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Ultrasonic attenuation in a quadrupolar solid
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A general expression for the high-temperature ultrasonic attenuation in a quadrupolar solid is derived. The
four-point correlation function occurring in this expression is then factored into products of two-point
functions so that the attenuation is proportional to the convolution of two of the usual two-point angular
momentum correlation functions. Using first-principles results for these functions, which were previously
obtained for solid H„ the field-dependent or resonant part of the ultrasonic attenuation is then calculated as a
function of ortho-H, concentration c. The result of this calculation indicates that the resonant attenuation for
solid H, has a magnitude such that it could be observable by current techniques. A new kind of ultrasonic
magnetic resonance is thus predicted.

INTRODUCTION

In this paper, a theory of the ultrasonic atten-
uation in solid H~' and other quadrupolar solids
at temperatures large compared to thequadrupolar
ordering temperature will be presented. In par-
ticular, the primary concern of the following dis-
cussion mill be the calculation of the response of
a quadrupolar solid to an externa. lly applied,
monochromatic ultrasonic mave. In addition, the
possibility of a new kind of ultrasonic (or "a.cous-
tic") magnetic resonance ' will be explored
through an examination of the dependence of the
attenuation on an external magnetic field.

In solid Hz and other quadrupolar solids, the
dominant orientationally dependent intermolecular
forces originate from the electric quadrupole-
quadrupole (EQQ) interaction. " In some sense
then, this interaction plays a role in molecular
solids similar to that which ls played by exchange
plus dipolar forces in a paramagnetic insulator.
Since the dominant electron spin-phonon coupling
mechanism in paramagnetic insulators is phonon
modulation of the exchange plus dipolar interac-
tions, ' 8 it is natural to assume, in analogy with
that case, that the molecular-phonon interaction
in a quadrupolar solid is described by phonon
modulation of the EQQ interaction. Other authors
have considered this kind of molecular-phonon
interaction in solid H~ in the context of the libron-
phonon problem, ' thermal conductivity, " re-
normalizations due to phonon effects, ' and other
problems. ' However, thus far there has been
no calculation of the ultrasonic attenuation due to
this mechanism.

The facts that the EQQ interaction inquadrupolar
solids has a relatively lar ge magnitude and that
current ultrasonic techniques'~ are capable of re-
solving acoustic attenuation effects of the order
of 10 crn ' are the primary motivations for the
calculation of the ultrasonic attenuation in this
system. Another motivation for this calculation

is the fact that the dynamical angular momentum
correlation functions which, as will be shown be-
low, enter the theoretical expression for the at-
tenuation in lowest order have recently been cal-
culated at high temperatures in a first-princip/es
self consisten-f approxim. ation' ' as a function of
the o-H~ concentration, c. Finally, as will also
be shown below, the attenuation owing to this in-
teraction can depend on the external magnetic
field, which brings to mind the possibility of the
observation of ultrasonic magnetic resonance in
solid H~ and other quadrupolar solids. Although
the effects calculated in this paper have not yet
been observed, it is hoped that this calculation
mill stimulate experimentalists in that direction.

The method used to obtain the ultrasonic atten-
uation is based upon a calculation of the phonon
self-energy and is discussed in several
places. ' '" " Asmillbeshomnbelom, thetheoret-
ical expression for the attenuation resulting from
the use of this method is proportional to the Fou-
rier transform of a fourpoint correlation function
which is the time-ordered thermal average of
four of the irreducible tensor angular momentum
operators mhich are discussed else-
where. ' ' ' ' In analogy with the standard
approximation for four-point correlation functions
in magnetic-insulator problems, ' it mill be as-
sumed that a good, lowest-order approximation
for this function is that it ca.n be factored into
products of two-point correlation functions. Thus,
with this approximation, the acoustic attenuation
as a function of frequency becomes proportional
to the convolution of two of the two-point angular
momentum correlation functions mhieh were de-
termined for solid H3 from first principles for
various c in Refs. 13 and 14. By the use of the
functions obtained in those references, a quanti-
tative estimate of the acoustic attenuation as a
function of frequency and orthoconcentration is
then possible. Finally, the dependence of this
attenuation on an external magnetic field is con-
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sidered and an estimate of the resonant attenua-
tion line shape and magnitude is made, with the
xesult that this new kind of ultrasonic magnetic
resonance ought to be observable for sufficiently
large magnetic fields in the high-temperature
phase of solid Ha or other quadrupolar solids.
This last prediction will hopefully stimulate some
experimental activity in this area.

For the purposes of this paper, "high tempera-
ture" mill be taken to mean temperatures rnueh
greater than the quadrupolar-ordering tempera-
ture, where the infinite-temperatux e approxima-
tion for the dynamical angular momentum correla-
tion functions is valid. Furthermore, this will
be the only temperature regime considex'ed in this
paper. In the context of this paper, the term "res-
onant attenuation" will be ta, ken to mean that con-
tribution to the ultrasonic attenuation which de-
pends upon an externally applied magnetic field.
Also, in keeping with the terminology presently
found in the literature, terms like "acoustic atten-
uation" and "acoustic magnetic resonance" will
sometimes be used in place of the more correct
terms "ultrasonic attenuation" and "ultrasonic
magnetic resonance,

The remainder of this paper is organized as
follows. Section II ls devoted to R dlscusslon of
the physical model to be used and to a discussion
of the notation that will be used throughout the
paper. In Sec. III, the formalism for the ca.lcula-
tion of the attenuation is briefly outlined and the
Rpproxlmatlons used ln the cRlculRtlon Rl'e dis-
cussed. Section IV contains the results of the cal-
culation including predictions of the ultrasonic
magnetic resonance line shape and the maximum
resonant attenuation for a, quadrupolar solid.

IL PHYSKAL MODEL

It is assumed that the Hamiltonian for the
quadrupolar solid in the presence of phonons can
be written a.s a sum of molecular, phonon, and
molecular-phonon parts:

@=II„+IIp+a~, .
The molecular part of the Hamiltonian, II„, will
be assumed to be the pure EQQ interaction, which
can be written'3'

ff„= P g ~,.(f)z...(i,j)~,.(j),
iW j m, m'

with (fox' solid H2)

where the A, (i) are the irreducible tensor angular
rnornentum operators for lattice site r; which cor-
respond to a rotational angular moment;um J and
which are discussed Rnd defined in Refs. 17-19;

C ~ is a shorthand notation for the Clebsch-Gor-
dan coefficient C(224; mm'), 0,, specifies the di-
rection of the intexmoleeular distance r;& with re-
spect to the e axis of the hcp crystal of solid Hz,
F4 is a spherical harmonic, a is the lattice con-
stant, p~ =I'5[28(Z+ I) (8 —1) (2J+ 3)], 4 is the an-
gular momentum quantum number, and I' is the
EQQ coupling constant.

Following Refs. 4 and 5, it is assumed that
since the effect of interest is the change in the
phonon spectrum due to molecular-phonon inter-
actions, it is sufficient to use the harmonic ap-
proximation for the phonons. In terms of phonon
normal coordinates, this has the form ""

where c. is a m'ave vector in the first: Brillouin
zone, X specifies the phonon branch, and ufq, A)

is the harmonic frequency of the (q, X) phonon
mode. The normal coordinate Q(q, X, f) and its
canonical momentum Q(q, X, f) satisfy the usual
commutation relations:

[4(q, ~, f), e(q', ~', f)1 = —i«(~, ~')f(q'+q) (3b)

[V(q, l, f), V(q', ~', i)1= [4(q, l, i), i(q', ~', f)] =o.
(3c)

The molecular-phonon interactions to be con-
sidered in this paper are taken to be linear in the
strains or displacements from equilibrium and
quadratic in the tensor angular momentum oper-
ators A2 (i). Interactions of higher order in the
strains or the angular momentum operators
should be smaller. Since the EQQ interaction,
Eq. (2), depends on the distance between the mol-
ecules, lattice vibrations modulate this coupling.
This is mathematically represented by expanding
the potential J ~ (i,j ) in a power series in the dis-
placernents from equilibrium. If one keeps only
terms which are linear in the displacements U(i),
the molecular-phonon interaction has the form

g&2.(i)&~. (j)K..(i, j) [II(i) -II(&)],

(4a)

Here &;, means the gradient with respect to r„..
The lattice displacement U can be expanded in
phonon normal coordinates as ' '

U(i) = (ftf)V)-"' P e(q, ~) e"" q(q, ~), (4c

where e(q, A) is the unit polarization vector of the
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(q, X) phonon mode, M is the molecular mass, and
X is the number of molecules. Substitution of Eq.
(4c) into Eq. (4a) yields

H„, =(MH)-"'g g Pa,.(i)~,.(j)
2i j ttty 222 Qy)t

xK, (t j) e(q X)Q(q ~)(e'"' —e"") .

f58

=8(t t—')+ [ dtri(q, ~, t t-)D(q, l, t —t'),
0

where, to lowest order in H»,

11(q, X, t t)—= — (e "'i'- e "'&')
MN;;];.

(4d)
Equation (4d) is the form of the molecular-phonon
interaction that will be considered in this paper.

x(e "'i' —e ""i'}&(F(-q, X, i,j, t)

x E(q, X,i', j', t))&- (eb)

III. CALCULATION OF THE ACOUSTIC ATTENUATION

The method that will be used to calculate the
acoustic attenuation due to the molecular-phonon
process Hs~ described by Eq. (4d), is the same
as that used in Refs. 4-7, so it will only be brief-
ly discussed here. The acoustical properties of
the system are conveniently discussed by the use
of the phonon Green's function. '

D(q, l, t —t') = (t/@) & (Q(q, ~, t)Q(- q, ~, t')),), (8)

where the angular brackets &
~

& denote an aver-
age in the canonical ensemble and the circular
brackets ( ~ ~ ~ ), denote the Wick time-ordering
operation. D(t) is Fourier transformed via the
usual prescription':

2ttj3

D(&o„) = dt e'"r'D(t),

where &o, =vv/ih'P, P=l/kT, and v is an even inte-
ger. By the use of Eqs. (3a), (3c), (4d), and the
Heisenberg equation of motion

~X
ih —=[x, Hv +Hsv],

an exact equation of motion can be obtained for the
phonon Green's function. This equation is

where

Z(q, ~, i, j, t) = P A., (i, t) W,.( j, t}K...(i, j) e(q, ~).
ttt g PFk

(8b)
Following Refs. 4-7 the second term on the right-
hand side of Eq. (8a) can be expanded in powers
of H». Since H» is linear in the normal coordi-
nate Q(q, X, t), only odd powers of that interaction
will contribute to the expansion. When such an
expansion is made, Eq. (Sa) can be written

Upon Fourier transforming and rearranging, Eq.
(Qa) can be r ewr it ten

D(q, X, (u„) = [- (u'„+ (o'(q, X) —ri(q, X, ur„)] ', (ec)

where Ii(q, A. , e„) is now, by definition, '5 the pho-
non self-energy.

From Eqs. (8b) and (9b), it can be seen that
the phonon self-energy II(q, A, u, ) is, to lowest
order in H», proportional to the Fourier trans-
form of the four-point correlation function

I. ~ --„.(i,j, i ',j ', t, t}

=&(~,.(i, t)~,„(j,t)~,.-(t', t}&,—.(j', t)),& .
(loa)

In order to proc eed fur ther, this four -point func-
tion must therefore be evaluated. To calculate
this function from a strictly first-principles ap-
proach would certainly be a formidable task, al-
though progress has recently been made on the
calculation of four-point correlation functions in
paramagnetic systems. Because of the com-
plexity of this problem, such a first-principles
calculation of I. will not be attempted here. In-
stead, following the procedure that other authors'
have used in the paramagnet case, this function
will be approximated here by the sum of all pos-
sible products of two-point correlation functions
containing different times:

I,„„.„.(i,j, i',j '—, t, t)

= &(~,.(, t) ~,;(i', t)),& &(~,.(j, t}~,—.(j', t)).&

+&(& „(i,t)& (j', t)).—&&(&~ (j, t)& -(i', t)).& .
(10b)

Correlations that are independent of time do not
contribute to the phonon self-energy at finite fre-
quencies and are neglected. Following other
authors, ' this decomposition is expected to be
most valid at temperatures large compared to the
quadrupolar-order ing temperature. Also, pre-
liminary calculations have shown that this approx-
imation is the first term in an expansion of I. in
a power series in H„and the two-point correla-
tion functions. "

If one uses the approximation, Eq. (10b) for I.,
keeps only the angular momentum conserving two-
point correlation functions so that
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((&,.(i, t)&,—.(i', t)).) = ~-...((&,.(t, t) &, .(t', t)),)
„(-I) Gm (i, i', t —t).

(11)
substitutes Eqs. (10b) and (11) into Eq. (9b) and
Fourier transforms that equation, the result,
after some manipulation, is

n(q, X, sr) =
Im [II(q, X, &u+ ic )/2 V~&u(q)], (13)

where E is a positive infinitesimal, (d is a real
frequency, and V)„ is the velocity of sound for the

(q, X} phonon mode.
By subsitution of Eq. (12) into Eq. (13), a gen-

eral formula for the acoustic attenuation can be
obtained. If an external magnetic field, H0, is
present, however, as will be the case for the
acoustic magnetic resonance problem discussed in
Sec. IV, it is necessary to make one further step
before proceeding with the calculation. The crys-
tal of primary interest in the present paper is
solid Hz„which has a hcp structure in the high-
temperature phase. '2 In the presence of a mag-
netic field, the convenient coordinate system for
discussing the angular momentum operator s A ~

is one which has its axis coincide with the direc-
tion of H0. On the other hand, the convenient co-
ordinate system for discussing the phonons is one
in which the z axis is along the g axis of the hcp
crystal. In general, Ho will make an angle (8, P)
with respect to the g axis. The transformation
that takes the angular momentum operators from
one coordinate system to another is a generaliza-
tion for the hcp crystal of that used in Refs. 4 and
5 and will be discussed in Appendix A.

After making such a coordinate transformation
on Eq. (12), assuming that the q dependence of the
angular momentum correlation functions in that
equation can be neglected as in Refs. 13 and 14,
using the fluctuation-dissipation theorem2~ to re-
late the correlation functions in Eq. (12} to those
calculated in Refs. 13 and 14, using the prescrip-
tion given by Eq. (13), and taking the high-temper-
ature limit the general formula for the high-tem-

[K..(q'}+K..&q-q'))~

x g,„(q', &o'„) g, , (q q, —~„-&u„,), (12)

where g2 (q, u&„) is the Fourier transform of the
function defined in Eq. (11) and K„„.(q) is the
Fourier transform of K ~ (i,j). The functions

g2 (q, &o„) are related to the correlation functions
discussed in Refs. 13 and 14 by the fluctuation-
dissjpatjon theorem.

In order to compute the acoustic attenuation
from II(q, X, u„}, one uses the prescription"

perature acoustic attenuation has the form

n(q, X, (o) =
)

Q S „.(q, X)I .(&o),
Mcoq, A, V~

(14a)
where

S , (q, Z) = —P ~
e(q, &) [M (q'} + M (q —q')~l

(14b)
and

(14c)

or equivalently

I ~ (&u) = dt cosset G2 (t) G2 ~ (t) . (14d)
0

Here, M .(q) is related to K„~(q) via the coor-
dinate transformation discussed above, the gz ~ (&o}

are the infinite-temperature spectral functions
calculated in Ref. 13 and Ga .(t} are the infinite-
temperature correlation functions calculated in
Ref. 14. These spectral and correlation functions
are therefore known from first principles for the
case of solid H2 for various orthohydrogen concen-
trations c.

IV. RESULTS IN THE ULTRASONIC MAGNETIC
RESONANCE CASE

The formula given by Eqs. (14a)-(14d) is the
result for the general acoustic attenuation in a
quadrupolar solid. In this section this formula
will be evaluated numerically for the special case
of the resonant attenuation in ultrasonic magnetic
resonance in solid Hz. As was stated earlier, the
term "resonant" attenuation is taken to mean that
portion of the attenuation which depends upon the
external magnetic field H0. Although the corre-
lation functions computed in Refs. 13 and 14 were
obtained in the absence of a magnetic field, one
can easily modify these solutions to include the
effect of such a field. ' '" It is shown in Appen-
dix B that the functions calculated in Refs. 13 and
14 can be used directly in the evaluation of the
attenuation in the presence of a magnetic field if
one shifts the origin of the function I .(&o) from
u = 0 to ur = (m + m') (oo, where &uo = y I Ho I, with y
the gyromagnetic ratio. In other words, if one
makes the replacement ur- &o —(m+m')&oo in I ~ (~),
the field dependence of n(q, X, &u) is taken into ac-
count. Furthermore, the main interest is now the
evaluation of n at frequencies in the neighborhood
of ~ = (m + m') ~,.

Since only acoustic phonons are of interest here,
the approximation (o(q, A.) = V~I ql may be made in
Eq. (14a) and it is thus also appropriate to take
the small I ql limit in that equation. Also, since
only resonant terms are of interest, u& = &o(q, A)
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[thus I ql = u(q, ll. )/V, = u/V„=(m+m')leo/V„J. When

these facts are taken into account. , when only the
resonant terms in that equation are kept, and when

the replacement &u-(m+ n~')ldo is made in I ~ (ld)

as discussed above and in Appendix B, the result
ls

a(q, A., ld) =, g e(q, X) I „„.(q, &.)

~ c(q, X)I ~ [w —(n&+ r&r')ldo], (15a)

F„.(q, X) = Q E„„V„.~.I „a~i I'-„-.

t

&P(j r)'~;&„„(r)&;&;;(r) .

Here, the prime on the mm' sum means only res-
onant terms are kept, q is a unit vector in the di-
rection of q, the prime on the r sum means that it
goes only over occupied sites, and I'„ is the co-
ordinate transformation matrix discussed in Ap-
pendix B.

The angular dependences for the various phonon

modes and resonances which would be obtained
from Eqs. (15a) and (15b) are in general very
complicated for the hcp lattice of solid H~. Also,
the difficulties of obtaining a single crystal of
solid H2,

~3 which is necessary for such phonon
modes to have meaning, and the difficulties of
growing the crystal so that one can orient the ul-
trasonic transducer in a specific plane thus al-
lowing a particular phonon mode to be excited,
probably preclude an experimental-theoretical
comparison of angular dependences anyway. How-

ever, progress has been made with regard to the
latter point in rare-gas solids. a' For these rea-
sons, the explicit angular dependences for the
various phonon modes and resonances will not be
computed. In a polycrystalline sample of solid
H~, one would see an attenuation which is propor-
tional to an angular average of the I „matrices
in Eq. (15b). This average is a number of the or-
der unity and will thus be approximated by one in

the following discussion, where only an order of
magnitude estimate of the maximum resonant at-
tenuation will be considered. Finally, for purposes
of this order of magnitude estimate, Eqs. (15a)
and (15b) will be specialized to the case of exter-
nally applied longitudinal phonons [Q II e(q, X)] in an
ideal sample where the transducer can be oriented
in a plane normal to the c axis of the hcp crystal
(thus cllellqllz). Both approximations discussed
in this paragraph will affect the magnitude of the
maximum resonant attenuation by numbers of the
order-of-unity, but will not affect the resonant
attenuation line shape.

Only one more assumption is necessary before

or der -of-magnitude estimates of the resonant at-
tenuation for solid Hz may be made from Eqs.
(15a) and (15b) and that is an assumption regarding
the dependence of those equations on the 0-H2
concentration c. This e dependence will come
from two sources; from the dependence of the
function I,(e) on c and from the sum over occupied
lattice sites in Eq. (15b). The c dependence of
I .(&o) is contingent, through Eqs. (14c) and (14d)
on the dependence of the functions g2 (ld) and

G2 (I) on c. Since these functions have been cal-
culated in Refs. 13 and 14 as functions of g, this
dependence will automatically be contained in the
results of the numerical evaluation of the integrals
of Eqs. (14c) and (14d) using the solutions found

in those references. For the e dependence of the

g& occurring in Eq. (15b) the ansatz

will be made, where the sum on the right-hand
side is to be taken as if all of the lattice sites
were occupied and h(c) is a function that has the
following limiting forms:

lim h(c) —c
gw$

(17a)

lim h(g) —pa~~3 B, (1Vb)
g~0

where B is a constant which will be taken to be
unity here.

Equation (17a) holds universally for large c and
has been discussed and justified in Refs. 13 and
25. On the other hand, Eq (17b) .holds only for
the sum over the particular functions in Eq. (15b)
and needs further justification. A detailed dis-
cussion of these limiting cases will be deferred
to Appendix C. Although, of course, at interme-
diate values of c, h(c) must realistically inter-
polate smoothly between Eqs. (17a) and (17b), in
the following discussion it will be assumed that
Eq. (17a) holds for 0.2~ co l. 0 and that Eq. (17b)
holds for all @&0.2. This arbitrary point at
which h(g) changes was chosen to approximately
coincide with the point at which the e dependence
of other measurable quantities, notably the nucle-
ar spin-lattice relaxation time T„changes. ' ' ' 6'3

Because this choice is somewhat arbitrary, the
computed attenuation discussed below will be
quoted in terms of h(c) as well a.s in terms of a
definite numerical value. The relations, Eqs.
(17a) and (17b), along with the known c dependence
of I ~ (&d), obtained from Refs. 13 and 14 [I ~ (~)
-c '~ for large c and I .(u)-c ' for small c]
indicate that the resonant attenuation has the fol-
lowing limiting c dependenees:

Q~gjPI
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8.0

7.0—

In light of the above discussion, Eq. (15a) be-
comes, for ~ near resonance,

6.0

n(&u) = Q n ((o),
m=1

where

(19a)

5.0

—4.0cM

2.0

1.0
C = I.O

18h~a h

(19b)

4hpP h(n, (~) = ', P z'~ V, Zp, (r) 'Ip, (~ —3cop), (lgc}
r

4huP h(

r

Cx 2I»(ur —2+p)+ ~ I»(&o —2&p), (19d)11

0.0
0.0

45.0

J
2.0 4.0 6.0 8.0 10.0 12.0 14.0

Y

and

2Rd h

r

2

I„((u —ap)+ ' ' I„((u —(op) . (19e)
(=1O

40.0

25.0

c+
20.0

15.0

10.0

C= 0.05

Here the C„are the Clebsch-Gordan coefficients
from Eq. (2b}. The ma, ximum attenuation is ob-
tained from thes e equations by setting ~ equal to
the appropriate resonance frequency.

The line shape of the resonant attenuation for
~ = mwo, m =1, 2, 3, 4, has been obtained from Eqs.
(lgb)-(19e) for various concentrations in the
range 0.01 —c —1.0 by the use of the functions
computed in Refs. 13 and 14. The terminology
"line shape" here means the (u dependent part [Ipp
in Eq. (19b), Ip, in Eq. (19c) and the bracketed
quantities in Eqs. (19d) and (1ge)]. The results of
this calculation are presented for M=2(dp in Fig.
1. In that figure the dimensionless variables

5.0 and

y = (&u —2~p)/(144'w)"' r, (20a)

0.0
0.5 1.0 I.5 2.0 2.5 3.0 3.5

Y

FIG. l. co=2(do ultrasonic magnetic resonance line
shape in solid H&, where I(y) =I(w —2(op)/( Pp) ~ I' and

y =(cu —2&up)/(ii(I ~) I'. (a) c =l..0, 0.5, 0. 2 and (b) c
=0. 1, 0. 05.

and

17/3 0 (18b)

Thus for small c, Q. will fall off extremely rapidly
with c. Since current ultrasonic techniques can
measure an attenuation of the order of 10 cm ', '3

Eq. (18b) indicates that calculating n for c ~ 0.05
is probably not worthwhile.

I(y) =I((d -2(dp)/(yr)' ' r, (20b)

I(&o —2(op) =2lpp((d 2(dp)+(C11/Cpp) I11((d 2(dp)

(20c)
have been used, where I' is the EQQ coupling
constant. The line shapes for the other resonances
are, except for a change of scale, essentially the
same in shape for a given c and have the same
variation with c as the line shapes in Fig. 1. For
this reason they will not be shown explicitly. As
can be seen from the figure, the acoustic mag-
netic resonance line shape for c near unity is
Gaussian like. As c gets smaller, it begins to get
sharper near the center until finally for c & 0. 1
the line shape is Lorentzian like. These line
shapes have been calculated for c as low as 0.01
with the result that there is virtually no deviation
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TABLE g. resonant attenuation n as a function of c. o is in cm ', h(c) is discussed in the text.

1, 0
0 5
0. 2
P. 1

0. 05

cv (4fd p)

l. .137x 10 6h(c) = l. , 137 x

1.644 x 10+h(c) = 8. 218 x

3.022 x 10+h(c) = 6. 045 x
9. 899x 10+h(c) = 4. 595 x
2. 109x 10 h(c) = 6. 069 x

lO-'

10 7

10
lO-"
1 0-15

G (3 cdp)

4. 840 x 10-5h(c) = 4. 840 x
7. 010x 10 h(c) = 3.505 x
1.293 x 10 h(c) =2.585x
3. 052 x 10 h(c) =1.417 x
9.031x 10 h(c) = 2. 599x

1.O-'

1O 5

10 5

lo-if
10-13

G. (2(up)

7.549 x 10+h(c) = 7. 549 x
l. 093 x 10+h(c) = 5. 466 x
2. 014 x 10+h(c) = 4. 029 x

4. 727 x 10+h(c) = 2. 194x
1.394 x 10" h(c) = 4. 011x

1.0
1.O-4

1.O-'

1 0-1P

1 0-12

(I ((dp)

2. 747 x 1,0 h(c) = 2. 747 x

3.987x 10 h(c) =1,.993x
7.424 x 10 h(c) = 1.485 x
l. . 748 x 10 5h(c) = 8. 11.3 x
5, 142 x 1 0 h(c) = l. 480 x

10
10 6

1O-'

1 p-13

1.O-'4

from the Lorentzian-like shape as c gets very
small.

In order to compute the resonant attenuation
from Eqs. (19), the lattice sums in those equa-
tions have been evaluated numerically for the hcp
lattice of solid H~. The sums were carried out
over the first 140 shells of the lattice. This re-
sult was then combined with the results of the eval-
uation of the line shape functions for various c to
obtain the maximum resonant attenuation for the
various resonances as a function of c. A summary
of this calculation is given in Table I. In that table
the attenuation is expressed both in terms of the
function h(c) and in terms of the result obtained
by evaluating it using the limiting values of h(c)
given by Eqs. (17a) and (17b) with the change
from one form to the other being set arbitrarily
at c =0.2 as is discussed in the sentences follow-
ing those equations. In obtaining the numbers in
Table I the parameters V=2. 4&&10' cm/sec, ~a

31 = 3.34 x 10 g, cop ——2vx 0.6717 HpkHz, H()
——10

G, T =10 K, and I'=0. 712 K, ' ' have been used.
As can be seen from the table, if one uses

10 cm ' as a lower limit on the possibility of de-
tecting the resonance signal, '2 the feasibility of
the experimental observation of ultrasonic mag-
netic resonance in solid H~ looks very promising
for all of the four resonances considered, at least
for c not too small. Of those four resonances the
resonance at M =2(op has the largest attenuation
amplitude and thus has the greatest possibility of
being detected. Physically, this is easily under-
stood because the particles under consideration
have rotational angular momentum J=1 and the
A = 2(dp resonance corresponds to a 4M~ = 2 tran-
sition induced by the phonon modulation of the
EQQ interaction. This particular transition is
the most likely transition to occur when two J=1
particles, coupled via the EQQ interaction are
perturbed by phonons. It is clear from Table I,
however, that all four resonances have amplitudes
such that they might be observable for t." near unity.

Of course, as the temperature is lowered below
T = 10 K, the attenuation is enhanced due to the
T ' dependence. Thus, at first glance it might
appear as if the predicted attenuation for T & 10 K
would be larger than that in Table I. However,
this is not necessarily the case since then the
high-temperature limit for the attenuation and the

infinite-temperature limit for the correlation
functions"' become less accurate and a more
general temperature dependence for these func-
tions must be taken into account. In particular
both the high-temperature approximation for the
attenuation and the T = ~ approximation for the
correlation functions are only expected to be ac-
curate for T»T„where T, is the quadrupolar-
ordering temperature. T, for solid Hz is of the
order of 1 K, thus for T & 10 K, both approxima-
tions become questionable.

The attenuation, and thus the numbers in Table
I also depend linearly on the EQQ coupling param-
eter I'. The value used here I'=0. 712 K, was
chosen to be consistent with the value found to
give the best fit to T, data in the Erratum of Ref.
13. As is discussed in Refs. 2, 13, 14, and 29,
the different experiments obtain values of I' for
solid H2 which differ by as much as 10/p. Thus,
due to these uncertainties in I", the numbers in
Table I have a built in uncertainty of at least 10jp.
The attenuation for other values of I' (in 'K) can be
obtained from those in Table I by multiplying the
numbers in that table by I'/0. 712 K.

Another criterion for the observation of ultra-
sonic magnetic resonance in solid H2 is that the
resonant attenuation linewidth should be within
observable range. These linewidths are essen-
tially the reciprocals of the functions I„(v) eval-
uated at v =0. Using the numbers relevant for
solid' H~ along with the numerical results for the
I ~ (u) discussed above, these linewidths are
found to be of the order of 10' G for c=1. Further-
more, they vary as c' for z near unity and as
c' ' for small |... Unfortunately, a line shape
10 G wide is too wide to be measurable with most
laboratory fields. On the other hand, the line-
width will get smaller as c does, so that for some
intermediate value of |." the linewidth and the am-
plitude as given in Table I both might be observ-
able by ordinary techniques. Also, superconduct-
ing magnets do exist which can reach fields of
10' G or more, and thus ultrasonic magnetic reso-
nance ought to be observable in solid H2 for q near
unity if one uses such a magnet.

It should also be noted that since the numbers
in Table I were calculated for a field of Hp-—10 G,
and the resonant attenuation is proportional to
(Hp), if a larger field were used, those numbers
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nant attenuation is clearly observable for some
concentrations, even for fields of 10 C one could
conceive of an experiment with an ordinary lab-
oratory magnet where the field is swept, but the
entire line shape is not seen. Rather, in such an
experiment, one could visualize measuring only
the shape of the curves of Fig. 1 around their
peaks. A similar situation is predicted for para-
magnets in Ref. 5. These peak areas for +=2cuo
are shown in Fig. 2 for c=1, 0. 5, 0. 2, 0, and
0. 05. This figure is really nothing more than a
small portion of Fig. 1 near y = 0 on a scale where
the shape on and near the peak can be clearly seen.
It is hoped that the predictions of this section
might stimulate experimental interest in the observa-
tion of these ultrasonic magnetic resonance effects.

In conclusion, in this paper a general expression
was derived for the high-temperature ultrasonic
attenuation in a quadrupolar solid. This expres-
sion is proportional to a four-point angular mo-
mentum correlation function. The most crucial
(and probably the weakest) assumption of this
paper is that this function is well approximated
by a sum of products of two-point functions. With
this factorization assumption, the attenuation be-
comes proportional to the Fourier transform of
products of two of the angular momentum corre-
lation functions which were calculated from first
principles for solid H2 in Refs. 13 and 14. The
results of those references were used to calculate
the ultrasonic attenuation for solid H2 in the spe-
cial case where it is magnetic field dependent. A
new kind of ultrasonic magnetic resonance is thus
predicted with the result that this phenomenon
might be observable in solid Hz.

Finally, the general, magnetic-field-indepen-
dent ultrasonic attenuation given by Eq. (14}could
have been evaluated using the results of Refs. 13
and 14. This attenuation will have a broad peak
as a function of frequency and will attain its max-
imum value at a frequency of v- 10" Hz, which is
roughly two orders of magnitude larger than is
obtainable by current ultrasonic techniques. Thus,
this general attenuation will not be evaluated here.

FIG. 2. Same curves as in Fig. 1 except for a lim-
ited frequency range near y =-0. Here, I(y) =I(~ —2~())/
(+w) ~ 1', and y =(a —2m&)/(+w) ~ I'. (a) c =1.0, 0.5,
0. & and (b) c = 0. l. , 0. 05.

could increase significantly. Thus, a large field
is desirable both for obtaining a large amplitude
and for being able to measure the linewidth. It
is also possible that other effects, such as dipole-
dipole interactions, '~ might narrow the line suf-
ficiently so that observation would be possible at
large c for ordinary magnetic fields.

Alternatively, since the amplitude of the reso-
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APPENDIX A: COORDINATE TRANSFORMATIONS

It is convenient to define two coordinate systems
(one denoted by superscript c) in which the Z axis
coincides with the g axis of the hcp lattice, and
one (denoted by superscript h) whose Z axis is
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along the direction of the external magnetic field
Ho. If the field direction is given by the angles
(8, Q}, the transformation of the spherical tensor
operators' ' from one system to another takes
the form

A" =Q I' „(6,(t&)A'„, (Al)

where I' „(&,Q) is in general a complicated func-
tion of (e, Q). These rotation matrices I" „are
the ones used in Eq. (15b).

APPENDIX 8: MAGNETIC FIELD DEPENDENCE OF THE
FUNCTION I,„,„(~)

From Eq. (14c), the definition of I ~ (&u) is

T g(d
fmm~ (~)

I g2m(+ ) g2m~ (~
7T

In Refs. 4, 16, and 17 it is shown that in the ab-
sence of an external magnetic field the spectral
functions g2 (&o) may be written

(~)
I m{~)

[(u —v ((u)]'+[r ((u)]2 '

where I'„((u) and v ((o) depend on g, ((u) self-con-
sistently and are shown explicitly in those refer-
ences. Furthermore, in the presence of an ex-
ternal field, it is shown in Refs. 4, 16, and 17
that Eq. (82) is replaced by

( )
im(~)

[(u —m(u, —n ((u)]2+[I „(&u)]' '

wher. +o=yHO, Ho is the external magnetic field
and y is the gyromagnetic ratio. If Eq. (82) is
substituted into Eq. (81) and some manipulation is
done, it can be seen that the expression for I ~ (u&)

in the presence of an external magnetic field is
OO Pf„.(&u)= g, (~')g, .[~ —(m+m')~, —~'].

7r

(84)
Thus, the field dependence of I ~ (u) is obtained
from the field-independent function by the replace-
ment &u- u —(m+ m') uo, as claimed in the text.

APPENDIX C: CONCENTRATION DEPENDENCE OF THE
LATTICE SUM IN EQ. (15b)

In this Appendix, the limiting cases for h(c)
[Eqs. (17a) and (I fb)] will be justified. As dis-

cussed in Ref. 25, for a random distribution of
particles interacting via multipolar forces, let the
probability distribution function for the square of
the interaction strength F be denoted as p(F; c),
where p is the concentration of particles. In gen-
eral, P(F; c} must be evaluated numerically. How-
ever, for 1 —c«1 and c «1, it is possible to find
approximate analytic expressions which are exact
in the appropriate limit.

For 1 —c«1, the distribution function may be
approximated bya~

p(F; c) = [v(1 —c}F,]-'"exp[- (F- cF,)'/(I - c}F,],
(Cl)

where F, =g&g(i, j) and F2 =g,'g (f, j), and g(f, j) is
proportional to the square of the interaction.
Equation (Cl) holds in the large c limit, indepen-
dent of the details of the interaction. ~ For large
r. , it can thus be seen that the most probable value
of the square of the interaction is cF,. Therefore,
if the r;, dependent part of the summand in Eq.
(15b) is defined to be g(i, j) [the "interaction" is
then proportional to V;;7„„.(I,j)] the most probable
large c value for the function h(c) defined in Eq.
(16} is c and Eq. (17a) is thus justified.

On the other hand, for g«1, it ca,n be shown3

that

x exp — 1 —— {C2)

where it has been assumed that the squar e of the
potential g(f, j) is proportional to (I r, &l)

~" and 5
is an n-independent constant. Differentiation of Eq.
(C2) with respect to F shows that the most prob-
able value of F occurs at F=B{e)' ~3', where B
is a constant. If the r„part of Eq. (15b) is again
defined as g(f, j) and the function Z„„.(l, j) is as-
sumed to be of the EQQ form, Eq. (2b), some
ma. nipulation will show that g(f, j) is proportional
to l r„.l . Therefore, using the above result
with Eq. (16) it can be seen that the most prob-
able small c value for the function h(c) is B(c}' '
and Eq. (I fb) is thus justified.
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