of this
paper, we have utilized only the T„modes of re-
laxation. It is easy to see that rz, „r in Eqs. (21c)
and (22} of BW reduces to rz, „~= T „ in the low-
microwave-power limit (S, S'«1).

Next, let us consider the high-power (S, S'
» 1} limit of Eqs. (21c) and (22} of BW, which can
be written as

[(T /Td)(d L+ hf zss +fe(0 n 1

Since the HB contribution u ~ depends on N„while
~~~ does not, two regimes are possible. For
convenience, we assume f,&u „«(T,/T, )&uz+ &u zss.
Then, for variations of N, such that (T,/T~)&uz
«&o zan (but spectral diffusion remains fast), we
see that E~ =+E,&u„/2(&uzss) at &=+((uzss) ~,
independent of N, . However, if (T,/T~}ruz & &ozss z

both the peak enhancements and their field (or
frequency) positions will depend on N, . Hence, as
in CE, N, independence of E„is not by itself a
sufficient criterion to rule out the existence of
EDDR DNP effects.

Next we examine TDgp in the EDDR DNP theory.
First, we note that the measured nuclear spin-
lattice relaxation time T „can be written'

E„~E,(S —S') ~—„dG
(52) 1 1 $4

=—1+ „F
DwP T& 1+S"fdC.

(56)

which is actually a pure SE DNP with E„«E,.
At high powers (S, S'» 1), E„can be taken from where

(I+S "f~C„)(I+ C~R)
S f~C„+[S (1+ C~R}]/(So[1+(S'+S }/S ]+f,(S'+ S }]

' (5V)

If F=1, then 7»P= T„. There are two limits of
Eqs. (56) and (57). First, if S f~C„«1 and f,«1,
then we find from Eq. (55}.=—(1+S'),1 1

(58)
yI

l

and from Eqs. (56)-(58)

1 1
m+ W'+ 8'

7DNP T n

(5S)

The second limit is S f„C„»1, in which case Eq.
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( oNe}
'

-2(T„)
«t]

field H, (t) perpendicular to Ho. The results of
these calculations (given in Appendix A) make only
implicit changes in the equations in this section.

V. THREE-SPECTRAL-REGION MODEL

[—'+ w'+ w-]

(I mP

(55) leads to

(60)

and Eqs. (56), (57), and (60) lead to

1 1 1 C~R
TDNP T + T+ fgCtf

(61)

Since I/TQ~C„&1/T„, and C~R=d2T„/Q~~T, &1 in
the region where So, S'» 1, Eq. (61) predicts

1 1 2
m
n DNP rg

(63)

Rough sketches (not based on any detailed cal-
culations) of Eqs. (5S) and (61) are given in Fig.
7. The case S f~ C„= 1, governed by Eqs. (56}
and (57), is intermediate between these two limit-
ing cases. The solid line in Fig. 7 is Eq. (61) for
IhI &Q, where Q=(T~/T, )Qz, and C~~d . The
solid-line rate I/7n„r peaks at I 6 I

& Q and falls
off to 1/T„at I &I » Q, since the condition So«1
holds in the wings of the ESR line.

All calculations of EDDR ESR, T„, and DNP ef-
fects to date have assumed an isotropic electron
g factor g„ i. e. , isotropic y s,6,8,a4, as, a9,3o,4o

However, many experiments have'been done in
anisotropic crystals, e. g. , in rare-earth-doped
lanthanum magnesium nitrate (LMN). ' ' Since
the experiments in this group have been done in
axially symmetric LMN and YES' '6'7 crystals
with 8 (the angle between Ho and the crystal sym-
metry axis) near 0', we have developed the aniso-
tropic EDDR theory only for the special case of
axial symmetry with 8 = 0', and with the ESR rf

0

FIG. 7. Rough sketch of the DNP pump rate (T'DNp)
vs 6 at fixed Ho for DNP by EDDR in the high-microwave-
power limit (S, S»1). The solid line is Eq. (61) in the
text for I g) & Q. In the wings of the ESR line, S &&1, so
(&DNp) peaks at I 4 I & 0 and falls off to (T„) at l ~ t

&&Q. The short-dashed line is Eq. (59) in the text, as-
suming (W )~ (T„) . The long-dashed line is (T'DNp)
= (T„) . This sketch is not based on any detailed calcula-
tions.

A given ESR line is usually considered to be
either HB or IHB or some intermediate mixture
for all its frequency (or field) components. How-
ever, there may be cases in which a wide ESR
line is HB near its absorption peak and IHB in its
wings. The argument for this may be illustrated
with the use of the Kittel and Abrahams theory
summarized in Appendix A.

Suppose first than an entire ESR line is pre-
dominantly IHB and that T, is much shorter than
any Ta, process. Then the spin-packet width $ is
given by Eq. (7}or (8) with H„~1/T, . In this
case, $ is uniform throughout the ESR line, and
the electrons in a given spin packet are effectively
decoupled magnetically from the electrons in all
the other spin packets. We may then treat the
electrons in a given packet at magnetic field H,
(Fig. 6) as an isolated group of spina having an
HB magnetic dipole-dipole width (T a,),.

' = As'

= 5. 3f,As. If f; = $G(H;)f is the fraction of spins
in that spin packet, then we can rewrite this as
(T2,),' = )G(H, }&s. First, we note that the Kittel
and Abrahams width (T3,} ~ = ds is only an upper
limit for the HB width in crystals with strong IHB
mechanisms, since &s~/&a = $G(H, ) «1. Second,
we see that (T2,),' may vary greatly from the cen-
ter of an IHB line to the wings, e. g. , with an ap-
proximately Gaussian G(H, )as in II. .

So far we have postulated T,«(Tas, ); for all spin
packets H; in the ESR line. But if this does not
hold, we could consider a three-spectral-region
model for wide IHB ESR lines with significant HB
interactions (Fig. 8). In region I at and near the
ESR line center, where (Tsm, )& «T„ there is es-
sentially HB behavior or, equivalently, IHB be-
havior with fast spectral diffusion, resulting in

G(+}

~oo

FIG. 8. Three-spectral-region model for IHB ESR
lines with significant HB interactions in the center of the
line.
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EDDR contributions to DNP and nuclear spin-lat-
tice relaxation (Sec. IV). Region II has negligible
spectral diffusion, and is thus IHB, but has suf-
ficient numbers of electrons in the spin packets so
that Wj j+1 is large. We denote this region CE
(Sec. III), since CE cannot occur in region I and
is negligible in region III where W'«~ is very
small. In region II, no EDDR effects occur, but
T~ and SE DNP processes will compete with CE.
In region III, one has T,«(T2s, );, and the ESR,
DNP, and nuclear relaxation behavior is essential-
ly IHB (Sec. II) with no CE. The basic physical
model is that the IHB mechanisms put different
electrons at different Larmor frequencies. In
region ID, it is highly improbable that an electron
will find another electron which both is on "speak-
ing terms" with it (i.e. , S ', S~~ transitions are en-
ergetically possible) and is spatially nearby. At
the center of the line in region I, it becomes rela-
tively more probable to find two electrons near
each other and on "speaking terms. " If the tran-
sition from negligible spectral diffusion to fast
spectral diffusion in the ESR line is very sharp,
then the CE region II would be wiped out. Data
suggesting this is given in II. Nevertheless, we
shall retain all three regions for generality. This
crude three-spectral-region model has rectangu-
lar regions and ignores overlap between them. It
has not been derived from first principles, but
rather is intended to be suggestive of the complexi-
ties of DNP and T„behavior in some crystals.
Problems of nuclear magnetization spatial homo-
geneity, correlations between electron spectral
and spatial positions, and electron jumps between
spin pa, ckets have been discussed elsewhere.

VI. SUMMARY

We have derived theoretical expressions for
DNP and nuclear spin-lattice relaxation in dia-
magnetic dielectric crystals diluted with electron
paramagnetic impurities. The steady-state DNP
enhancement E„and the DNP pump time rgwp have
been calculated for SE, CE, and EDDR DNP, as-
suming (i}a predominantly IHB ESR line with uni-
form spin-packet widths (for SE and CE, but not
EDDR DNP}, (ii) rapid nuclear-spin diffusion,
(iii) the electron and nuclear high-temperature
limit, (iv} no phonon bottleneck, and (v} isotropic
electron impurities or axially symmetric elec-
trons whose symmetry axis (c axis) is parallel to
Ho. DNP results for IHB SE, which include DNP
leakage factors, predict E„comparable to the
ideal enhancement E, in favorable cases, with E„
vs Ho curves not proportional to the ESR line-
shape derivative at high microwave powers, con-
trary to early theories of IHB SE. The effects of
electron jumps between spin packets have been
discussed. DNP and T„have been calculated for

the cross effect for both the well-resolved and un-
resolved limits. We get larger SE DNP and
smaller CE DNP for the unresolved case than do
Hwang and Hill, and consider CE DNP leakage fac-
tors they omitted. The inequality T„/2» inNz, » T„
is found for the well-resolved CE while TgN p T„
is estimated for the unresolved CE, different from
the general SE case where rgN p «T often occurs.
DNP by EDDR has been extended from the pure
HB ESR limit to the IHB case with fast spectral
diffusion, as suggested by Abragam and Bor-
ghini, ' and was further extended from electronic
isotropy to axially symmetric electrons with the
c axis parallel to Ho. Various limits of E„and
&»p have been compared and contrasted for SE,
CE, and EDDR DNP to enable experimenters to
differentiate these three DNP mechanisms, if pos-
sible. We propose a three-spectral-region model
for wide ESR lines, which may exhibit IHB be-
havior in the wings of the line, HB EDDR effects
near the ESR absorption peak, and CE effects in
between. This theoretical study has been moti-
vated by the DNP and T „data in YES:Er to be
presented in II.
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APPENDIX A: EDDR THEORY FOR AN AXIALLY
SYMMETRIC ELECTRON SYSTEM AT 0 =0'

An axially symmetric crystal is described by
the two electron g-value tensor components g„and
gJ and by the resonance condition Sv = g, p~ Ho at
angle 8, where~

g, =(g'„cos'e+g', sin'e)"' . (Al)

2 j jA j~ =g i}SgSg,

B„- is easily transformed to

Bo = 2 gi(S, S, —Sf ' S,) .

(A2)

(A4)

(A5)

Inspection shows that the formulation of the mo-
ment method of linewidth calculations for the iso-

The problem in the anisotropic EDDR case is
handling the 8' and (d2~ terms. For 8=0', the
truncated electron dipole-dipole Hamiltonian II»
may be written in analogy with the isotropic
CaSe25 ~ 41/ 42

E
H z~ = r,~(A„+B;~)(l —3cos e,~), (A2)

2 jtj=1

where
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tropic g, case does not change when we go to
axial symmetry at 8=0'. The second moment M~

(in units of (o) is

1/2 A+ B

1 1 1a+ a
28 28 28

(Alo)

(All)

Tr([Hss S.] } (A6}(g') Tr(S'„)

Since the S,=g;'~S„' terms commute with the S& S&

terms in Eq. (A6), we see that

Ma~(g n+ z gi)2 & 22 (A7)

&q]q = 5. 3fA', (A6)

where

3(g'„+-,' g,') (v',-/na') . (A9)

When A' is expressed in magnetic field units at
8 = 0', the p, ~s/Ia term in Eq. (A9) is replaced by
ps/g„a', and similarly for the related terms Az
and A~ below. For noncubic crystals a is de-
fined by a~ =f/N, . We now separate the A, &

and

80 terms in &»z, (Ts,) ', and a. We define n„
=(Tz,) =5.3fA„and &s=(T3,) '=5. 3fAs, where
Az= 2( g„ps) /3@a and As =(g~ ps) /3' . We al-
so use e„=2.2A& and @~=2.2A~. Thus we can
write

The g„ term comes from the A&& static IHB
broadening, while the g~ term originates in the
dynamic HB broadening B„.

Kittel and Abrahams ~'4 have calculated line-
widths due to the magnetic dipole-dipole interac-
tion in paramagnetically dilute crystals with iso-
tropic g„assuming completely HB lines, and ex-
plicitly ignoring exchange, hyperfine, and all IHB
mechanisms. Let f be the fraction of magnetic
sites occupied by the dilute impurities. Using a
moment calculation, they show that the ESR line
shape is roughly Gaussian for f& 0. 10, and ap-
proximates a cutoff Lorentzian for f&0. 01. In
the latter case they find for a simple cubic lattice
with Ho along the 100 axis that the Lorentzian half-
width at half-maximum 4, &z (in units of &u) is given
by n, &3=5.3fA, where A =(g, ps) /lfa'. The cubic
lattice parameter a relates the number of electron
impurities/cm N, to f by N, =f/a . We will use
Tm, ——I/n, &2. They find that the Lorentzian cutoff
frequency n (in units of v) is a=2. 2A. In a crys-
tal which is not cubic along the 100 axis, we ex-
pect results similar to the above but with numeri-
cal factors differing from Kittel and Abrahams's
parameters by factors of order unity. For con-
venience, we use their factors 5. 3(2. 2) in &,&z(n)
below.

We now extend the Kittel and Abrahams calcula-
tion to an anisotropic ESR line with axial sym-
metry at 8 = O'. Equations (A2)-(A7) suggest that
for f&0. 01, we still have a Lorentzian line shape
with

e —e~+ o~ . (A12)

and

e = 3(y„y„h'} /10d'R'

~a a 3 gii pa 2

1 (OB d'B

(A14)

(A15)

which appear in Eqs. (1}, (4)-(7}, and (9)-(11)of
BW. We use g, ps= ~y, ~K For the limit (ar„T3,}
» 1, Eq. (11)of BW becomes

gi} pg 1 1
10 Ho d 8 T (A16)

since it is only the B,z terms in H» which cause
the W ~(T~,) forbidden electron spin-spin tran-
sitions (AMs=+ I, AM~s=+1, 4Mz=+ I). (These
are the same transitions as in CE. ) Then Eq.
(12) of BW becomes S = W T„=T,/Tz, . The dis-
tinction between T ~, and T~, corresponds to a
factor = 3 for W in the isotropic case [Eq. (11)of
BW] and thus was not emphasized in BW. For
the anisotropic case, where g}}and gJ may differ
greatly, it becomes important (see II). Thus
g(&o„}is wrong in Eq. (6) of BW. The relation &u~
= —', M~ still holds, but Eqs. (A2)-(A7) are needed
here to calculate M~. Since the A&& (H,&} terms
in H~zz are IHB (HB) mechanisms, an ESR line at
8 = 0' broadened predominantly by H~~ is HB when

gJ &g„, but becomes IHB when gJ «g„. Finally,
g, becomes g„ in Eqs. (19a) and (19b) of BW, and
Eq. (20} of BW remains valid with HI, = &u~/(y„} .

It can be shown that the Kittel and Abrahams
cutoff frequency of~ has two effects on nuclear re-
laxation and DNP which were not discussed in BW.
First, the Lorentzian spectrum (~ Tz,/[I
+ (&o„Tz,}]) usually used for W [see Eqs. (9)-(11)
in BW], which reduces to Eq. (A16) when (&g„Tz~,)
» 1, is only valid if co„~ n~. In the Kittel and
Abrahams picture for an HB ESR line, we have

We now discuss DNP and T„ in an axially sym-
metric electron system at 8=0'. All the equa-
tions in BW and in Sec. IV of this paper remain
valid except for the changes indicated in this para-
graph. In most equations, g, becomes g„and y,
becomes y„, except as noted, where g„p& =

I y„ I h.
Thus, we have (d, = —y))HQ ~ remains 4 = u, —v,
and the SE satellites occur at magnetic fields H,
= Ho[1+ I y„/y„l ] at fixed &o. Jeffries has given
general expressions for e, and e /&o for general
axial symmetry. For 8= 0', and for H~(t} per-
pendicular to Ho, they reduce to '

(y. H&} = ( gi I B Hl/g)' (A13)
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W =0 if (d„&a~. Second, if (d„&n&, the shell-of-
influence model breaks down; this model remains
valid for EDDR and CE theories of DNP and T „
only if (o„«0.~.

APPENDIX B: DERIVATION OF EQUATION (38)

(T') '= $G(H$)(T') '

where (Tf,} ' is the HB width that the ESR line
would have if no IHB mechanisms existed in the
crystal. That is, only the fraction )G(H&) of the
electrons are on "speaking terms" for allowed
electron spin-spin transitions (&M~~ = a 1, 4M ~

(Bl)

We use the results of the Kittel and Abrahams
theory (Appendix A} and of Sec. V to derive Eq.
(38) in Sec. III B. We extend the well-resolved
CE result [Eq. (23)] to an IHB line with unresolved
satellites. For the spin packet at H„ the effective
(Tf,)& which should replace Tz, in Eq. (23} is,
from Sec. V,

= v 1) in the H, spin packet. The (Tg, ), of Eq. (Bi)
determines the Lorentzian spectral-distribution
function that drives the nuclear CE transitions.

There is a second factor that is spatial. Con-
sider a given electron which is in the H& spin
packet. For a uniform electron distribution,
there are = 6 sites at a distance = 2R from the
electron, each of which has a probability )G(H„,)
of occupying the H„, spin packet, necessary for
CE to occur. Hence, for a given electron at H„
Eq. (23) must be generalized in the IHB case to

W~ &a- 6)G(H&e) — '
dsHI Ts, (B2)(G(H&)

0 - Re

which is the same as Eq. (38). Equation (B2}is
only an estimate, but may be moderately reliable
in the wings of an IHB ESR line. Near the center
of the line, spectral diffusion may wipe out CE or
at least break down the idea of spin packets of uni-
form width assumed here.
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