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%'e consider a set of dipole impurities randomly distributed in a nonpolar medium where the only interaction

between the impurities is the dipole-dipole interaction. The dipoles are assumed to be oriented in the six

equivalent (1,0,0) directions found experimentally to exist when OH impurities are dissolved in KC1 crystals.

Effects arising from tunneling between the six equivalent directions are neglected, %e set up the expression for

the random molecular electric field vector E at a particular impurity site and derive self-consistently the

probability distribution of E for all temperatures and (sufficiently low) impurity concentrations. The

thermodynamic properties of the system are then obtained by integrating the thermodynamic variable of a

single dipole in a fixed vector field E over the distribution of all fields. Evaluating the thermodynamic

properties arising from the dipole-dipole interaction we show that the dielectric susceptibility scales with the

ratio of the temperature T to the impurity concentation c. Similarly the specific heat per impurity scales with

T/c. Even though the experimentally measured T'"c '" dependence of the specific heat is consistent with our

"scaling" requirements, indicating that the dipole-dipole interaction is involved in the excess low-temperature

specific heat, our theory gives that the specific heat is linear in T and independent of c for very low

temperatures. Thus, the dipole-dipole interaction alone, using a molecular-field approximation, does not

explain the experimentally observed low- T specific heat. A detailed study of the temperature dependence, the

concentration dependence, and the scaling properties of the specific heat and the dielectric susceptibility are

discussed and compared with experiment.

I. INTRODUCTION

Certain atoms and molecules when dissolved in

small concentrations in alkali halides are known to
form dipoles with mell-defined discrete orientations.
The dipole orientations are determined by the direc-
tions of the potential minima within the lattice va-
cancy they occupy, and the dipoles can tunnel among
the equivalent potentials in the crystalline lattice.
One example of the occurrence of such dipoles is
found when OH impurities are dissolved in KCl.
This system was shown by Kuhn and Luty' to have
six possible orientations in the six equivalent
(1, 0, 0) directions; its properties will be discussed
in this paper.

The calculation of the tunneling states for a three-
dimensional system with n wells was made by
Bauer and Saltzman, and by Gomez, Bowen, and
Krumhansls using the ideas developed by Hund

and Paulings for the harmonic oscillator. The
essential feature of these calculations is that the
degener'acy of the multiorj. entational states is re-
moved by the tunneling matrix element and the
levels are split into tunneling states. The
tunneling states associated with dipoles dis-
solved in alkal. i halides are well understood an.d the
reader is referred to an excellent review article
by Narayanamurti and Pohle on the subject. For
OH impurities in KCl the tunnel spbttrng en.ergy
was obtained by Bron and Dreyfus, and Feher
et al. , and is believed to be about 0. 18 K. In this
paper we completely neglect effects arising from

tunneling between the equivalent dipole directions.
The effect of the tunneling states on the vibra-

tional absorption is discussed by Luty and the dy-
namics of the dipole reorientations were reported
on by Kapphan, and Kapphan and Luty. Since
our paper is concerned only with the statics of the
dipole system, we shall immediately proceed in
this direction, giving the above references for pur-
poses of general interest only.

Electric dipole interactions between impurities
dissolved in alkali halides were first reported by
Kanzig et gE. , who measured the dj.electric con-
st3nt of OH impurities dissolved in KCl. They
found that the dielectric constant of this system ex-
hibits a relatively broad temperature-dependent
maximum. This maximum was interpreted as
arising from the dipole-dipole interaction and sev-
eral theoretical treatments discussed this prob-
lem. ""

A detailed study of the dipole-dipole interaction
of impurities dissolved in alkali halides was done
by Fiory. Peressini et g/. measured the tem-
perature and concentration dependence of the low-
temperature specific heat, and Fiory obtained the
remanent polarization, the dielectric constant,
and the relaxation time of QH impurities in KCl
(as well as some other systems; here however we
are only interested in KCl-OH ) and compared these
with various theories presented. 3 6 The low-
temperature specif ic heat of relatively concentrated
OH impurities (around 1/~) in KCl was found to be
proportional to~ ' T ~ c ~3, where 7 is the tem-
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perature and c is the fractional dipole impurity
concentration.

The T behavior of the specific heat is reminis-
cent of the low-temperature spec if ic-heat contr i-
bution of spin waves in a ferromagnet and has been
interpreted as arising from the excitation of "po-
larization waves" in the "ordered" ferroelectric
system of KCl-OH . A detailed study by Fiory 7 to
detect the polarization waves failed to given any
evidence for their existence.

The previous theoretical treatments ~ have
either been qualitative in nature or have not treated
the dipole-dipole interaction over the whole tem-
perature range of interest. In this paper we obtain
a self-consistent treatment of the dipole-dipole in-
teraction for aQ temperatures and (low enough)
concentrations using the mean-random-molecular-
field (MRF) approximation developed previously for
dilute alloys. ' The dipoles are assumed to be
"rigid' in the sense that the strength of the dipole
moment p does not vary with temperatux'e, with ap-
plied electric field, or with the dipole impurity con-
centration. We consider the dipoles to be randomly
distributed throughout the host material and assume
that the fractional dipole impurity concentration c
is small, with c=N~/N, where N~ is the number of
dipoles and N is the number of Cl sites in the
solid. We set up the expression for the random
vector moleculax' field E of the dipoles and solve
for the probability distribution of E, P(E), self-
consistently for all temperatures. To obtain the
average value of a thermodynamic variable Q(T),
we first find the value Q(E, T)—the thermal aver-
age value of the quantity Q in an effective electric
field E and tempex'ature T—for a single di.pole im-
purity, and then average Q(E, T) over the distribu-
tion of all internal fields E. The strength of the
dipole moment is the only parameter which enters
our calculations. Once this parameter is found
from an experimentally measured quantity like,
for example, the temperature of the maximum in
the dielectric constant, all the thermodynamic
quantities can be obtained from our self-consistent
theory.

In comparing our result with experiments, we
must first put this work into proper perspective.
It is known that the effect of tunneling between the
dipole orientations separates the states, giving a cer-
tain tunnel splitting energy between these states. In
order to obtain the contribution to the thermodynamic
properties of the system one must be able to separate
the contributions due to the tunneling effects alone,
due to the dipole-dipole interaction alone, and

possibly due to a mixture of these two effects. We
consider here the self-consistent treatment of a
pure classical dipole system neglecting quantum-
mechanical effects (like tunneling) completely.

It is thus our hope that our theoretical results

will help separate the various effects which con-
tribute, for example, to the low-temperature
specific heat into their different components. Only
the component arising from the dipole-dipole in-
teraction is considered here. We find it encouraging
that a number of experimentally observed results
are in agreement with our theoretical predictions.
We find, for example, that the deviation of the di-
electric constant from its Langevin-Debye value at
high temperatures is in agreement with experi-
ment. ~ A detailed comparison with experiment is
made in Sec. V of the paper.

A brief summary of our theoretical predictions
is as follows: The dielectric susceptibility g~
scales with temperature T and impurity concentra-
tion c according to the relation ltn ~f(T/c), and
similarly the specific heat C~ scales according to
the relation Cn ~ cg (T/c), where f and g are only
functions of T/c. Furthermore our theory gives a
temperature-dependent maximum in y~ and CD

where the temperature of the maximum is in both
cases proportional to the impurity concentration.
Similarly we discuss the deviations of y~ and CD
from their T=0 values. Even though we find that
the experimentally observed T e dependence
of the specific heat obeys our scaling require-
ments in the sense that if we assume a T ~ depen-
dence for the specific heat, its concentration de-
pendence should be c(T/c) ~ = T c as ob-
served, our theory predicts that CD is in effect
proportional to T c . Thus our theory does not
explain the experimentally observed low-temper-
ature specific-heat data. The absence of polariza-
tion waves, 7 and the agreement of the experimen-
tally observed specific heat with our scaling re-
quirements suggest a coupling term between the
tunneling states and the dipole-dipole interaction.

The contents of our paper is as follows. In Sec.
II we develop the self-consistent theory for the
probability distribution of the random dipole fields.
In Sec. III we obtain the dielectric susceptibility
and in Sec. IV we obtain the specific heat. Section
V is devoted to a comparison of our theoretical
predictions with experiment.

II. THEORY

A. Effective dipolar field of rigid dipoles

We consider a set of randomly distributed di-
poles in a nondipolar host. We assume that the
magnitude of each dipole moment does not change
as a function of temperature or applied electric
(or stress) field. Let this magnitude be p. Then
the vector dipole p may be written

p =P'4,

where for convenience we assign p, to have a mag-
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pt =P&t ~ (2. 2)

where p, is the vector dipole whose orientation is
dictated by the physics of the problem. For ex-
ample OH impurities dissolved in KCl are found
to have six possible orientations. If we denote the
collection of the six orientations of the vector p.

by (p) =(p„,p,„,p,], the six orientations for OH

in KCl can be written as

(p)=(+1, 0, 0), (0, +1, 0), (0, 0, +1) . (2. 3)

The classical dipole-dipole Hamiltonian K for N„
dipoles distributed on N sites such that N~/N = c,
where p is the fractional impurity concentration, is

N

3C= g [p; '
pg —3(p; ' r;s)(ps r&s)],

m+]j
(2. 4)

where q is the dielectric constant of the medium,

r;j is the distance between dipoles located at sites
i and j, respectively, and the unit vector r" is the
direction of the radius. For purposes of notation
we define

nitude of unity. Because the moment of each di-
pole is fixed we shall refer to the dipoles as "rigid. "
Let p, be the dipole vector at site j, then

P(T) =Nc P(E)p(E, T)dE, (2. 10)

ly z, j are random variables. Therefore E, and Ej
are also random variables and as a result of this
each of the x&'s (which are functions of the E s)
are also random variables. The purpose of this
section is to obtain self-consistently the probabil-
ity distribution P(E) of the random dipolar fields
E for all temperatures as a function of the dipole
impurity concentration c. Once the probability
distribution of the field E has been obtained, vari-
ous thermodynamic quantities are directly obtained
by integration. The idea behind this is as follows.
In order to obtain the average value of thermody-
namic quantity Q for the whole system, we find the
expression of the thermal average value of Q in a
fixed (external or internal) field E, Q(E, P), and

average over the probability distribution of all
fields E. This gives the value of Q(P) for a single
impurity. To obtain the contribution for the whole
system we multiply Q(P) by N~ = Nc For e. xample,
if we have the polarization of a single dipole in an
effective field E at temperature T, p(E, T), we
can readily obtain the mean polarization as a func-
tion of T, p(T), by the relation

3
~i j —Pi ~m&'j ~ (2. 5)

We next use the molecular-field approximation in
which we consider the Hamiltonian to be

(2. 8)

where E; is thermal average of the field at site i.
Using the definition Eq. (2. 6) and the Hamiltonian
(2. 4) we obtain

E, =2 v,.q [(lLq) —3((p&) ~ r, ~)r, &], (2. .7)
j

where ( p,, ) is the thermodynamic average of the
dipole vector at site j. The dipole at site j experi-
ences a dipolar field from all the other dipoles.
Therefore, we define the quantity

x, =(p, (E,)) =Z pe ~' Ze ' " (2. 8)
(~) G}

where p= (ks T), where k~ is the Boltzmann con-
stant and T the temperature. In order to simplify
our notation in Eq. (2. 8) we let ( p&(E&) ) =x&, the
brackets ( ) indicate thermal averages, and

(2. 9)

Equations (2. 7)-(2.9) represent a set of equations
for E;, the field at site j, in terms of functionals
of the dipole fields at all other sites of the system.

Examining Eq. (2. 7) we note that since the di-
poles are randomly distributed, r; j and consequent-

Cn(T) =Nc ~~ P(E)Cv(E, T)dE . (2. 11)

In our classical mean-field approximation, obtain-
ing the thermodynamics of the system thus reduces
to deriving the probability distribution of the ran-
dom internal dipolar fields. We shall find below
that this can be done self-consistently for all tem-
peratures and (low) dipole-impurity concentrations.

B. Statisitcal formulation of the probability distribution

We consider the N„dipoles to be randomly and
uniformly distributed throughout the volume of the
solid, each Cl site being occupied with a dipole
impurity with probability c. The formal expression
for the probability distribution can be written using
the statistical model of Margenau as applied by
Anderson and Klein. ' Let P(EO) be the probabil-
ity distribution (density) function of the dipole vec-
tor field Eo for an impurity which is located at arbi-
trarily chosen origin zo. Then the formal expres-
sion for the probability distribution is

where dE = sin8d8d(t) E dE, where 8 and P are the
azimuthal and polar angles, respectively, and E
is the magnitude of the field. Similarly, if we have
the dipolar specific heat Cn(E, T) of a single dipole
in a field E, we can approximate the average specif-
ic heat for the system by the relation [the validity
of Eq. (2. 11) is discussed in Sec. IV]
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Nd
A A

PtE )= 3 E —d "x[ 4-3(x, xx)xx[)
~N d

)=1

xP(r„r~x.. . , r„)dr„
d d

(2. 12)

where xf —= ( pf(Ef) ) is the thermodynamic average
value of the dipole vector at site j which experi-
ences a. vector field E, and is defined by Eqs. (2. 8)
and (2. 9), P(r„rE,r„.. . , r„,) is the N, -particle
distribution function for the coordinates of the im-
purities, and d rN„ is a 3Nd dimensional inte-
gral over the coordinates of all Nd impurities.

The physical picture of Eq. (2. 12) is as follows:
The 5 function simply takes all values of dipole
potentials which contribute to a specific value of

E0 and multiplies them by unity; the ones that do
not contribute to E0 it multiplies by zero. Summing
over the coordinates of the impurities with the ap-
propriate distribution P(r~, r2, . . . , r„)gives us
the "histogram" of the distribution. We also as-
sume that the concentration is sufficiently low that
it is a good approximation to integrate (rather

than sum) over a.ll coordinates.
Our development here is similar to a treatment

by one of the present authors of the dilute-alloy
problem'; however it is more complicated since
the internal field in Eq. (2. 9) is a vector. Rewrit-
ing Eq. (2. 12) gives

P(EO) =(23r) dpe"' s()
~

d r„P(r„rE). . . , r„)
"Nd

Nd-1

x II exp(-ivM[p xf —3(p ,3)f( ,~f~ xf)]},
/=1

(2. 13)
where

The functional form of x& is obtained from Eq.
(2. 8) and w ill depend on the physical assumptions
made about the dipole orientations. It is convenient
(for reasons which will become clear further on)
to rewrite any functional of x& given in Eq. (2. 12)
as follows:

"&(34)=f(E&) f 2 4 [",—xt 4' ",) &1 =
(

Ed& (E44 I„[",—3(d -)d 4lf(E ))x. 4
k

Using Eq. (2. 15) in Eq. (2. 13) gives
Nd-1

P(E)=(2)Jdd'(d„P(, x, . .x. , )111(dE)4E,.—I,. [ —3(4)4[)d d
Nd

x exp(- ivof(p. x&(Ef) —3(p ~ rof)[rQf xf(Ef)] I) .

Equations (2. 16) and (2. 13) are identical as can be
seen by integrating over each of the dE& on the
right-hand side of Eq. (2. 16). [Note the integral
over dE0 is absent from the right-hand side of Eq.
(2. 16).]

In Eqs. (2. 13) and (2. 16) we express the prob-
ability distribution of the internal field E0 at site 0
in terms of a function of all other potentials v0& and
functionals of the internal fields E& at site j, where
each E& in itself is a random variable having its
own probability distribution P(E, ), also to be ob-
tained self- consistently.

The physical meaning of our procedure is as fol-
lows. In order to obtain P(EE), the probability dis-
tribution of E0, we average over an ensemble of
dipole systems in which each member of the en-
semble has a dipole fixed at the origin of the coor-
dinates but all other dipoles are placed at a frozen-
in but random position.

In order to solve our equations we will have to
make an approximation. To exhibit clearly the
approximation to be made, we define the term

D, =5 E, — v» xk-3(r». x, r» (2. 17)

II&D& is contained in Eq. (2. 16). Now let us fix the
N, coordinates of the dipoles in some position rN,
where rN stands for the 3Nd coordinates of the0 d

Nd dipoles. This fixes every member of the II&D&

in Eq. (2. 16). Next we change the position of a
single dipole from r1 to r1, where the subscript 1
indicates a single particle and the superscripts 0
and 1 indicates that the single particle is in posi-
tion 0 and 1, respectively. This change in the
position of the single dipole changes gll the Dz's
and gives them new fixed values. So every time
the position of gny of the particles is changed all
D~'s are likewise changed, but the D&'s are all in-
terdependent once the positions of the Nd dipoles
are fixed. To solve the problem we make the ap-
proximation that each of the D&'s can take all pos-
sible allowable values independent of any of the
other D&'s. Thus we "factor" the D&'s (I am grate-
ful to Professor M. Gitterman for helping me
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clarify this point) using a kind of "'rearrangement"
idea that once the Dy s are factored they may take
all possible allowable values independently of all
other D&'s as the positions of the particles are
changed. %e call this approximation the mean-
I'Rndo111-field (MRF) Rpproxjmatlon. Ill fills ap-
proximation we replace each D& by an gveygge over
all random stjacial configurations of the system;
thus

D, —I d r„P(r„r„.. . , r„)MPrl S
ff

Equation (2.22) is an integral equation for the vec-
tor-field distribution P(E).

Let

P—
It ptf)dp J p exp[- '

tr)[ii -ptp i)t )]jV

(2. 23)

where

V'= I P(E)dE l~ r dr
l~

sin8d8
~t Bo a 0

~& Ey — vs& xy ~~x~' &&a &&a (2. 18)
itp(t —ex'[- '

t )[p —ptp )(* ]1})),
(2. 24)

where the arrow with MRF above it means "be-
comes in the MHF approximation. " Comparing
Eq. (2. 18) with Eq. {2.12) shows that

D HRP P(E ) (2. 19)

Substituting Eq. (2. 19) into Eq. {2.15) gives in the
MRF approximation

where 8 and P are the angles in spherical coordi-
nates associated with vector x. Ro is the lowex
cutoff radius. Ao should be a near-neighbor dis-
tance which is the closest approach between two
impurities; however, in this paper it will be con-
venient to set AO=0. Vfe find that for our problem
th1s Rppl'oxl. lllatioll ls 1 easonable. A1 ill Eq. (2. 24)
is found using the relation

P(EO) = (2][) '
~

dp e" "'~ d'rs, P(r1, r„.. . , r„,)
Ng

&pJ,
~

P(E;)dE1exp[—ipvo1

4, ~Z,'= V.
Let p be in the z direction, then let

p. x —pg cos8

(2. 25)

(2. 28)

&[p xi-3{ ro1)(ra~ x1)]). (2. 20)

P{rl, ra, . . . , r„~)=V"~. (2. 21)

%e also requix'e as a self-consistency condition
that P(E), but not necessarily E, be site indepen-
dent. With these assumptions Eq. (2. 20) becomes

P(E)=(2v) 'I dpe"'' —
~~

P(E)dE

The meaning of the MRF approximati. on becomes
further clarified by Eq. (2.20). The probability
distribution of the field at site 0, P(EO), is given in
terms of functions of the fields at all other sites in-
tegrated over the respective probability distribu-
tions. Since there is nothing special about any one
of the sites of the system, we require as a self-
consistency condition that the P(E1) shall be site
independent. %e then drop the indices 0 and j,
and we have an integral equation for the probability
distribution. %e will obtain the solution of this in-
tegral equation with not too much difficulty.

C. Solution for the probability distribution

%e now assume that all particles are indepen-
dently distributed over the volume V of the solid
with a probability V . Then

where p and g are the magnitudes of p and thexmal
average of the dipole vector, respectively, where
~= X(E).

Let
fIx ' & = g cos8

since we recall that x is a unit vector. Let

(2. 27)

V = PE dE y dh sin8d8
Ro 0

where

2if I

dQ 1 —exp 3 F(8, 8, p —(IJ) )
'

0 &m&

(2. 30)

P = E(8, 8, ttj —ttj ) = ——,
' [(1+3-cos28) cos8

+ 3 sin28 sin8 cos(@—ttt )j . (2. 31)

+ A

p g =pcos8

Then referring to Fig. 1, we obtain~~

cos8 = cos8 cos8 + sin8 sing cos(p —P ) .
(2. 29)

Subst[tut jug Eqs. (2 ~ 25)- (2.29) l[lto Eq. (2. 24)
gives

„Itpzi:„p[-' (i][p -p(p )(p *]]j)
{2.22)

(2. 32)
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where sgnF is the sign of E.
So far we have kept the volume of the sample

finite. At the end of our calculations we will allow
the volume to go to infinity. We shall presently
find that the physics of the problem dictates the
manner in which we should allow V to approach in-
finity. We first remark that

2r
(E)=' sinBdB

[
d&g&fE(8, 8, $ —@ )/

xsgnE(8, 8, Q —P ) =0 . (2. 36)

Integrating the imaginary part of V in Etl. (2. 35)
over r and afterwards over the angles gives

i"'0 Sin@
llm

)I + dz- lim lnVO-—so .
P'0~ co Q g~ P0~ ao

(2. 37)

X

I'IG. 1. Relation bebveen the directions of vectors
p, p, and r and the angles 0, 8', 6", P, Q'bebveen them.

(2. 33)

On the other hand if we integrate over 8 and P first,
by Etl. (2. 36) Im V'=0. The appropriate order of
integration is dictated by the fact that we have a
cubic crystal in which the average dipole field is
zero. We therefore have to do the angular integra-
tion, Etl. (2. 36), first. In a noncubic crystal we
may get depolarization effects and the imaginary
part of &' will not vanish.

Using a computer we have evaluated the magni-
tude of E, (I Ei ),

el —— E(8, 8)$ —Q ) Al (2. 34)
(~iE~ )= si nBdIB~ ~E(8, 8'

l(& ti)')~-=8f(8')
0 0

where the vertical brackets ( ( indicates absolute
values. Substituting Elis. (2. 32)-(2. 34) into Etl.
(2. 30) gives

V = P(E) dE x(E) sinBdB
0

dy[ E(8, 8', @ —e')
f

1 —cosz . singx 2 + &sgnP 3 gz
z

=8(1+0.2963cos 8 —0.09597cos 8 ) .
(2. 38)

The result of the computer calculation of Eq.
(2. 38) is shown in Fig. 2. On the same graph we
show the function 8f(8 ). Substituting Eq. (2. 38)
into Etl. (2. 35) and allowing the volume to go to ~
and z&-0, we obtain

(2. 39)

Using Etl. (2. 8) we obtain

(E)dE ~(E)f(8')

(si hl)hh, ) tsi hi)hh„) ~ tsi ht)hh, ))'i
(cosh')E, + cosh ppE„+cosh')Z, )'

It is important to note that
~ p, ~ is independent of

E and 8, where 8 is the angle between x and p.
As we integrate over all. possible field orientations
the direction of p is immaterial. In principle the
integration of f(B ) over all angles may give a, slight-
ly temperature-dependent quantity, since E and p,

are not necessarily in the same direction.
Substitutillg Elis. (2. 35)-(2.38) into Elis. (2. 23)

and (2. 24) and allowing V- ~, N~ ~, we obtain

P(E ) = (2m) '
i dp e" ' ' e "
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IO

9.0

8.0

average value and take this value to be unity [since
f(8 ) =1 for all 8 ]. Effectively f(B ) may slightly
modify the strength of the effective dipole-dipole
interaction which enters our calculation as a pa-
rameter; thus all our results are insensitive to
slight errors in the average of f(8 ).

Next we change variables as follows: PpF.„=~,

PpE, = y, Pp E, = z. %e then obtain

dy
I p. l'

7.0
0 30

8'(deg)

90
fsb» 3'» s)

[1+(uo/II I)'(x'+y'+~')]'

=- F, (uo/l ul), (2. 45)

FIG. 2. Function F(0') obtained from computer cal-
culations. The solid curve is a fit of 8f(e') =8(1+0.2963
cos20' -0.09597 cos40'). The points are the computer-
calculated values for the integral given by Eq. (2.31).

where

~=—3,„,,s u.clI I
-=&Oll I,4~ p (2. 42)

D. Temperature dependence of P(E)

The expression for P(E) for all temperatures is
given by Eq. (2. 43) with the value of a given by
Eqs. (2. 42) and (2. 40). In order to obtain I p(T) I

we have to solve Eq. (2.40) for all T. Rather than
solving directly for I p(T)I as a function of T it is
more convenient to solve for I p. (T) ( as a function
of parameters u and up defined by

where d is the lattice constant and gp is the num-

ber of Cl sites per unit volume.
Equation (2. 41) can be readily integrated to give

1
P(E) =—,

»»~ [a~+ (E', +E,'+E', )]'

Equation (2. 43) coupled with Eqs. (2.42) and

(2. 40) gives a self-consistent integral equation
for the probability distribution for all temperatures
and (low) impurity concentrations; it is the central
result of this section.

For T=0, I pl becomes (f(8 )), which is a con-
stant, and Eq. (2.43) takes a relatively simple
form. For T low but not zero, I p. ) is a very slow-
ly varying function of T, and its value will be given
in Sec. IID.

(sinh r+sinh2y+sinh z) ~2

cosh@+ coshy + coshz

Multiplying Eq. (2. 45) by upi p, l gives

(") (2. 47)

Equation (2. 47) gives the solution of ua/I u I a.s a
function of up %e note from Eq. {2.47) that the
value of ( p( depends only on the parameter up

=ksT/(f»&0); thus, the value of I p, l scales with

(T/c) Thus, .if we have I pl for all values of T
and for some specific g, we can immediately ob-
tain the value of ( JL(, ~

for all e. The expression for
( IL(, ( for low temperatures is calculated in Appen-
dix A and the final results given by Eq. (A17) are

l ul =1 —0. 598uo —(0.598u, )', u, «l, (2. 48)

where 4o is given by Eq. (2. 42). The values of
I p, ) as a function of up were calculated using a com-
puter and the results are shown in Fig. 3. %e find
that ( p, ) decreases monotonically with increasing
up. In the insert of Fig. 3 we show the rapid de-
crease of I p, I with up' for large up. The values of
] p, I obtained are to be used in the calculation of
the specific heat and the magnetic susceptibility.

Examining the variation of ) p. ) with temperature
we find that our solutions make good physical sense.
As the temperature becomes high the width of the
probability distribution approaches zero quite
rapidly. Therefore, at high temperatures prac-
tically all fields are concentrated near E =0. This
is exactly what we expect on physical grounds.

u(T) = k T/[ p& ( T = 0)
l

iL
l ]

4~T 1
iPI P&p 1PI

(2.44)

where &,= &(T=0) is the w-idth of the distribution
function at T =0. &p is temperature independent.

We next approximate f(8 ) in Eq. (2. 40) by its

III. CALCULATION OF THE DIELECTRIC SUSCEPTIBILITY

The polarization and susceptibility of a single
dipole in a field E can be obtained from the single-
particle partition function Z, (E, P) in a field E
= (E, , E„,Z, ) for the six orientational dipoles us-
ing Eq. (2. 3). We thus have
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I.O

0.8

0.6

0.4

0.2

FIG. 3. Values of the
parameter ) p, ) as a
function of uo, where p is
the magnitude of the dipole
moment, is the width
of the probability distribu-
tion at T=O, and T is the
temperature.

l5 20

Z|(E, P) =P e ~" E =2(coshPpE,
(v)

+ coshppE + coshppE, )

—= 2D . (3.1)

The thermal average of the polarization, M, (p, E),
of a single dipole in the z direction is

8 1nZ|(E, p) sinhppE,

Ex -0 xo

where E
o is the external ly applied field in the x

direction and

(3.2)

E =E;+Eo, (3.3)

where E; is the random internal field and Eo is the
externally applied f ield. The average polarization
M„in the z direction in the limit as the externally
applied field approaches zero is given by

ca& OO

M„=Ncy I dE, dE, I dE,P(E) ' 0 .
co 00 0

(3.4)
Since P(E„E,, E,) is even in E„the integral
Eq. (4. 4) is zero. Thus the net polarization with
zero applied field predicted from the theory is
zero. The dielectric susceptibility in the x direc-
tion X„is found by taking the derivative of Eq.
(3. 4) with respect to E„and letting E, approach
zero. This gives

NGPp
Xx y x x x [~2 ~ (E2 ~ E2+E2))2

x[1+coshppE„(coshppE„+coshppE, ))D . (3.5)

ED+ 6a (3. 6)

where the subscripts D and h refer to the dipoles
and the host material, respectively.

For general values of P Eq. (3. 5) can be solved
only using a computer. However, an analytical
solution can be obtain for some specific values of
T.

A. Very-low-temperature susceptibility

In the limit as T-O, Eq. (3. 5) is solved in Ap-
pendix B. The result given by Eq. (B3) is

limXa=o 3
Ncp

r o
' 0'&o~&~

' (3. 'f)

where i p I is given in Eqs. (2. 45) and (2. 48).
Since &0 is proportional to c, c/&0 is independent
of c. The theory thus predicts that the very-low-
temperature susceptibility approaches a concentra-
tion-independent constant in the limit as T-0. As
we increase T, x increases, because of the de-
crease of ) pl with T. X undergoes a maximum and
then decreases again.

The behavior of X~ as a function of uo was calcu-
lated using a computer and the results are shown

Since the function P(E) is even in E its derivative
with respect to the external field vanishes in the
limit as E„-O.

The average susceptibility XD is assumed to be

x~ = —,'(x, +x„+x,). The relationship between the di-
electric constant & and the dielectric susceptibility

XD is (neglecting local-field effects)

e = I+4v(Xo+Xx)
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g —g» versus uo decreases faster than —2. This
again is shown in. Fig. 5.

The maximum in the susceptibility occurs at uo
= 0.23 = ks T /p40. We thus have

f», =u, T „/0.23. (3.10)

O.O l.5

FIG. 4. Variation of the predicted susceptibility as
a function of the parameter uo, where A =p40/Ncp .

in Fig. 4. A in the figure is

A = p&o/Ncpf (3. 8)

In Fig. 4 we also exhibit two inserts; one shows
the low- T region the other the high- T region. %e
find that the deviation of y~ from its T=O value,

4/D = )( (Tn) —
l( (Tn= 0), ts proportional to Qo for

low T. Thus 4X~ is proportional to the tempera-
ture and is inversely proportional to the impurity
concentration for low T.

B. High-temperature susceptibility

The high-temperature susceptibility can be di-
rectly obtained by letting P be small in Eq. (3. 5).
%e obtain for high T

1 + cosh@(coshy + cosh@)
(coshx+ coshy + cosh'~)

(3.12)

l I I

I.O—

From Kanzig's 3 experiments we find that for a
dipole concentration of N, = 72. 5 x 10"/cm~ (c
=0.45%), T =4K. Using the value of l. 984 for
the specific gravity of KCl and 74. 55 for its atomic
weight we obtain pro/ks = 17 K for c = 0.45/o. This
gives

p&0/ks = 38 K/(each percent of OH impurity) .
(3.11)

Using Eq. (2. 42) for the expression of &, and e
=4. 5, where & is the dielectric constant of pure
KCl, we obtain p =1.36&10"electrostatic units.
Equation (3.11) gives the single constant necessary
for our self-consistent solution.

Finally, we remark that we can obtain the seal-
ing properties of the susceptibility by writing Eq.
(3. 5) in the form

8N O 0 OCt

dx) dy dz[1+u (g +y +z )]

zap', &, l pl
B

(3.9)

where 8 is a constant of order unity. Qur theory
thus predicts that the susceptibility (and therefore
the dielectric constant) of the dipoles at high T
mill have a term proportional to T . This term
in ya is the well-known Langevin-Debye contribu-
tion and will be referred to as y„D. The deviation
of ya from the Langevin-Debye value at high T is
from our theory proportional to c /T for T just
above T ~, the temperature of the maximum in ya.

In Fig. 5 we show the values of X
—g„Dobtained

by solving Eq. (3, 5) with a computer. These val-
ues are plotted on a log-log graph. %e find that
for T just above T, the slope of X

—y versus
uo is —2, showing the c2/T dependence. This re.
suit is in agreement with Fiory's experiment of
QH impurities dissolved in KC1, as is seen from
Fig. 10 of Fiory's paper.

For higher temperatures, I g [ in Eq. (3.9) de-
creases rapidly with increasing T and the slope of

0.0
O. I I.O

Uo = (ka T/P Do)

FIG. 5. Deviation of the susceptibility ya from its
Langevin-Debye value Xl,~ at T above the temperature of
the maximum in the susceptibility. The temperature of
the maximum is indicated by the arrow.
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where so=ksT/f40 and re=so/(pl. Thus we find
that all properties of the susceptibility scale with
uo and it is therefore a function of c/T only. From
the above scaling law we find that the value of y
at its maximum is predicted to be independent of
the impurity concentration for very low c. This is
so since /ch Din Eq. (3.12) is independent of c.
Clearly the predicted T ~ e as is found in Eq.
(3.10).

S=Nc
~

P(E, T)Q(E, T) dE, (4. 2)

where

(4. 3)

where 8 is the entropy for the system in an inter-
nal dipolar field E, and

IV. LOW-TEMPERATURE SPECIFIC HEAT FOR SIX
ORIENTATIONAL DIPOLES

The low-temperature specific heat C~ of the six
orientational dipoles is obtained from the thermo-
dynamic relation

{4.1)

is the single-dipole entropy in an internal dipole
field E and temperature (k~T) '.

It is shown in Appendix C that to a very good ap-
proximation the low-temperature specific heat of
the dipoles is given by Eq. (2. 11), where the di-
polar specific heat for a single impurity in an ef-
fective field E, for the six orientational dipoles, is

Co(E, T) =
z ~' =2 Iz(2Ez+E'+ E) +(E,—E„)'coshpp(E„+E,)+ (E,+E„)coshpp(E, —E„)

+ (E,—E,)z cosh13f«(E, + E,) + (E, + E,)z cosh'«(E, —E,)

+(E„E,} cos-h@(E„+E,)+(E,+E,) cosh'«(E, —E,)],
where Z, (E) and D are given by Eq. (3.1).

Using the symmetry of the single-particle specific heat with respect to F,,„E„,and E„and letting PpE,
ppE„=y, pf«E, =z, the specific heat for the whole system, Co(T), becomes

x [2zz+ (z- y)z cosh(@+y) + (@+y)z cosh(z- y)] D

The following scaling property of the specific heat
is immediately exhibited by Eq. (4. 5):

the concentration dependence should be

C ««- c(T/ )3/z= Telz ~lz (4. 6)

Thus the specific heat per impurity is only a
function of c/T. The theory therefore predicts
that if the specific heat of a system with fixed im-
purity concentration is known for all T, we have
immediately the behavior for another impurity
concentration using the property given in Eq. {4.6).

For very low temperatures we obtain the specif-
ic heat in Appendix D. The final result, given by
Eq. (D5), is

lim C~ = 1.74 k~ T Nc
p&0 lp, l

(4. '7)

%Ye thus find that the very-low-temperature specific
heat is approximately linear in T. Thus the dipole-
dipole interaction does not explain the T ~ c '~

dependence of the specific heat measured by Per-
essini et al. ~ and Fiory. '7 However, we note that
according to Eq. (4. 6), if the temperature depen-
dence of the specific heat is proportional to T ~z

C, ~ T(c/&)~ T'c'. (4.9)

%e find that there is a maximum in the specific
heat C~ as a function of T, and the temperature of
the maximum is proportional to p. The value of
the specific heat at its maximum is also predicted
to be proportional to c. This can be seen from

Thus the experimentally measured specific heat
scales according to the relationship given by the
1/r -dependent dipole-dipole interaction. The fact
that our scaling properties are obeyed suggests
that the T ~z dependence of Co is connected to the
dipole-dipole interaction. It may, for example,
arise from an interaction between a pair of dipoles
at low fields which are coupled to the tunneling
states of a single dipole. This suggestion is clearly
speculative in nature.

The theoretically predicted very-low-tempera-
ture specific heat is approximately independent of
the impurity concentration. This can be seen from
Eq. (4. '7), where we find that
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2.0 zig et al. Until further experiments are available
we cannot say whether properties (i) and (ii) agree
with experiment or not.

(.2
Kl

O

O

o.e

0.4

0.0
0.0 0.4 O.e

~0 = (kBT/P60)

1.2

FIG. 6. Specific heat per impurity divided by the
parameter up The specific heat at very low T is predictec
to be proportional to T and independent of c.

Eq. (4. 6), where we find that g is multiplied by c.
The value of the specific heat divided by uo is
shown in Fig. 6. We find that cv/T also has a
maximum as a function of T. The temperature
of the maximum is proportional to the impurity
concentration.

V. CONCLUSION AND COMPARISON WITH EXPERIMENT

Our results predict that as p-0, the suscepti-
bility ha. s the following properties: (i) In the limit
as T- 0, gD approaches a concentration-indepen-
dent constant; (ii) the deviation of )(v from its T-0
value is proportional to T/c; (iii) l)v has a maxi-
mum as a function of T and T ccc; (iv) y(T ) is
independent of c; (v} the deviation of yv from its
Langevin-Debye value is proportional to (c/T) for
T& T; (vi) l)v scales with T/c.

Properties (iii) and (v) are found to be in agree-
ment with experiments on KCl-OH as discussed in
Fiory's paper. ~ Property (iv} is approximately
valid for low concentrations, as was found by Kan-

We obtain the thermodynamic properties of the
six-orientational-dipoles system in the molecular-
field approximation for all temperatures and (suf-
ficiently) low impurity concentrations for the case
when the sole interaction is the dipole-dipole inter-
action. We thus neglect all quantum-mechanical
effects, like tunneling for example, between the
dipoles. Therefore, the most one can hope for
from our results is that they will be able to sepa-
rate the contributions as those arising from:
(a) the dipole-dipole interaction alone; (b) all other
effects. We summarize our results and indicate
where there is agreement with experiment.

A. Dielectric susceptibility

B. Specific heat

The most important remark to make about the
specific heat is that even though the experimentally
measured specific heat scales according to our
scaling predictions, in the sense that if C~ is as-
sumed to be proportional to T ~ then its concen-
tration dependence should be c(T/c) = T c
which is observed experimentally, our theory does
not predict the T ~ dependence and thus disagrees
with experiment. Further properties we obtain
are: (vii} The specific heat per impurity scales
with T/c; (viii) the value of Cv at its maximum is
proportional to c; (ix) last, near T=O, Cv~ T and
is independent of c. Finally we remark that the
very-low-temperature specific heat predicted for
the vector dipoles is very much like the behavior
of dilute alloys found previously.

APPENDIX A: EVALUATION OF ip(u)( FOR LOW

TEMPERATURES

Let s(z) = sinhppE„and c(z) = coshppE„we then
have

~ P)Z
s'tx) ~ 't) ) ~ ')*))'"

=
il P(E) dE [1 —v(z, y, z))' i (A2)

where

D = c(z)+ c(y)+ c(z)

and

(A3)

X=3{I+2c(x)[c(y)+c(z)]}/D (A6)

Equation (A6) is valid because of the symmetry
of P(E). Transforming Eq. (A6) into spherica. l

polar coordinates using the relations

pE, = r sin8 cosP-=t~,

p E„=r sin8 sing =—t2,

PE, -=r cos 8 =- t3,

(A7a)

(A7b)

(A7c)

and substituting Eq. (A7) into Eq. (A6) gives

v -=v(z, y, z) -=(3+2c(z) [c(y)+ c(z)]

+ 2c(y)[c(x)+ c(z)]+2c(z)[c(z)+ c( y)] }/D
(A4)

For low temperatures we have

X X X 5 4
l &I =)l P(E) dE 1-—————— x +" +,

2 8 16 128

(A5)
where
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—{2e s(t)+t2) + (1 ~ e Sst2) [1 ~ e Ss tl + es ( t2 t1 ) (1 + e-Sst2)] ].
Ds(yp, e, y)

where

D(rp 8 (!)) = cosh [p(tl —t )/2]+ —'e "2 "I'2'~ '(1+e '2) + —'( s' 'I'2' ~ (e ' '2'2' )

(A8)

(A9)

From symmetry considerations we find that the in-
tegral in Eq. (A5) can be performed between the
limits 0& 8& (I/2, 0& (t) &)I/2, and 0& r& ~, a.nd then
we multiply the integral by a factor of 8. Examin-
ing the expression for X in the limit as P- , we
find that for 8 and Q in the first quadrant

2
(1 + P(t2- tl) )

(cosh[P(f —f, )/2] + e "2 "I '2' '}

(A10)
all other terms are exponentially small. For large
values of P, X approaches zero except for the val-
ues

where

k~T k~T
PE(T = 0) f)&()

APPENDIX B: EVALUATION OF THE LOW-TEMPERATURE
SUSCEPTIBILITY

The expression for the susceptibility is given in
Eq. (3.5) of the text. Transforming Eq. (3.5) in-
to spherical polar coordinates using the definitions
given in Eq. (A7) of Appendix A, we obtain

8pNcp
"" r dr&

XD P I (~2+ 2)2

tan8) W2+ 5,
(t) = I(/4 + e,

(A11a)

(A11b)

N'(Py, e, y)
)&

~

sine de d4) +(
' 8', (Bl)

~ 0 0 7

where in the limit as P- ~, 5- 0, and q becomes
as small as we like. When the condition in Eq.
(All) is satisfied, Eq. (A10) becomes

3
lim X= lim

2cosh (Pr/W2) sine sine
(A12)

Let (X")be the value of X" averaged over the prob-
ability distribution of the dipole fields; then for
large P

where

4N (py, 8, (t)) =4e "I'2) +(1+e-Sstl)

)([1 q e-2st2+ tl(ts-tl-t2)(1 + e-2st3)]

(B2)
where D(Pr, 8, (t)) is given by Eq. (A9).

We get a contribution to gp only when the condi-
tions given in Eq. (All) of Appendix A is satisfied;
for all other values D (Pr, 8, 4)) goes to infinity as
P- ~ and the contribution to yp vanishes. We have

8 3" "ar dr
2 2 (n2 ~ 2)2

«/2
sin8 d8

tan-& ~
«/4 d6

, ~4 cosh "[(pr/v 2 ) sine sine]

(A13)
Using the table of integrals, we obtain

„«/4
I„=lim l~.),&4 cosh "(Py/~2 sine sine

8pNcp
" &r' drx.=, (,.„.). ~, «8

. , &4 4cosh [(Pr/~2sinesine]'

4v 2Ncp 7t
llm){n- p I I 2

—tan 2

= 0. 352 Ncf)'/n() I p, I,

(B3)

2&2 4"-'[(n —1)!]'
Pr sine (2n —1)!

Substituting Eq. (A14) into Eq. (A13) gives

(A14)
where 62 is given in Eq. (2. 42), and the expression
for I II I is found in Eq. (2. 40) and its dependence
on uo is shown in Fig. 3.

APPENDIX C: APPROXIMATION OF SPECIFIC HEAT BY
EQ. (2.11)

i Iti =1 — (0. 598).
p~, t pi

Solving for t p, ) gives

i It
~

=1 —0. 5982(()- (0. 598(t())

(A16)

(A17)

))2 ()I/2 —tan V 2 ) 6"[(n —1)!] ks T
(2n —1)! P&, I )I I

(A15)
Substituting Eq. (A15) into Eq. (A5),

In this appendix we show that to a very good ap-
proximation the specific heat of the dipoles is given
by Eq. (2. 11).

Using Eq. (4. 1) and (4. 2) we have (assuming that
the entropy is an additive quantity)

CD = TNc
I

dE P(E)+ S . (Cl)
sS - ()P(E)'

Using Eq. (4. 3) we obtain
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sS 1 s inZ&(S, E)
ST s ksT 8P

(C2)

where Z, (E, P) is the single-dipole partition func-
tion in field E.

Substituting Eq. (C2) into Eq. (Cl) we find that
the first term in the integral is exactly the term
given by Eq. (4. 4). This term is evaluated in Eqs.
(4. 5)-(4. /) in the text, and is shown in Fig. 6.

We have evaluated the second term in Eq. (Cl)
using a computer and we find that for all values of
uo=ks T/Pr). 0 the second term is negligible comPared
to the first. %e now prove this for very low tem-
peratures, where it is crucial to ascertain whether
the T dependence of the specific heat is a result
of the dipole-dipole interaction. Using the expres-
sion for P(E) given in Eq. (2.43) we obtain

dP(E) —1 d I p I 4&
dT 7/'I i/ I dT (&'+ E )' (&'+E')'

Using the fact that d I u I jdT is always negative, we
obtain for the second term in Eq. (Cl), C~z,

suits are shown in Fig. 7. %e find that for r & 2,
f(r) can be well approximated by f(r) = 4. 5/r .We
note that Eq. (C4) has a factor of T multiplying
the integral. Thus for low T we can neglect the
value of the integral from 0 to 2 and we make a
very small error in replacing f(r) from 0 to ~ by
its asymptotic value [note r f(r) converges for r
-0]. We can now perform the integral and we
obtain

8Nc 'd] p [

m' duo
(C5)

Using Eq. (2. 48) gives for low temperatures d l)u I j
dup = 0. 598 and we find that C~2 is proportional to u2.

CD on the other hand is found from Eq. (4. 7) to be
proportional to u at low T. Thus for low T, C» is
negligible compared to CD. A detailed computer
calculation has confirmed these results and has
shown that CD2 is small compared to CD over the
whole temperature range.

8Ne dl p I 4
'F dup

r' deaf(~)

APPENDIX D: EVALUATION OF THE LOW-TEMPERATURE
SPECIFIC HEAT

4 1
() 'r')' )) 'r')')

where uo=ksT/p&o, u=uo/I pi, and

~ if /)'2 rid j2
f(r) =

~

sin8d8
~

dS(r, 8, )f)),
«0 «0

(C5)

The expression for the low-temperature specific
heat is given by Eq. (4. 5) of the text. Transform-
ing into spherical polar coordinates using the def-
inition given in Eq. (A'/) of Appendix A, and using
the symmetry of the functions, allows us to inte-
grate fields only over the first quadrant; we obtain

where S(r, 8, g) is the value of S given in Eq. (4. 3)
in spherical polar coordinates with y = p] E)I. The
values of f(r) versus r were calculated and the re-

24NcI/ "" &r dr
(n'+ r')'

/8 t))/2 N(~ 8 4 )x sin 8d8 dg ~
0 0 ~(r, 8, $

(Dl )

I 0.0 where

4N(v, 8, )f)) =4 cot 8 e ~ "~'~'+ (1 —sin2$)(l + e +"~'2')

+ (1+sin2&) (e +'2+ e 28")

and D is given by Eq. (A9) of Appendix A. Ex-
amining the expression N(r, 8, P)/IP(r, 8, $) for large
P, we find that we get a contribution only when
Eq. (All) is satisfied. For large P we have

I.Q— lim N(r, 8, Q) —(1 —sin2$) .
g ao

(DS)

Ql-
l.O lQ IOQ

FIG. 7. Function f(r) versus r obtained by the com-
puter calculation. Note the r "dependence for large r.

Using the fact that we get contributions only from
4) =v/4+@, 1 —sin2@ becomes 1 —cos 2&. Substi-
tuting these values into Eq. (Dl) we obtain for very
large P,

~r'd~
Cs(T)-4gk T2 ~ (~2, 2)2

/4 cosh [(Pr/W2) sin8 sine]
(D4)

Using the table of integrals, Ref. 27, we obtain



e' d& p'v2
cosh (Pr sin8&/~2 6PPy sinP8

4~T Nc u~c
p»o (pl ' ~

t pt

Substituting this result into Epi. (D4) gives

4Xev 2 k~ T ~"" &t dh
lcm C~ =—
p ~ P -p (++&)
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