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Previous calculations of the lattice dynamics of a-CO have neglected the mass asymmetry of the molecules

and have assumed a centrosymmetric Pa3 structure for the crystal rather than the observed P2, 3 structure.

Coupling between translational and librational lattice modes has been ignored and anharmonic effects have not

been considered in detail. This work includes these factors in lattice-dynamics calculations for a-CO and

examines their effect on computed frequencies for k = 0. Anharmonic effects are treated in the quasiharmonic

approximation of Boccara and Sarma. The model assumes rigid mass-asymmetric molecules, end-for-end

ordering, and molecular pair interactions consisting of a point quadrupole interaction with adjustable

quadrupole moment Q and an atom-atom Lennard-Jones {6-12)interaction with three adjustable parameters o.,
e, and b, an effective bond length. Dipole interactions are neglected. Parameters were adjusted to fit the

observed cohesive energy and lattice constant, and to give an optimal representation of the seven lattice

frequencies in the Raman and infrared spectra. Calculations were performed in both harmonic and

quasiharmonic approximations for bond lengths b = 0 and 0.282 A. Frequencies calculated in the

quasiharmonic approximation for the two bond lengths give a much better fit to the observed spectrum than

the corresponding harmonic results, and for a given approximation the one-center potential yields a better fit

than the two center, The P2, 3 distortion predicted by the model in the harmonic approximation is very small

and in a direction opposite to that observed by Vegard, and in the quasiharmonic approximation is either in

the direction opposite to that measured or in the observed direction but less than 20k of the observed

magnitude. Comparison of the frequency spectra for symmetric and asymmetric molecules indicates that
the mass dissymmetry has only a slight effect on the calculated frequencies.

I. INTRODUCTION

Pa.uling initiated the investigation of rota.tional
motions of molecules in crystals with the discus-
sion of the wave equation for a diatomic molecule
in a crystal field. He concluded that, in the limit-
ing case of strong intermolecular forces and large
molecular moments of inertia. , the molecules tended
to oscillate a.bout certain equilibrium orientations,
whereas, in the case of wea. k forces and sma. ll mo-
ments of inertia the rotational motion approached
that of a free molecule. Although the analysis of
molecular Inotions in crystals has since become
more sophisticated, the classification as oscilla-
tory or rotational is still useful and serves to re-
flect the approaches taken in treating the dynamics
of a particular crystal. For example, hydrogen and

deuterium belong to the rotationa. l category, and
general treatments of their dynamic properties
start with free-rotor wave functions and the ori-
entational potential treated as a weak perturbation.
Molecules in naphthalene a.nd anthraeene oscillate,
and descriptions of their motions begin with har-
monic- oscillator wave functions. Intermediate
cases are represented by &-CO, the subject of this
work, and cy-N3, which is similar in structure and

propert Les
The lattice frequencies of ~-Nz and +-CO have

been calculated using effective-f ield theories
and the harmonic approximation. The major
emphasis has been toward finding a form for the
anisotropie intermolecular potential which de-

scribes the librational spectrum wel. l.. All the
models used have assumed the Pg3 structure for
both crysta, ls, and rigid symmetric molecules.
Except for the calculations of Shinoda and Enokido
all of the work has been done on ~-Nz, results
quoted for o.-CO have been obtained by simply ad-
justing parameters in models of ~-N2.

The main conclusion to be drawn from previous
calculations is that a clearer understanding of the
dynamics of these crystals is necessary. Anhar-
monic effects are generally considered important
as evidenced by the thermal and spectral data for
the crystal but no attempts have been made to in-
clude them in calculations. Translational- libra-
tional coupling has not been treated in detail, and
the correct structure for these crystals has been
ignored. The purpose of this work was to include
these factors in lattice-dynamics calculations for
cy-CO and examine their effect on the computed

frequencies.
Lattice-dynamics calculations were done in both

the harmonic and quasiharmonic approximations;
anharmonic effects are included in part when the
latter is used. The problem, however, was com-
plica. ted by the lack of a good potential. energy for
interaction of two CO molecules. There is no

agreement. on the exact form of the intermolecular
pair potential or on the values of the parameters
for any particular form, so in this work the poten-
tial parameters were adjusted to give the best
representation of experimental data possible for the
approximation used. The data included the lattice
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FIG. I. Crystal structure for O'-CO. Two unit cells
are shown with positions of oxygen atoms indicated by
open circles.

constant, the cohesive energy, and the seven lat-
tice frequencies measured in the RBman and in-
frared spectra. The results for the two approxi-
mations were compared in order to evaluate the
effect of the choice of approximation on both the
frequency calculation and the potential parameters.

II. MODEL OF a-CO

The cy-carbon-monoxide crystal is primitive
cubic with four molecules in the basis, as shown
in Fig. 1, and belongs to space group P2&3. This
structure is closely related to the more symmet-
ric Pa3 structure assumed in previous studies
of CO, and a description of the latter will serve
to clarify the details of the former.

In the equilibrium configuration of the Pg3
structure, the centers of the molecules are lo-
cated at the corners and face centers of a cube and
the internuclear axes are oriented along the body
diagonals. The lattice is composed of four inter-
penetrating simple cubic lattices, each made up of
molecules with a particular equilibrium axial ori-
entation, parallel to one of the body diagonals of the
cube. Symmetry operations which take the crys-
tal into itself include lattice translations, three-
fold rotations about each of the molecular axes,
screw operations consisting of twofold rotations
about the crystal axes followed by nonprimitive
translations, inversio~, and combinations of these
oper at ions.

Inclusion of an end-for-end dissymmetry of the
molecule reduces the structure to P2&3. Specifi-
cation of the end-for-end ordering on a single sub-
lattice is sufficient to determine the ordering on
all the sublattices if the threefold axes of the Pa3
structure are assumed to be maintained. The di-
rectional sense thus acquired by the molecular
axes will be taken as positive when going from the
carbon atom to the oxygen atom. Inversion is no
longer a crystal symmetry operation.

The Pa3 space group also reduces to the P2&3

where R is the distance between two nonbonded
atoms. The two parameters q and cr are assumed
to be equal for the C-O, O-O, and C-C interac-
tlonS.

The quantum-mechanical calculation of the
charge dlstrlbutlon of CO by Nesbet lndlcates
that the contours of constant charge density for
the molecule are nearly symmetric and similar
to those for N2. ' Thus the centers of interaction

TABLE I. Equilibrium positions of the carbon and
oxygen. atoms in the P2&3 structure. P2&3 distortion s
= &~3{v—n~) j2.

Sublattice
Equilibrium
orientation

[1 —1 —11

[-11-1]
[-1-11]

Oxygen

(z, , e, v)

(g+P, 2
—1), —'U)1

(-,—,'+, —,
' — )

(2 —t&, —5, z+ t~)

Carbon.

(- w —w —w}

(g —w, 2+ w, w)

(w, 2
—w, 2+ w)

(~+w, w, ~
—w)

space group if each molecule is displaced along its
C-O axis, the magnitude and sense of the dis-
placement being the same for Bll sublattices. This
displacement will be referred to as the P2l3 dis-
tortion, s. Vegard' found the displacement to be
positive in CO, in the direction of the oxygen
atom.

The equilibrium positions of the carbon and oxy-
gen atoms in the P2&3 structure are given in Table
I. The coordinates refer to a Cartesian system
with axes parallel to the cube edges and origin at
the center of a molecule on sublattice 1when the
distortion is zero. The unit of distance is the
length of the cube edge.

In the model the intramalecular nuclear separa-
tion is assumed to be fixed at the experimentally
determined mean internuclear separation. The
centers of mass are thus displaced from the mid-
points of the lines joining the nuclei in the direc-
tion of the oxygen nuclei. It should be noted that
when the crystal is given the distortion measured
by Vegard, the centers of mass are displaced even
further from the face-centered-cubic sites.

There are three primary interactions between
two carbon monoxide molecules: (a) an attractive
van der Waals interaction, (b) a repulsive short-
range interaction, a.nd (c) a quadrupole-quadrupole
electrostatic interaction. The f irst two will be
represented by an atom-atom (6-12) Lennard-
Jones potential, which is a sum of interactions be-
tween the four nonbonded pairs of atoms in the two
molecules. The interaction has the form,
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of the two atoms in the molecule can be located at
the nuclei or at points symmetrically placed about
the midpoint of the line joining the nuclei. The
distance 5 between the carbon and oxygen centers
of the interaction on the molecule is then an "ef-
fective bond length which can be considered an
adjustable potential parameter. The use of an ef-
fective bond length shorter than the measured inter-
nuclear separation is physically reasonable, since
it is the electronic structure, not the internuclear
separation, which determines the attractive van
der Waals forces and the distances at which the re-
pulsive interaction dominates.

The atom-atom form of the Lennard-Jones po-
tential has isotropic and anisotropic terms and so
influences both the positions of the molecules and

their or ientation.
The interaction between the permanent quadru-

pole moments of two carbon monoxide molecules
is given by

= -', (Q /R~~) [1 —5(ng ~ Rg2) —5(n2 ~ R~2)

+ 35(n, ~ R„)' (n, ~ R„)'
—15(n~ n2)(nq R,a)(n2 R,2)],

where Q is the quadrupole moment, n; is the unit
vector along the C-0 axis of molecule i, and Rq&

is the unit vector along the line joining the centers
of the molecules. Because of the complex angular
dependence of the quadrupole pair interaction,
large cancellations occur when this potential is
summed over the crystal lattice, and its contribu-
tion to the crystal energy tends to be small. Its
primary effect is to orient the molecules.

Carbon monoxide is a polar molecule, possess-
ing a permanent dipole moment, and a dipole-di-
pole interaction exists between pairs of molecules.
The value of the dipole moment has been calcu-
lated by Burrus' from Stark-effect measurements
as 0. 112 D. This small value means that the con-
tributions of the nuclei and the electrons to the mo-
ment nearly cancel and the molecule is approxi-
mately electrically symmetric. In the crystal
structure P2y3 the arrangement of the equilibrium
orientations of the molecules minimizes the elec-
trostatic energy of the quadrupole interaction; this
configuration also makes the contribution of the
dipole interaction to the crystal energy small.
For these reasons, the dipole interaction is ne-
glected here.

The energy required to reverse a dipole in an
otherwise ordered crystal is equal to kT at about
5 K, and thus considerable end-for-end ordering
could be expected at this temperature. The bar-
rier to end-for-end reversal, however, is esti-
mated as 1700 cal/mole and the rate of ordering
by thermal excitation is negligible. Tunneling
provides a possible mechanism, but heat-capacity

measurements to 2. 5 K show no transition.
Calorimetric studies of CO reveal a residual en-
tropy owing to partial end-for-end disorder down to
the lowest measured temperatures. ' ' Because
of the difficulty in dealing with a disordered crys-
tal, however, perfect ordering is assumed in the
model used here, with the molecular axes in the
sense determined by Vegard.

Pairwise additivity of molecular interactions is
assumed, so that the total crystal potential is a
sum over all pair interactions. Neglect of three-
body interactions seems justified, since studies
for solid argon show that their inclusion changes
the crystal energy by only a few percent. Kohin
refers to a calculation by Lupton which gives the
correction to the crystal energy of CO owing to
three-body interactions as 1.5%.

Dielectric screening is also ignored in the mod-
el. All of the interactions are of relatively short
range and can be considered negligible at dis-
tances of two or three unit-cell lengths. The main
contributions come from first and second neigh-
bors where dielectric screening is not expected
to be effective.

III. MOLECULAR COORDINATES

In the mathematical treatment of the lattice dy-
namics of &-CO, it is convenient to use two types
of coordinate systems; one based on the cubic na-
ture of the crystal lattice and the other related to
the local equilibrium orientations of the molecules.
The lattice or crystal coordinate system has axes
parallel to the edges of the cubic unit cell, while
the local or site coordinate system for each mole-
cule is defined so that the z axis is along the equi-
librium internuclear axis with the positive direction
toward the oxygen nucleus and the origin is at the
molecular center of mass. There is some arbi-
trariness in the choice of x and y axes; if they are
chosen to be symmetric about the diagonal plane
of the cube containing the z axis, however, the
crystal potential is symmetric in the two coordi-
nates. Once a site-coordinate system is set up
for molecules on one sublattice, the site systems
for the remaining sublattices are determined by
the condition that the three screw operations take
the site coordinate axes of one sublattice into
those of another. The components of a vector in
the lattice system are related to those in the ~ site
system by an orthogonal transformation.

Local site coordinates of the type discussed here
have been used in the description of librational
excitations in hydrogen ' and z-Nz. ' ' Full
lattice-dynamics calculations for nearly harmonic
crystals which include both translational and ori-
entational degrees of freedom have only been done
using the crysta, l coordinate system. ' ' ' 3 In the
present work the site coordinates have the advan-
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The positive sign will always be chosen, since ori-
entational ordering is assumed. In the equilibrium
configuration f& and fz are zero, and their instan-
taneous values measure displacements from this
orlentatlon.

The instantaneous coordinates of the c.m. in
the local site system are displacements from the
equilibrium position at the origin. These three
Cartesian coordinates u&(br), ua(lv), uz(lx) and the
two projections g, (ly) and $2(lg) describe the
position and orientation of molecuie (lz), where
the index E indicates the unit cell and the index x
the sublattice on which it is found.

The crystal potential is the sum of all pair po-
tentials

FIG. 2. Molecular projection coordinates && and ~2.

tage over the crystal coordinates that they trans-
form more simply under the symmetry operations
of the crystal. In addition, their use simplifies
the description of molecular displacements from
equi libr ium.

Five coordinates are needed to specify the in-
stantaneous position and orientation of a rigid CO
molecule: three Cartesian coordinates to locate
the center of mass and two coordinates to fix the
orientation of the symmetry axis. The angular
orientational coordinates used by various au-
thors6' ' '2' have the disadvantage that they do not
transform linearly under the symmetry operations
of the crystal. The direction cosines used by
%almsley and Pople transform linearly, but
there are three direction cosines and only two are
independent. The inclusion of the extra coordi-
nate leads to formal problems and requires care
in handling, The displacement coordinates used
in this work avoid the problem of redundant coor-
dinates and transform linearly under the crystal
symmetry operations.

The projections of the instantaneous vector
from the center of mass to the oxygen nucleus on
the x and y axes of the site coordinate system are
here used to define the instantaneous orientation
of a molecule. These projections are the x and y
coordinates of the oxygen nucleus in a coordinate
system with axes parallel to the site axes, but
translated so that its origin is at the instantaneous
e. m. position as illustrated in Fig. 2.

Since the molecule is treated as rigid, the pro-
jection along the z axis can be expressed in terms
of those along the g and y axes. If d is the c.m.
to 0 distance, and f; is a projection along the i
axis, then

with V(lx; lz) =0 for aii (lz). Expanding C in a
Taylor's series in the molecular di. splacement
coordinates gives

f'K'8
fiiKiiy

fK 0
f'K'8

jllKsfy
fttPKP lg Q

(ulx) u(l'~') u„(l"~") (ul'"~'") .
The sum over o and P runs from 1-5 with u4(lg)
—= Lq(lz) and us(lx) —= t'2(lv) The e.xpansion coeffi-
cients are derivatives of the crystal potential with
respect to the displacement coordinates, evaluated
for the equilibrium configuration. For example,

I l
C oe(lK l K )

The expansion coefficients or force constants can
be expressed in terms of derivatives of pair poten-
tials, and analytic forms are easily obtained.
Since the potential has the full space-group sym-
metry and is invariant to rigid-body translations
and rotations, large numbers of the force con-
stants are related and only a limited number need
be explicitly evaluated.

IV. HARMONIC APPROXIMATION

The treatment of lattice dynamics in the har-
monic approximation is well known, and many
texts treat the subject in detail. 34 The approxi-
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mation consists of truncating the Taylor's series
expansion of the potential after the second-order
terms. If the kinetic energy is also in quadratic
form, the Hamiltonian is then recognizable as that
of a system of coupled harmonic oscillators. The
oscillators are uncoupled by a unitary transforma-
tion to normal-mode coordinates which can be
written in terms of the molecular site coordinates

(k'PX(lK)-X(l'K')]

The symbol ( ) indicates an average over the
ground-state wave function.

A. Quadratic form for the kinetic energy

(4. 5)

u~(lK; l K ) =(u (lx)uq(lx'))

(M MB) ~ p W (x kj)&u„IW&d'(x ~kj)

g W*(x~kj) W (x~ kj') =5»

Q W*(x
~
kj) W8(x kj) = 5„„5~ .

Expressed in the normal-mode coordinates, the
ground-state wave function for the system is

4~, =A exp —— co»Q(kj Q*{kj
»

(4. 2)

where ~» is the frequency of the normal mode.
In terms of the molecular coordinates

Q(kj) =N P M W*(x~kj)u (la') e '" *""'

(4. 1)
where k is a vector in the Brillouin zone, j is a
branch index, N is the number of unit cells in the
crystal, and M, the generalized ma. ss, is equal
to the mass of the molecule if ~ =1, 2, or 3, and

equal to I/d (where I is the moment of inertia) if
u =4 or 5. The components W (x(kj) of the 20-
component polarization vector satisfy the ortho-
normality conditions:

If the displacement of the molecules from the
equilibrium orientation is small, the terms con-
taining displacements as multipliers can be ne-
glected, and the operator is approximately

82 82
&'= —8'd 2+ (4. 8)

The kinetic energy for the crystal will correspond-
ingly be approximated by

T= T„~,+ Ti„=— 2 ~( )

The quantum-mechanical angular momentum
operator Z for a linear molecule is

1 8 8 1 82

sin8 88 88 sin 8 8(IJ)

(4. 8)
which when written in terms of the projection co-
ordinates becomes

Z'=-IP((d'-d') —, td'-d, ')'
8&2

8 8 82
—2fq s~

—2t'2
~~

—2t'A/2 . (4. 7)
1 2 1 2

4 „=Aexp
~

—I ' P p„(lx; l x ) u, (lk) u, (l x )
~

lK 0l
l'K'8

(4 3)

0i=1, 2, 3

+ ~ Qu (l2)x,
lK

0l=4, S

(4. 9)

and the expression

p~(lx; l x ) =—Q ()fg(M MB) ~ W (x kj)W88'(x ~kj)2N -„;

y et fL'' [X( lK) -X(l'K') ] (4. 4)

is the equal-time momentum correlation function
for T = 0. The wavefunction given in Eq. (4. 3) is
no longer a product function; the argument of the
Gaussian contains cross terms between different
site coordinates and is called a correlated
Gaussian.

The molecular coordinates can be treated as the
components of a 20N vector u, with the momentum
correlation functions p ~(lx; l x ) forming a 20N
x20N matrix p. The exponent in Eq. (4. 3) is then

~ p ~ u. The matrix p is the inverse of the
displacement correlation matrix cr, whose ele-
ments are the equal-time displacement correlation
functions for zero temperature:

M u (IK) = —Q C~(lK; l K )u8(l K ) .
l I Klg

(4. 10)

This system of 20N equations can be partially un-
coupled by considering plane waves of the form

u (lx) = M-' ~' W (x
~

kj) e ""'"'*«"» {4.11)

If one defines a dynamical matrix C{k) as

where the second term is the classical equivalent
of Eq. (4. 8). In o-CO, since large-angle libra-
tions are not negligible, the validity of this ap-
proximation is open to question. Numerical esti-
mates indicate that the contribution of the ne-
glected terms to the ground-state kinetic energy
is no larger than 6% of the retained terms.

B. Dynamical matrix

With the kinetic energy of the crystal in quadrat-
ic form, the equations of motion for the molecules
are
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C~(KK lk) = (M Jfh) ' Q 4)~(lK; l K )

fx(llc)-x(1 lf ) 3

the equations of motion take the form
(4. 12)

V. QUASIHARMONIC APPROXIMATION

The treatment of anharmonic crystals can be
developed from many viewpoints including pertur-
bation theory, Green's-function techniques, and
variational procedures; the approaches are
reviewed and referenced by Werthamer. The
quasiharmonic approximation used here was de-
veloped by Boccara and Sarma, 3~ and has the ad-
vantage of using many results of the harmonic
theory.

In the quasiharmonic approximation the anhar-
monic Hamiltonian of the system

Hexact = T+ Ve

is replaced by a trial harmonic Hamiltonian

(5.1)

(d~hi W (K
l
kj) = g C~(KK

l
k) W)t(K l kj) . (4. 13)

Blc'

Equation (4. 13) gives a set of 20 linear equations
for each of N wave vectors k. These can be solved
by standard techniques for the squares of the nor-
mal-mode frequencies that correspond to the dif-
ferent j, and for the associated polarization vec-
tors.

age reduces to an average over the trial ground-
state wave function, and F and F„are the ground-
state energies of the exact and trial systems. If
the ensemble averages of the exact and trial Ham-
iltonians are equal, the second term in Eq. (5.4)
vanishes. By setting the constant

0 ( ~e &trial ( h &trial (5. 5}

this condition is met, and F& F„.
To get the best harmonic approximation to the

exact Hami ltonian, the parameter s in the tr ial
Hamiltonian are adjusted so as to minimize the
value of F„computed with that Hamiltonian. This
variational procedure tends to give a good overall
fit of the harmonic spectrum to the observed one.
Each normal mode frequency enters the calculation
with a weight factor which is related to the degree
of excitation of that normal mode at the temperature
under consideration, and the form of H„« thus
depends on the temperature. When the calculation
is made for T=O, all modes are still taken into
account, since each has a zero-point vibration.
In this case the ground-state wave function for the
optimum H„ is the best approximation to the exact
ground-state wave function in the sense of the
usual variational method, within the manifold of
correlated-Gaussian functions. E igenfunctions of
H„could be used to compute excitation frequencies
from the exact Hamiltonian, as

Htg~~y =Hg+Ep= T+ V„+ Ep (5 2) gt))ex = &ffexact )exclt (Hexact &ae ) (5. 5)

which has the symmetry of the original but is
otherwise general. The subscript g refers to
anharmonic and h to harmonic; Ep is a constant
that will be discussed later. The solution of the
wave equation with the trial Hamiltonian is known;
the ground-state wave function is the correlated
Gaussian of Eq. (4. 3). This is to serve as an ap-
proximation to the exact ground-state wave func-
tion. The approximate free energy F„of the har-
monic system, evaluated using the trial Hamil-
tonian, is given by

F„=k~T ln 2sinh +Ep,
» 2k~ T

(5. 3)

h+ ( +exact If trial &trial (5.4)

The notation ( )„„,indicates an average over the
canonical ensemble for the trial harmonic system
at any given temperature T. When T=0 this aver-

where k~ is the Boltzmann constant and T is the
temperature. The first term is the free energy of
the system of trial harmonic oscillators and de-
pends on the parameters of V„ through the vibra-
tional frequencies ». Using the Bogoliubov in-
equality, the free energy F„can be related to the
exact free energy F of the system:

where the averages are taken over the approximate
wave functions for the ground-state and a singly-
excited state of the system. It can be shown that
this yields just the normal mode frequencies for
the harmonic H„rather than a more accurate ap-
proximation.

The anharmonic potential assumed in this work
is given in Eq. (3.2). The trial harmonic Hamil-
tonian has the form

H„ta) = T+—Q &~(lK; l K )u (l ) K(ula' )KE+o .
lee

7 'l4'B

(5. 7)
The ensemble average of the product of two dis-
placement coordinates over a harmonic wave func-
tion is given by Maradudin, Montroll, Weiss, and
Ipatova '; their result can be rewritten in terms
of the eigenvalues and eigenvectors of the dynami-
cal matrix C(k) constructed from the trial Ha.mil-
tonian,

tr~(lK; l K ) =( (l u)cut)(Kl K )&„...
l &h ~ coth Wc(K

l
kj)

u t) hi

X Wa(K I kj)t))h& e tK [xi)a)-x(l-x ')l (5. 5)

where P is the temperature factor (k~T) '. This
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expression is the equal-time displacement correla-
tion. function for finite T. Similar averages of
products of three and fours u's appear in the calcu-
lation. It can be shown that

and yields the condition

I ~g(lK; I K ) = 4l~g(IKI I K ) +

for all values of the indices, and that

Using Eqs. (5. 5), (5. 9), and (5. 10) the constant
Eo can. be written

EO=4IO+2—,g [4I z(lK; I K ) —r~(lK; I K )]
lK 0

1'K'B

JK 0f
f tKIQ

ft ~ IKII I 5

—2o'~(lx;l x )=0 „ (5. a2)

the factor N arising from translationally equiva-
lent pairs. Equation (5. 12) can be shown to be
equivalent to Eq. (5. 8). The derivative with re-
spect to the correlation function o~(lK; l K ) is

8+ eE
so~(IK; I K ) so~(IK; I K )

From Eq. (5. 11) it can be seen that Eo is a func-
tion of both the physical properties of the crystal,
contained in the potential derivatives, and the pa-
rameters r~(IK; I K ) of the trial Hamiltonian.
The correlation functions o 8(IK; I K ) depend im-
plicitly on the trial force constants through the dy-
namical matrix.

The optimum values of the trial force constants
are obtained by minimizing the free energy I'„
with respect to independent variations of the trial
force constants and the correlation functions, de-
spite the fact that these quantities are interrelated.
The equations, if they are soluble, are sufficient
to ensure the stationary character of I'„, and they
are in fact self-consistent.

The trial free energy can be obtained by com-
bining Eqs. (5. 3) and (5.11). Taking the deriva-
tive of E„with respect to I' 8(IK; I K ) while holding
constant the correlation functions and the other
trial force constants, and requiring the result to
vanish, one gets

l"K'' t)
~w~sKti g 6

(Ill II IIII III)

The right-hand side of Eq. (5. 14) is the thermal
average of a second derivative of the anharmonic
potential, and yields a different force constant for
every temperature, with a value that may vary
widely from the harmonic one if the molecular dis-
placements are large or the derivative is a strong
function of the positions of the molecules.

The trial free energy I"„ is a function of the pa-
rameters fixing lattice dimensions and distortions
through the constant term Eo. At a given tempera-
ture the structural configuration of the crystal
will be the one specified by values of these pa-
rameters for which the free energy I „ is a mini-
mum. I et (n,) be the set of crystal parameters.
Then their value at a given temperature can be
determined from the conditions

h (5. 15)
en;

Of particular interest in this work is the value of
the lattice constant which can be obtained by solv-
ing Eq. (5. 15) with n, = ao.

Equations (5. 8), (5. 14), and (5. 15) are the basic
equations of the quasiharmonic approximation and
hold for any temperature T. In this work, how-

ever, only T=0 was considered and henceforth
the discussion will be restricted to this special
case.

VL CALCULATIONS

The quasiharmoni c equations are used in the
following way. First, values of the structural
parameters n, are assumed and the force constants
4~ and 4~„~ are generated from the molecular
pair potentials. Initial values of the trial force
constants I"~ are then chosen; the harmonic con-
stants 4~ serve as a good starting point. Dynami-
cal matrices are constructed from the 1"~ and
diagonalized to obtain the eigenvalues and eigen-
vectors. The correlation functions are then eval-
uated using Eq. (5. 8) and inserted into Eq. (5. 14)
to obtain new values for the trial force constants.
These are compared with the values used initially,
and if the two sets do not agree within the desired
accuracy, the process is repeated until conver-
gence is obtained. The choice of pg, can then be
checked using Eq. (5. 15). If E„ is not stationary
with respect to variation of g&, another value is
chosen and the procedure outlined above is re-
peated.
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TABLE II. Frequencies after four iterations of the
quasiharmonic calculation. Frequencies are listed in

0
units cm . Parameters: s = 0 0 5 ——0 0 = 3. 6386 P;
e = 1.6341&10 erg ao= 5. 59 A,

quasiharmonie calculation for four successive
iterations.

VII. POTENTIAL PARAMETERS AND LATTICE
FREQUENCIES

Cycle 1
harmonic

42. 63
52. 50
55. 16
56. 06
63. 12
79.21
93.38

Cycle 2

41.52
53. 89
57. 28
59. 51
65. 62
84. 78
90. 14

Cycle 3

41.46
53. 83
56. 96
59. 14
65. 19
84. 36
89. 83

Cycle 4

4]
53. 83
56. 96
59. 19
65. 25
84. 36
89. 83

Values of the optimum potential parameters
were obtained by requiring that calculations of the
crystal cohesive energy and the equlllbx'lum lattice
constant reproduce the experimental data exactly
and that the spectral frequencies fox' k =0 fit the
measured values in the best least-squares sense.
The data that mere fitted are listed in Table III
along with the values of other quantities used in
the calculations.

In the numerical calculations the real space
sums containing intermolecular pair potentials or
their second derivatives were truncated after
tenth neighbors. This was sufficient to ensure
convergence, with the inclusion of additional
neighbors causing the computed frequencies to vary
by less than 0. 3/~. Only quartic interactions be-
tween first and second neighbors mere included;
the sum in Eq. (5. 11) was thus restricted to terms
involving 80 independent correlation functions.
Likewise, only 80 of the quasiharmonic force con-
stants differed from the harmonic ones.

The sums in Eqs. (5. 8) and (5. 3) over the
Brillouin zone mere replaced by integrals. The
integrands mere rewritten so as to have the point-
group symmetry of the crystal, and the complete
integrals were reduced to ones over the irreducible
volume of the zone. These were evaluated numer-
ically by Gaussian quadrature with a mesh of 76
points. A check ca.lculation with a mesh of 119
points gave. a value of the zero-point energy which
mas identical to that previously obtained to five
signif icant figures.

Diagonalization of all dynamical matrices was
done with EISPAcK routines available from Argonne
National Laboratory. The ealeulations for this
study were performed on the CDC6500 at Purdue
University. Iteration of the quasiharmonic calcu-
lation to convergence for a given potential required
approximately 17 min with the FORTRA& programs
used.

The quasiharmonic force constants obtained af-
ter the first iteration differed from the harmonic
constants by as much as 10%, frequencies for k
= 0 calculated with the new constants differed from
the harmonic ones by 1 to '7%. Iterations mere
repeated until two consecutive sets of force con-
stants differed by less than 1 part in 1000. In
practice convergence was achieved after two itera-
tions with the third set of quasiharmonie force
constants, Table II lists the lattice frequencies
for k=0 calculated during each iteration of the

A. Harmonic approxjmatjon

A series of preliminary calculations using the
harmonic approximation were performed to deter-
mine which values of the parameters to investi-
gate. In these calculations the effect of the zero-
point energy on the equilibrium lattice spacing and
the F2&3 distortion mas ignored, and it was as-
sumed that the values of the structural parameters
minimized the static crystal energy. The static
energy is an even function of the P2&3 distortion s,
with a positive curvature for s = 0, so in the ap-
proxirnation no distortion is predicted, and s mas
taken as zero for the subsequent harmonic calcu-
lations. The quadrupole moment Q was replaced
as a potential parameter by the reduced quadrupole
moment q,

so that. the static crystal energy was proportional
to the Lennard- Jones parameter q. The param-
eter 0 mas then adjusted to make the unitless stat-
ic energy 40* assume its minimum value a,t the ex-
perimentally observed lattice spacing go"", for
constant values of q and the bond length h. The
unitless zero-point energy E,*, was calculated us-
ing Balderesehi's mean-value appx'oximation tech-
nique and & mas determined from the equation

&4 & E* —E0 xy e&

mhere F., is the measured cohesive energy. This
procedure mas follomed for values of the bond
length ranging fxom zero to the mean-internucl. ear
separation and for values of the reduced quadru-
pole moment ranging between 0 and 0. 12. The
frequencies at k=0 were calculated, and for each
set of potentia, l parameters the "goodness of fit"
4, defined as the square root of the sum of the
squared deviations of the frequencies from the ex-
perimental values, was evaluated. A careful
study of the results revealed that the best fit to
the frequency spectra was obtained for a bond
length equal to zero and a reduced quadrupole mo-
ment around 0.04. Figure 3 contains a plot of the
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TABLE III. Values of molecular parameters and experimental. data for 0 —CO.

Quantity

Lattice constant
{ohesive energy
I requencies

Mol. ecula. r mass
Moment of inertia,
Mean internuclear separation
c.m, —center-of-force distance
c.m. -O distance
P2, 3 distortion

Symbol. Value

1905 cal/mole
64. 5 cm
58 cm
44 cm
51.0 cm
85 cm
52 cm
90. 5 cm
4 6479X 10 '

g
1.449 && 10 3

g cm~

1.128 A

8. 0571 & 10 A

4. 83429x 10 A

0. 12 A

Reference

e
e
calc,
cal.c.
f

C~sIal Data Detest inafion Tables (American Crystallographic Association,
New York, 1963).

"K. K. Kelley, Bull. U. S. Bur. Mines 383, 34 (1935).
'A. Anderson, T. S. Sun, and M. C. A„Donkersloot, Can. J. Phys. 48, 2265

(1970).
A. Ron and O. Schnepp, J. Chem. Phys. 46, 3991 (1967).

'G. Herzberg, Spectra of Diato~i"ic Molecules (Nostrand. New York, 1950).
L. Vegard, Z. Phys. (Leipz. ) 61, 185 (1930).

frequencies for zero bond length and 0.04& q
& 0.05. In this graph a linear dependence on q has

been assumed between the value 0. 04 and 0.05, for
which frequencies were calculated. The experi-
mental values are indicated on the vertical axis.
The vertical dashed line at q=0. 0401 is the point at
which 4 is minimum. The second column of Table
IV gives the interpolated frequency values, and Ta-
ble V contains the optimum potential parameters.

B. Refinement of the harmonic approximation

requiring that the total energy at ao = 5. 64 A equal
the experimentally measured cohesive energy.
With this q, v, & the crystal energy mas deter-
mined as a function of the lattice parameter for
each q, 0 from a parabola fitted to the computed
values. For each q, the value of o that made this
minimum occur at the observed lattice spacing

IOO

When the effect of the varying zero-point energy
was included in a calculation of the lattice constant,
it was found that the harmonic potential defined by
the parameters listed in Table V gave an equilib-
rium lattice spacing of 5. 77 A. The total energy
was also found to have its minimum. for a small
but nonzero P2&3 distortion, at g = —0.003 A. The
sign indicates that the shift was in a direction op-
posite to that which wa, s experimentally observed
by Vegard, bringing the centers of mass of the
CG molecules toward the Pg3 lattice site. The
change in s was too small to affect the determina-
tion of the potential parameters greatly and mas
thus neglected, but the parameters mere read-
justed in the following may to give the correct
lattice spacing. For a given q, at least two values
of 0 mere chosen and 4z and E~ were calculated
for a minimum of three values of the lattice con-
stant. Using Eq. (7. 1}«(o, q) was determined by

90—
I

TT

80-
j

I

= 70-
—AT

'

' 60- l

T

TL
50—

T
I

L
i40—

q =0.040l
l

I I / I 1

0.040 0.042 0.044 0.046 0.048 0.050

LT
E

TT

30

FIG. 3. Lattice frequencies as a function of the re-
duced quadrupole moment q for effective bond length b

O
= 0. 0 A: harmonic approximation.
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TABLE IU. Calculated and observed lattice frequencies at k= 0 for ~-CO. Numbers are in cm '. Units of 6
are 10 ~ rad/sec.

Harmonic
b=0

Harmonic
(refined)
b=O

Harmonic
(refined)

b= 0.282 P

Quasi-
harmonic

b=0

Quasi-
harmonic
b=0. 282 A ASD' GH" D' PS" SE Expt.

A
E

Tr
TI
TT
TI

64. 1
56. 9
41.2
54. 7
53, 8
82. 1

90.2

1.113

59.3
51.4
41, 8
48, 4
53, 3
73.5
92. 1

2, 843

58.4
5». 6
41.9
48. 1
55. 4
72. 8

92. 2
3.011

62. 5
55. 9
42. 3
53. 1

55. 5
80. 6
90. 7
1.299

61.7
56. 3
42. 2

52. 9
55. 6
80. 2

90. 7
l. 379

61
52
42 4 72 696
51
54, 8 88 84. 6
83
89. 9 132 125.2

64. 5
58

48 53 51
52

69 80 85
90. 5

A. Anderson, T. S. Sun, and M. C. A. Donkersloot, Can. J. Phys. 48, 2265 (1970).
"D. A. Goodings and M. Henkelman, Can. J. Phys. 49, 2898 (1971).
'P. U. Dunmore, J„Chem. Phys. 57, 3348 (1972}.
4A. Ron and O. Schnepp, J. Chem. Phys. 46, 3991 (1967).
'T. Shinoda and H. Enokido, J. Phys. Soc, Jpn. , 26, 1353 (1969).

was found by interpolation. This, and the corre-
sponding g, were the values of cr(q) and c(q) re-
quired to make the harmonic calculation reproduce
the observed cohesive energy and lattice spacing.
This process was followed for q=0. 04 and 0.05,
and bond lengths 0 and 0.282 A, and the k=0 fre-
quencies calculated from the resultant potentials
are plotted in Figs. 4 and 5. The best q va. lues
for the harmonic approximation were found by the
least-squares procedure described before. Table
IV contains the interpolated frequencies for these
q and the corresponding potential parameters are
listed in Table V. The agreement with experiment
is definitely worse than that exhibited in Fig. 3,

TABLE V. Potential parameters for n-CO.

Harmonic
b=0

Harmonic
(refined)
b =-' 0

(A)

3. 7136

3.6681

(10-'4 erg)

l. 447

Q

(mag nitude)
(10 26 esu)

1.913

but that earlier agreement must be regarded as
fortuitous, since it was obtained by a calculation
with a potential that would not lead to the observed
lattice constant.

!00

90— TL

TL

Harmonic
(refined)
b — 0. 282 A 1.491

I

I

I

I

I

I

I

I

I

I

I

I

I

EL

q= 0.0443
I

I I I I I I

0.040 0.042 0.044 0.046 0.048 0.050

70—
E —

AT

60-—
ET

L50—

-AL

TL

ET

TT—EL40—

FIG. 4. Lattice frequencies as a function of the re-
duced quadrupole moment q for effective bond length b
= 0, 0 A: harmonic approximation {refined).

Q uas 1-
harmonic
b=0

Quasx-
harmonic
b= 0.282 A

3, 6791

3, 6368
702~

3.77b

3.59'

1.428

l. 472
1.195
1.382
1.494'

l. 961
2. 43
1.71"
l. 81'

5e

T. H. Spurling and E, A. Mason, J, Chem. Phys.
46, 322 (1967).

L. Jansen, A. Michels, and J. M. Lupton, Physica
(Utr. ) 20, 1215 (1954); 20, 1235 (1954).

'J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,
The Molenvlar Theory of'Gases and Liquids (Wiley, New

York, 1954).
R. K. Nesbet, J. Chem. Phys. 40, 3619 (1964).

'D. E. Stogryn and A. P. Stogryn, Mol, Phys. 11,
371 {1966).
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IOO

90——TL

80—

(I'2) can be broken into two parts

(r, ) =(4, )+( r,„), &7. 4)

where (I', ) arises from the quartic correction
term in the equation. Thus Eq. (7. 3) becomes

Ep = cp (r )+ (44) (7. 5)

70—
E

A

60-
E

L50—
—

EL

AT

TL

E

TT—
EL

40—

30

I

q= 0.0430

0.040 0.042 0.044 0.046 0.048 0.050
4

FIG. 5. Lattice frequencies as a function of the re-
duced quadrupole moment q for effective bond length b
= 0.282 A: harmonic approximation (refined).

E —E +E (7.3)

where E~ is the zero-point energy calculated using
the optimum trial harmonic force constants and Eo,
as given in Eq. (5. 11), is the difference between
the averages of the anharmonic quartic potential
and the trial harmonic potential over the trial
ground-state wave function. The equation for Eo
can be written

Eo =@0+&4~)—(r2)+&e4) . (7. 3)

Here Co is the static energy, 4» and 44 are, re-
spectively, the quadratic and quartic portions of
the crystal potential, and 12 is the trial harmonic
potential. Examination of Eq. (5. 14) shows that

C. Quasiharmonic approximation

In view of the results for the harmonic approxi-
mation, the quasiharmonic calculation was per-
formed for reduced quadrupole moments of 0. 04
and 0. 05 and effective bond lengths of 0 and 0.282 A

In general, the P2&3 distortion was assumed to be
zero, but a single calculation with a nonzero value
was performed to see whether the quartic poten-
tia, l was consistent with a distortion of the magni-
tude observed by Vegard. The general procedure
for the computation was similar to that used in re-
fining the harmonic model, except that the lattice
frequencies corresponding to the optimum potential
for a given q were determined with adequate ac-
curacy by interpolation, along with cr and &. The
adjustment of & to fit the cohesive energy was car-
ried out as follows. In the quasiharmonic approxi-
mation, the crystal energy is given by

The static energy is readily computed for a chosen
potential. The results of the self-consistent cal-
culation with the chosen potential include the cor-
rections to the harmonic force constants and the
correlation functions computed using the optimum
trial Hamiltonian, which are used in evaluating
the other terms.

For fixed q the static energy is proportional to
E, and in an harmonic calculation the zero-point
energy E„is proportional to t.' . The correc-
tions to the harmonic force constants computed
during the first iteration of the self-consistent
calculation are proportional to &', since as
given in Eq. (5. 14) they are sums of products of
quartic derivatives, which are proportional to &,

and correlation functions, which are proportional
to ~ and therefore to g

' . After this iteration
these functional dependences do not strictly hold,
since the quasiharmonic force constants have a
term proportional to E as well as one propor-
tional to &. The deviation, however, is very
small, and in any case the crystal energy is domi-
nated by 40 which is strictly proportional to &.
The average (I', ), which contains products of
force-constant corrections and two correlation
functions, and similarly (I'4) are nearly indepen-
ent of E. In a limited range of & the crystal energy
can then be written

E,=C4g+C ' E,",—&r„,)*+&44)*, &7. 6)

with the starred quantities treated as independent
of q.

For fixed o and q and the lattice constant at the
measured value, the harmonic value for & was used
in the first iteration; then E* and (44)* were cal-
culated and (I', )* was set equal to zero. These
values were substituted into Eq. (7. 6) along with

4f and E„datnhe equation was solved for e.
This E, which differed from the harmonic result
by approximately 2%, was used in the second itera-
tion. The process was repeated, now with com-
puted values of (I'„,)*, until c and the other quan-
tities converged within the desired accuracy, gen-
erally after three iterations.

After a was determined in this fashion for fixed

q and cr, the crystal energy was calculated in the
quasiharmonic approximation for two other values
of the lattice constant, and the remainder of the
procedure followed that used for the harmonic
approximation. The lattice frequencies for the
two effective bond lengths are plotted in Figs. 6
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FIG. 6. Lattice frequencies as a function of the re-
duced quadrupole moment q for effective bond length b
= 0.0 ~: quasiharmonic approximation.

Table V contains the optimum potential param-
eters that were found for the harmonic and quasi-
harmonic approximations, along with several pre-
viously calculated or measured values. Compari-
son of the results for the harmonic and refined har-
monic calculations indicates that it is important to
take account of the variation of the zero-point en-
ergy with the lattice constant. The best estimates
of the potential parameters are the 5 = 0 quasihar-

and 7, and the frequencies for the optimum q are
listed in Table IV. Table V contains the inter-
polated values of the best potential parameters.

The crystal energy was calculated in the quasi-
harmonic approximation for a P2&3 distortion of
0.05 A and compared with that for zero distortion
with all other parameters held constant. The en-
ergy for zero distortion was lower. If the quasi-
harmonic approximation predicts a distortion,
therefore, it is less than 0. 025 A, that is, less
than 20% of that observed by Vegard, or is in the
opposite direction.

The harmonic and quasiharmonic frequency
spectra were calculated for the potential with pa-
rameters b = 0. 0, z = 1.4806 x10 erg, q = 0.04,
and o =3.6636 A. A comparison of the two showed
that, for a given potential, the librational fre-
quencies calculated in the quasiharmonic approxi-
mation are lower than those calculated in the har-
monic approximation, and the translational fre-
quencies higher.

VIII. DISCUSSION AND CONCLUSIONS

A. Potential parameters

monic results. The quadrupole moment (1.980
x10 6 esu) is 20c%%d lower than the recommended
gas-phase value but is close to the values derived
from crystal data (- 1.71 x10 '8 esu) and theoreti-
cal calculations (-1.81x10 8 esu). The Lennard-
Jones parameter e (1.428x10 erg) is in agree-
ment with the commonly used value (1.38x10
erg). Comparison of the predicted spectra indi-
cates that bond length b = 0 is better than b = 0. 282

0

A, and the two-center model gives little improve-
ment over the one-center Lennard-Jones model.
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FIG. 7. Lattice frequencies as a function of the re-
duced quadrupole moment q for effective bond length b
= 0. 282 A: quasiharmonic approximation.

B. Frequency spectrum

Table IV contains the calculated lattice frequen-
cies for the harmonic and quasiharmonic approxi-
mations, with the experimental values and the re-
sults of other calculations included for compari-
son. The calculated librational frequencies are
compared with those measured by Anderson et al.
at 18 K. The studies of Cahill and Leroi+ show
that the corresponding frequencies for z-N2 have
some temperature dependence, with the peaks
shifting toward lower values as the temperature
increases, changing by 3 cm between 16 and
34 K. There is, however, insufficient data avail-
able for an extrapolation of the librational frequen-
cies of n-CO to T=O, and the experimental re-
sults of Anderson et al. were used without any
corrections for temperature dependence.

The first harmonic calculation with zero bond
length discussed here is very similar to the model
of Anderson et al. , and it is not surprising that
the calculated spectra are very close. Differ-
ences between the two can be attributed to differ-
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ences in the potential parameters, and to the fact
that the inequivalence of the center of force and
center of mass is included here; this results pri-
marily in a larger separation of the doubly de-
generate E modes, each being shifted by -2%%u(.

Examination of Figs. 4 and 6 and Figs. 5 and 7
shows that the frequencies calculated in the quasi-
harmonic approximation for the two bond lengths
give a much better fit to the observed spectrum
than the corresponding (refined) harmonic approx-
imation results. The fit parameters 4 provide a
numerical measure of the improved agreement:
the harmonic n values (2. 843 x10 and 3.011
x10'3 rad/sec) are larger than the quasiharmonic
values (1.299x10 and 1.379&&10 rad/sec) by
more than a factor of 2. The difference between
one-center and two-center fits for a given approxi-
mation is not large, although the one-center fits
are better, i. e. , in the quasiharmonic approxima-
tion the one-center potential gives 6 =2. 843 x10'
rad/sec and the two-center, b = 3. 011 &10" rad/
sec. The best potential parameters, listed in the
fourth row of Table V, give average errors of 4. 0
and 3. 6% for the translational and librational fre-
quencies, respectively. The maximum error
(6. 79,') occurs for the low-frequency triply-degen-
erate librational mode.

The librational frequencies depend strongly on
the assumed value for the quadrupole moment Q.
If Goodings and Henkelman and Dunmore had used
a value for Q in the range that this work indicates
is appropriate for cy-CO, instead of the recom-
mended gas-phase value, which is definitely too
high, their computed frequencies would agree rea-
sonably well with the observed ones.

The effect of the approximation used to obtain
the librational kinetic energy on the calculated
spectrum is unclear. If the correction to the ki-
netic energy for singly excited states is of the
same size and in the same direction as the correc-
tion for the ground state, there will be little change
in the tabulated spectrum. On the other hand, the

corrections may not cancel; this needs to be in-
vestigated in more detail.

C. Mass dissymmetry

For values of the reduced quadrupole moment
in the range suitable for ~-CO, the displaced cen-
ter of mass affects the calculated frequency spec-
trum only slightly for zero effective bond length.
The A mode frequency is unchanged, since the di-
rection of motion of each molecule is along the
line joining the center of force and the center of
mass, with no tendency toward libration about the
center of mass. Of the triply degenerate T modes,
the most affected is the highest, which is raised
by 1.3 1&. The E modes exhibit the most sensitiv-
ity, being raised or lowered by 2. 3%.

The character of the modes is affected, and
mixing of translational and librational symmetry
coordinates occurs. For the q values of interest,
however, the modes can still be classified as pre-
dominantly translational or librational. For any
given T mode the minor component does not ex-
ceed 6% of the total for q=0. 05. For the E modes
this is 14% in the harmonic approximation and 18%
in the quasiharmonic approximation.

D. P2, 3 distortion

Both the intermolecular potentials used here
and the quasiharmonic approximation fail to pre-
dict a P2, 3 distortion of the size and in the direc-
tion of that observed by Vegard. It is also clear
that the mass dissymmetry does not give rise to
the distortion in z-CO, since the same type of
distortion is reported in z-N2, which is composed
of symmetric molecules. It appears from these
results that an explanation of the structure of n-CO
and e-Nz must be sought elsewhere.
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