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Gaussian representations of covalent wave functions; silicon
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%e represent the pseudo wave functions of silicon using Bloch sums of s, p, and d Gaussians on atom sites.
Maximal energy ermrs of 0.17 eV for the valence band and 0.28 eV for the two lowest conduction bands can
be achieved with 18 states per atom. Localization to zeroth, first, and second neighbors is achieved with some
contribution from third neighbors. The localization is similar to free atoms. d states are needed in the valence

band but are much more important in the conduction band. A four-state s, p band fit is reasonable for the
valence band but bad for the conduction band as found in earlier empirical work. %'e attribute the conduction-

band errors to the need for d functions. The Appelbaum-Hamann self-consistent pseudopotential is

represented in Gaussian form with three coeAicients. These coeAicients could lead to a more efficient tight-

binding parameterization scheme than the conventional overlap intergral method.

I. INTRODUCTION AND CONCLUSIONS

The tight-binding method was one of the earliest
methods applied to the study of crystal band struc-
ture. ' 3 For many years it was eclipsed by the
quasi-plane-wave methods such as the augmented-
plane-wave, orthogonalized-plane-wave, ~ or em-
pirical-pseudopotential methods. 6 More recently
there has been a considerable revival of interest
in the tight-binding picture. The renewed attention
has been motivated in part by the extreme simplic-
ity of the method and in part by the localization in
r space of the basis set. The atomic picture is
still the framework in which most chemical ideas
about crystal properties are expressed, hence the
tight-binding picture forms a natural bridge be-
tween chemical concepts and band-structure prop-
erties. ' Another useful aspect of the localization
is that it is well adapted to study problems where
the crystal is perturbed by a spatially localized
imperfection such as an impurity or a surfaces or
to study amorphous covalent materials. 9

In its simplest form the tight-binding method is
not as accurate as the quasi-plane-wave methods.
However, it has been demonstrated that localized
orbitals, '~ particularly the analytically tractable
Gaussians, "are quite competitive with plane-wave
methods even when high accuracy is required and
even for those materials such as the alkali Inetals
for which plane-wave methods seem most natural.
Most of the work based on the tight-binding meth-
od excepting that of Refs. 10 and ll has been of
an empirical nature. e'~'~' The parameters of the
problem are the overlap integrals of the potential
between atomic functions on different sites, ad-
justed to fit the energy bands determined by other
methods. In contrast, we give the wave functions
explicitly as Bloch sums of Gaussians and calcu-
late their energies using a pseudopotential Ham-
iltonian. We study silicon in detail. We use s,
p, and d "Gaussians" e, xe, yze located

on atomic sites as basis functions for tight-binding
sums. We have also considered s and p Gaussians
on bonding and antibonding sites, (a/8) (1, 1, 1) and
(- a/8) (1, 1, 1).

We find a value of o. =0.20 to be nearly optimal
which leads to a localization similar to that of the
neutral atom. The bulk of the interaction occurs
between zero, first, and second neighbors but
third neighbors are not completely negligible. We

find that the three d functions which hybridize with

p are quite important in fitting valence- and con-
duction-band energies. The other two d functions
also play an important role in the conduction band.
Gur conclusions with respect to d functions are
similar to those of Chancy et aE."but more de-
tailed.

We find that the valence bands are much easier
to fit than are the conduction bands in agreement
with empirical studies. '" We blame the conduc-
tion-band fitting problems on the importance of d
fune tions.

For a 10-state per atom fit using two s Gaussians
and one p and d Gaussian we find a maximum va-
lence-band error of 0.35 eV and a maximum error
in the two lowest conduction bands of 0.4& eV. For
an 1&-state fit with two Gaussians each for s, p,
and d, the maximum errors are reduced to 0.17
and 0.2& eV, respectively. For a four-state fit
the maximum valence-band error is 0.93 or ~0.36
eV relative to an average valence-band shift of
0.57 eV. (We must compare to empirical fits in
this way since they have no absolute reference
point. )

We have also been able to achieve reasonable
fits to the energy bands using Gaussians located on
atom, bond, and antibond sites. The bond-site
states are most important to fit the valence band
and the antibond site states are needed in the con-
duction band as expected. For the same number
of states the atom centered fits are somewhat bet-
ter and are also simpler.
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TABLE I. Pseudopotential energies in eV relative to
I"25 . Pseudopotential from Ref. 14. Valence states and
two lowest conduction states. 7 =K = (2~/a) (&, 4, 0).

L3 = 3.94

Li =1.83

~~3, = —1.28

Lg = —7.44

~ 2. ——10.31

I'2i =3.92

I'(5 = 3.39

r», =0.00

I'g = —12.69

Xg =0. 90

X4=-3.04

X( = —8.41

Z) =4. 55

Z, =1.44

Z, =-2.60

Z, =-4.57

Z, =-7.79

Z, =-8.84

We cannot easily compare our results to the em-
pirically adjusted methods. In our method the ba-
sis functions overlap strongly hence there would be
too many parameters for empirical adjustment.
Instead of proceeding in this manner we believe a
much simpler method is to represent the potential
in tight-binding form and parametrize from this
point. We have used the self-consistent pseudopo-
tential of Appelbaum and Hamann~~ and have shown
that it can be represented in terms of three-atom
centered Gaussians. This is a considerable sim-
plification compared to the seven parameters of
overlap parametrization schemes.

In summary we believe a description based on
Gaussian atom site orbitals possesses many ad-
vantages relative to plane-wave or pseudo-plane-
wave descriptions for almost any application where
r-space localization is important. To go beyond
the pseudopotential approximation one need only
add more highly localized Gaussians to represent
the core functions. (Probably Slater orbitals would
require fewer functions. This must be balanced
against the analytic convenience of Gaussians. )

II. GAUSSIAN REPRESENTATIONS

A. Calculational method

sums over atom centered s, p, and d "Gaussians"
defined as

Qt

=yze

=r e

Pp ~ =Xe

y, a~ = (3x'- r')e (2)

The y~~, y„3 functions are threefold degener-
ate while the yg functions are doubly degenerate.
In Eq. (2) we Ii/t one representative of each degen-
erate set. We Fourier analyze each of these Bloch
sums in the plane-wave basis set just described
and compute the wave functions and energies vari-
ationally. By this procedure the tight-binding
states necessarily lie at higher energies than the
plane-wave states which have full variational free-
dom. The plane-wave energies of the states in-
vestigated are given in Table I in eV. The tight-
binding energies are always quoted in eV as differ-
ences from these values.

B. Single-Gaussian description

In selecting tight-binding states our aim is to
satisfy as well as possible the conflicting require-
ments of states which are highly localized, which
consist of a small number of Gaussian components
and which give accurate energies. The simplest
possible description is that of a single s and p
"Gaussian. " We find that the optimum fit here oc-
curs for an e of the order of 0.125. The energy
errors resulting from this approximation are shown
in Table II. Although the errors in the valence
band are as large as 0.83 eV the fluctuation in the
errors is small. If the valence states were rigidly
shifted by 0.72 eV, the maximum error would be
only 0.11 eV. The biggest defect of the single
Gaussian representation is the localization. For
the I », state, for example, an energy of 0.29 eV
is contributed by sixth-neighbor interactions.

We make a detailed study of Gaussian represen-
tations of pseudo wave functions using silicon as
a prototype covalent material. We use the empiri-
cal pseudopotential of Brust. '4 For this potential
a plane-wave representation provides quite accu-
rate wave functions and energies if we use a kine-
tic-energy cutoff T of 99.4 eV to limit the num-
ber of basis states: 1, 25 12, 0. 15.

0, 07 (0. 15.0, 20)
2, 25

TABLE II. Energy-band fits with 4 or 8 states per
atom. Upper values are for a single s and p Gaussian
with o =0.125. Lower values at I' are for two s or p
Gaussians with the o values in parentheses. Energies
in eV relative to pseudopotential values in Table I.

T = (2v/a)3 19.5/2 a.u. Ll O. 86 0. 42
0.21 (0. 25, 0. 30)

Xi l. 10 P3 0. 85

This leads to 89 plane waves at the I' point.
We calculate the valence-band and low conduc-

tion-band energy level s at the I', I, I., and K
points using these plane-wave basis states and we
use these energies as a standard of reference for
the tight-binding calculations.

We construct tight-binding functions as Bloch

L3. 0. 78

L 1 0. 76

L2.

0. 79
0. 78 (0. 10, 0. 15)

0, 61
0. 16 (0.25, 0. 30)

X4 0. 83 Z2 0. 80

o. 66

Xi 0.73 Z3 0. 73

O. 69
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TABLE III. Energy-band fits using 8-, 10-, and 18-
Gaussian states per atom as indicated in braces. s, p,
d, d refer to the dominant spherical harmonic content
of the g ave function. Energies in eV reIative to pseudo-
potential energies in Table I. n is in a. u.

13 0. 09 Fp. 0, 11
d2 0. 09 s 0, 11

1.96 0, 11

I., 0.26 I'„Q.13
d 0.48 p 0.23

0.48 0.23

I 3i 0 12 F25' 0 07
p 0. 19 p 0.12

0.34 0. 12

I
g 0.12

s, p 0.25
0.25

I ~i 0.16
s 0, 17

Q. 17

Fg
S

Zg

ds, p

X( 0.13 Zs
d3 0.33 ds

0, 91

X4 0.14
p 028 p

0.28

X) 0.17
s 022 s

0.27

Z(
S

0.28
0.46
1.23

0. 15
0. 32
0. 95

0. 14
0.25
0. 37

0.11
0. 35
0.47

0. 17
0, 21
Q. 24

0. 15
0. 18
0. 19

18 states 2s, 2p, 2d3, 2d ~ =0.2, 0.3
10 states 2s, p, d, d ~ =0.2, 0 =0.3 s2

8 states 2s, p, + ~ =0.2, 0 =0.3 s2

C. Two Gaussian approximation

The addition of a second Gaussian of the same
symmetry type was checked at the l point. Values
of e =no, no+0. 05 were studied. The optimum fit
is given in Table II together with the optimum val-
ues of 0. which are seen to be considerably differ-
ent for the different symmetry types. The value
of 1"», is very little improved by the second Gauss-
ian. A very dramatic improvement occurs mhen

d~ "Gaussians" are added to the basis set. This is
a clear indication of the importance of d functions
in the silicon valence band. Phenomenologically
the d& functions have the same symmetry as the P»
functions and hence are not easily distinguished in
empirical, treatments.

D. Accuracy versus localization and spherical harmonic content

We have studied Bloch sums involving better
localized Gaussians for the three cases n „=0.20,
0.25, 0.30. As n increases, the average fit gets
worse, or alternatively, to achieve the same accu-
racy one needs to use more Gaussians. We have
studied the case of a „=0.20 most extensively to
see how the fit depends on the number and symme-
try of the Gaussians. The results are given in
Table III. All states when present have n =0.2.
A value n =0.3 is also used when bvo states of the

same symmetry are present.
In general the valence bands are more accurate

than the conduction bands as would be expected for
a "tight-binding" type of representation. For the
18-state case the maximum error in the conduc-
tion band is 0.28 eV and in the valence band is 0.17
eV. Relative to an average shift of 0.12 eV the va-
lence band is accurate to +0.05 eV. In going from
18 states to 10 states we keep the same symmetries
present but reduce the number of degrees of free-
dom. The errors roughly double but the fit is still
quite good.

V@enwe go to the &-state fit in which the d states
have been dropped the maximum change in the va-
lence band is only 0.15 eV. Errors in the conduc-
tion band are now much bigger, particularly for
the L, state. We can get some further indi. cation
of the symmetry of the states by looking at the
tight-binding coefficients. It must be remembered
here that Gaussian Bloch sums of different spheri-
cal harmonics may not be orthogonal. For in-
stance, p states on first neighbors generate d
states about the origin even at the I' point. Hence
our tight-binding coefficients are very rough indi-
cations of spherical harmonic content. For in-
stance

&4r,p (p&!4r, p (d'». =0.30
= —o.69

&C.„(P& I Cr„(d'». -Q.ao
= —0» .

(These numbers explain why the d' states are much
more important for fitting I'». than they are for
I'„.& With this caveat the spherical harmonic type
of the dominant 81och sum is indicated in Table III
as determined in the 10-state fit. When two har-
monics are listed they have roughly equal weight.
The occurrence of two P and two s states in the va-
lence band at Z is surprising (instead of three p
and one s&. It is probably due both to the admix-
ture of antibonding s and to the lack of orthogonal-
ity between "s"and "p."

The fitting dependence is consistent with the
dominant tight binding harmonic assignment. L,
is more seriously perturbed by the omission of d
states than any other level. In the valence band
"P" states the p harmonic dominates while in the
conduction band d is dominant. We believe this
explains the fact that good fits to the valence band
in the traditional s-p tight binding scheme give
very poor conduction bands. As a decreases, the
overlap between P and d' increases. This might
explain why both valence and conduction bands are
poorly fit in Table II, i.e., there is too much d for the
valence band and too little for the conduction band.

In Table pl we examine the quality of the fit as
we increase the Gaussian localization. In general
the valence bands remain quite well fit up to a „
= 0.30, the morst case being the upper Z, level.
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TABLE IV. Energy-band fits vs localization of Gaus-
sians, 18 and 19 states per atom. Parameters indicated
in braces. Energies in eV rel. ative to pseudopotential
energies in Table I. & is in a. u. .

of single s or p Qaussians at the I' point. %8
%rite

L3 0. 09 I'2, 0. 11
0, 13 0. 21

0, 38 0. 22

L) 0.26 I")) 0, 13 X)
0. 47 0. 15
0, 73 0, 31

0.13 Z3

0. 40
1.04

0. 28
0. 60
l. 14

0. 15
0. 41
0. 95

&r =&0'r I HI 4r&~&@ I 4r&,

%'here I = I 1~ I ay q p =8&, p+

L3. 0.12
0. 05
0. 06

Li 0, 12
0. 14
0. 36

I 2). 0. 07 X4
0. 03
0. 05

0. 14
0. 12
0, 28

0. 17
0, 07
0. 12

0. 14
0, 10
0. 23

0, 11
0. 14
0. 53

E,=+8„(R) „

IV(y „(r) i H I y„(r - R))

L~. 0, 16
0„07
0, 08

0, 13
0. 24
0. 19

0, 17
0. 07
0. 12

0, 15
0.03
0. 06

18 states 2s, 2p, 2d, 2&II2

18 states 2s, 2p, 2d', 2flt

19 states 3s, 2p, 24~, 2'
lg =0.2„0.3

p =- 0. 25, 0. 35
n =0. 30, 0. 40 s, p, d rv =0.35s3)

The quality of fit in the conduction band decreases
monotonically as the localization increases in keeping
with the more delocalized states to be expected at
higher energy. To achieve a good fit for larger
n „has required a larger number of states. The
10-state fit which is good for g,„=0.20 in Table
III, is very bad at r, „=o.25 (not tabulated). Thus
we find that to reduce the number of interacting
atom sites we have to incxease the number of in-
teracting states per site. The optimum situation
occurs around (,„=O.20 or 0. 25.

E. Energy overlap versus shell number

%'8 have computed the energy overlap a.s a func-
t1on of nelghbox' dlsta. nce for' bonding Bloch sums

vrhere N is the number of atoms. The quantity

hr(n) is tabulated in eV as a function of neighbor
shell number n in Table V. The total of all shells
is given in the lower line and it is clear that the

single Gaussian @rave function is very inaccurate
for large a. Nevertheless the results should be
reasonably good in indicating the rate of conver-
gence with shell number. In general the p state
converges more slowly since the polynomial factor
pushes the Gaussian falloff to larger r values,
The falloff is more rapid for large n as 8~ected.
Contributions beyond second neighbors are small
for ~ =0.3. For the "best compromise value" g

=0.2 the contribution from third neighbors is not

negligible but should be small enough to be handled

by some form of perturbative technique.
It is interesting to compare the localization we

find for our Gaussian representations with that ob-
taining in the free atom. Using Clementi's Har-
tree-Fock wave functions~6 for neutral silicon in

the '5 state we calculate the shell charge maxi-
mum r ) g(r) I' for the Sp state to occur at r = 2. 18
ao. Fox' a p Gaussian the shell, charge maximum

occurs at the same value for o.' =0.21 a.u. The

TABLE V. Energy contributions in eV to overlap energies Srwn) vs shell number for

I& (s+) and I'o5, (f ) for several values of n. Bottom line is sum over all shells, See

Eq. (6). o is in a. u. .

Neighbor
shell number

g =0.125
0, 70

—0, 79
—1.00
—0, 35
—0. 04
—0. 04
—0. 01

0, 20
2. 77

—2, 49
—0. 79
—0 ~ 14

0, 00
0. 00
0, 00

O. 25
5. 02

—3, 09
—0. 43
—D. 05

0, 00
0. 00
0. 00

0, 30
7, 68

—3, 18
—0. 19
—0. 01

0, 00
0, 00
0. 00

0. 125
13.50
0. 34

~3g 42
1.11
0.27

—O. 69
0. 29

0.20
9. 15
1.85
1, 17

—0, 42
0, 03

—0. 02
0. 00

0. 25
10.52
1.23
0. 94

—0, 18
0. 00
0. 00
0. 00

0. 30
13.05
0.42
0, 56

—0. 06
0. 00
0. 00
0. 00

11.76 12, 52 13, 97
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TABLE VI. Four state per atom fit based on linear
combination of 8 states in Table III optimized at the
states starred, p(s) state optimized for upper (lower)
star. Energies in eV relative to pseudopotential energies
in. Table I.

L~ 2. 84 I'2i

3.39

Lg 1.37 I')g
1.89

0.38
0. 14

0, 28
0.75

X( 1.90
3.96

6. 58
4. 74

Zg 2O 13
3.71

L3i 0.60
0.49

L) 0.48
0.28

L2, 0, 21
0.28

I'25' 0.13" X4 0, 67
0. 93 0.34

0
0.20

X, 0.39
0.30

1, 00
0, 38*

1.51
0. 60

0.33
0.27~

Gaussian functions drop off more rapidly at larger
distances than the atomic functions.

F. Composite s, p band description

We have investigated another way of reducing
the number of degrees of freedom in the wave func-
tion which leads to an effective 4-state approxima-
tion analogous to the conventional "atomic" de-
scription in terms of s and p functions. In princi-
pal, the method is to allow the s and p states to
be described by arbitrarily many Gaussians but
to keep their coefficients fixed.

In Table VI we give the results of such a, "4-
state" approximation based on the 8-state fit de-
scribed in Table III. The s and p states are con-
structed from optimum linear combinations of
Gaussians appropriate to the states starred; the
s state from the lower-energy state and the p state
from the upper. In interpreting the results we re-
fer to the dominant spherical harmonic designated
in Ta,ble III. The s states are reasonably well
represented in both sets of numbers. The p-state
fit at the F point fits xather poorly at Z and vice
versa. The Z point fit is bettex in the valence
band at the X and L, points than is the F fit. The
d-type conduction-band fits are very bad in both
cases. This agrees with the d designation which
implies that the relative weights of p and d' states
are reversed between the valence and conduction
bands. Since the ratio is kept fixed at the value
optimal for the valence band we expect poor con-
duction band xesults. The 4-band single Gaussian
fit in Table II is much better for the conduction
band than the states in Table VI. The drawback
here is that the states are not well localized.

TABLE VII. Energy-band fits with s and p Gaussians
on atom sites, s and p(( Gaussians on bond sites b
= (aj8)0, 1,1), s Gaussians on antibond sites a b = -b.
See braces. Energies in eV relative to pseudopotential
energies in Table I. e is in a. u. .

L3 3.78
1.75

L( 1,27
0.23

L3. 0.28
0. 26

0. 37
0. 17

L2i 0. 19
0. 07

0.55
0. 05

1.02
0, 23

I'p5i 0, 07
D. 07

0.15
0. 10

X& 3.66
0.59

X4 0. 25
0.21

X( 0.29
0.19

3.54
0. 74

Z, 3.68
0.65

Zp D. 33
D. 28

Z, 0.59
0. 27

Z3 0.28
0.19

0. 19
0, 14

o =0. 20

8 states s, p Gaussians on atom site, s Gaussian on
bond site

16 states s, P atom site, s bond and antibond»te, f „
on bond site

G. Bond and antibond site description

We have also tested the possibility of represent-
ing the pseudo wave functions with Gaussians lo-
cated on sites other than atomic sites in the unit
cell. The most obvious site to add is the bond
site. We have also added s Gaussians at the anti-
bond site and p Gaussians parallel to the bond at
the bond sites. The results are shown in Table
VII. The S-state model with s and p Gaussians on
atom sites and s Gaussians on bond sites fits the
valence bands very well and the conduction bands
rather poorly. The addition of Gaussians on anti-
bond sites (r )(bong 1~ g fg ) and p„Gaussians on
bond sites has relatively little effect on the valence
bands but improves the conduction bands considerably.
Theantibondstates are more important than the p„
bondstates. The fit to the valencebands is compara-
ble to what is achieved with atom centered Gaussians
but the conduction band fit is not as good. Another
disadvantage of the bond site model is that the
overlap between different Bloch sums is much
greater. For example, the dot products analogous
to Eq. (3) are

(qr„, (atom)
~ q„,, (bond)) =0.982,"35

(7)
(q, (atom)

~ q,„(bond)) = 0.992 .
The large overlap is not a serious defect computa-
tionally although it clearly increases round-off er-
ror problems. It is more of a difficulty concep-
tually in forming a picture of what the new degree
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of freedom looks like spatially and in interpreting
the meaning of tight-binding coefficients of strong-
ly overlapping functions.

If we had picked other cell sites we could have
generated a greater number of symmetries which
would undoubtedly give better fits. The ultimate
in localized functions would presumably be achieved
by locating sharply peaked Gaussians on many sites
in the unit cell. Thus we could achieve minimal
overlap between unit cells at the expense of many
degrees of freedom in each cell. Our experience
to date suggests that atom centered Gaussians
yield the simplest and most accurate description.

H. Gaussian pseudopotential represention

In our calculations we have used a plane-wave
representation. It would undoubtedly be simpler
to work directly in the Gaussian-atom-site repre-
sentation. In this connection it would be desirable
to have the crystal potential in a Gaussian descrip-
tion rather than in the tranditional plane-wave
form. Appelbaum and Hamann have given a self-
consistent pseudopotential" in which they represent
the atomic cores in Gaussian form

They gave the self-consistent potential including
the electronic response in plane-wave form, how-
ever.

We find that by varying the coefficients vy and

v~ and adding a second Gaussian to represent the
more spread out electronic charge we can fit Ap-
pelbaum and Hamann's potential to an accuracy
better than 2%. We write the total potential

TABLE VIII. Appelbaum and Hamann pseudopotential
(Ref. 15) in Gaussian form. Coefficients in atomic units
p&, e2, n' from Ref. 15. See Eqs. (8) and (9).

3. 042

pC
2

—1.372

C

0. 6102

2.454 —1.585 —0. 934 0. 30

y...(r) = P (v, + v
~

r —R ~') e "" "
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The coefficients are given in Table VIII.
It may be argued as to whether we have a 3- or

4-parameter fit since we are free to vary n3. We
believe Q. 3 represents the scale of the electronic
interactions and hence will not change under small
perturbations of the atomic environment. It should
be possible to describe these changes in terms of
variations in the three coefficients v„v„and v3.
We suggest that empirical fitting procedures based
on these three parameters may be more useful than
the customary methods of parameterizing the over-
lap integrals which involve a much larger number
of parameters. (For cases where the electronic
screening length varies appreciably a3 should also
be treated as a parameter. )
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