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Density-functional calculation of sub-band structure in accumulation and inversion layers

T. Ando~
Physik-Department der Technischen Universita't Munchen, 8046 Garching-hei-Miinchen, West Germany

(Received 9 September 1975)

The Hohenberg-Kohn-Sham theory of an inhomogeneous electron gas is applied to the calculation of the sub-
band structure of accumulation and inversion layers on the Si (100) surface. The exchange-correlation effect is
shown to be very important and lower the sub-band energies considerably. Especially in accumulation layers
the first excited sub-band really becomes a bound state in contrast to the result of the Hartree approximation.
The agreement between the theory and experimental results of inter-sub-band optical transitions is satisfactory.
The efFective mass and the g factor are also calculated.

I. INTRODUCTION

When a strong electric field is applied perpen-
dicularly to a surface of a semiconductor, the
electronic states form two-dimensional energy
bands called electr ic sub-bands. Each sub-band
describes a. quantized motio~ normal to the sur-
face, with a continuum for motion in the plane
parallel to the surface. The structure of the sub-
bands has usually been calculated within the frame-
work of the so-called self-consistent Hartree ap-
proxlmatl. on. Stern made Rn extensive CRlculR-
tion for pg-channel inversion layers on Si. He also
calculated the sub-band structure of an n-channel
accumulation layer on Si. Effects of strong mag-
netic fields applied parallel to the surface and the
image potential arising from the existence of the
oxide layer have been investigated previously.
Bangert et al. and Ohkawa and Uemura have per-
formed a calculation in p-channel inversion layers
on Si.

Since the electron concentration of the system
can be controlled over a wide range, this system
provides a useful tool for studying effects of mutual
Coulomb interactions. There have been a number
of experimental and theoretical studies on the g
factor (g*) and the effective mass (~.*).' ' Re-
cently a direct obsexvation of optical transitions
between different electric sub-bands has become
possible, and insufficiencies of the self-con-
sistent Hartree approximation have been pointed
out through comparison between theoretical and
experimental results. ' ' A many-body effect
such as the exchange and correlation ea,n strongly
affect the structure of the sub-bands. Sterna '~5

calculated the exchange energy in the lowest-order
perturbation and has shown that the energy of the
ground sub-band is considerably lowered. Vinter
calculated the energy of the ground and the first
excited sub-band including the correlation effect
within a perturbation method based on the result
of the self-consistent Hartree approximation. Ef-
fects of the finite thickness of accumulation and in-
version layers have been pointed out to be impor-

tant, which means that mixing between different
sub-bands owing to the exchange-correlation ef-
fect can play an important role.

There is an entirely different approach to these
problems, i. e. , the density-functional formula-
tion based on the theory of an inhomogeneous elec-
tron gas developed by Hohenberg, Kohn, and
Sham. 6 ' This theory has been used and tested in.

a number of problems such as the investigation of
properties of metal surfaces and the band calcula-
tion of metals. In this paper we apply it to the
present problems of surface layers. We calculate
the charge density, the self-consistent potential,
the quasiparticle properties such as m* and +,
and the sub-band structure in. pg- channel aeeumula-
tion and inversion layers on a Si (100) surface.

In Sec. II we briefly discuss the approximation
scheme and the procedure of the calculation. We
neglect the anisotropy of the conduction band of Si
and obtain a self-energy shift of a uniform three-
dimensional electron gas within a Hubbard- like ap-
proximation. . The image effect on the mutual Cou-
lomb interaction is included in. a certain approxi-
mation. Using the obtained self-energy shift, we
calculate the sub-band structuxe. In See. III the
results and some discussions on them are given,
and they are compared with the results of the Har-
tree calculation and with experiments.

II. PROCEDURE OF CALCULATION

Hohenberg, Kohn, and Sham 6* have shoe n that
the density distribution of an interacting electron
gas under an external field can be obtained by a
one-body Schrodinger-type equation containing an
exchange-correlation potential p„, in addition to the
usual Hartree potential and the external potential.
Such an exchange-correlation potential p„, is given
by taking a functional derivative of the exchange-
correlation part of the ground-state energy E„with
respect to the number density n(r) of electrons.
The functional form of E„In(r)] is not known and
is replaced by a product n(r)g„(n(r)) in the usual
local approximation, where e„,(n) is the exchange-
correlation energy per electron of a uniform elec-
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tron gas with the density g. In this approximation
v„(r) becomes the exchange-correlation part of the
chemical potential p.„of the uniform electron gas.

Such theory can easily be applied to the present
problem. One has to add v„(z) to the usual self-
consistent Hartree equation. where z is the dis-
tance into the bulk mea, sured from the surface. It
is sufficient to confine ourselves to the sub-bands
associated with the two valleys which present the
highest mass for motion perpendicular to the sur-
face. These have the lowest kinetic energy and
the lowest energy levels, and only the lowest sub-
band is usually occupied by electrons at zero tem-
perature. The Schrodinger-type-equation is writ-
ten

(
O' Il—k —,+ V„,(z) g„(z)e"'

2&i) 2&i)

= z„(I )&„(z)e"', (2. 1)

where k= (k„k„)and r =-(K, y) represent two-di-
mensional vectors in the plane (zy plane) parallel
to the surface, and m& and m, are the effective
mass in the direction parallel and perpendicula, x

to the surface, xespectively. The effective poten-
tial V,«(z) consists of the usual electrostatic po-
tential v(z) including the Hartree potential of elec-
trons themselves and the exchange-correlation po-
tential v„,(z). One can decompose v(z) into

v(z) =v„„(z)+v, „,(z)+v2(z),

4ne
v, t&)= &t, — t* —*'t t*')d*'),

Ksc 0
(2. 5)

I ~.( )I',
Oeeqyi@d&n2k3 (2. 6)

where n„and g, are the valley and the spin degen-
eracy, respectively.

In order to get v„(z) one has to calculate il„of
an electron gas characterized by anisotropic mass-
es m, and m, . As has been discussed by several
authors, however, such an anisotropy effect is
expected to be small in Si. ~o' Therefore, one
replaces p,„by the chemical potential of an elec-
tron gas which consists of electrons with a.n iso-
tropic mass m„, defined by

where N~» =N„z„, z, =(«„IZzi/2ve'N„) ~', «„
and K„are the static dielectric constant of silicon
and its oxide, respectively, N~ is the concentration
of surface electrons in a, unit area, E~ is the
Fermi energy in the bulk measured from the con-
duction band edge, and N~ is the concentration of
the fixed space charges in the region where the
band is bent down. In case of an accumulation
layer N, is the acceptor concentration, and in. case
of an inversion layer N„ is the acceptor concentra-
tion minus the donor concentration. The density
distribution is given by

w ith
1 1 2 1

Ploy 3 Pl
g

'PB)
(2. 'I)

(4»z'/«„)X„„z(1 —z/2Z, ),
(4»e /K„)N„„,2z, , —

(2. 2)

(2. 4)

One has to include the interaction with images of
other electrons because of the existence of the
oxide layer with a different dielectric constant.
The electron-electron interaction is given by

2
K~ c

—
K~x e

«„[(r,—r, ) +(z, —z, ) ] «„(K„+«„)[(r, —r2) +(zl —zz) +4z, z2] ~
(2. 8)

Since we are employing the local approximation,
we expect that the image effect is taken into ac-
count to a great extent in the following manner.
That is, v„(z) is replaced by il„of an electron
gas where the mutual interaction between elec-
trons at (r„z,) and (r2& z, ) is given by

8
~(rl& Zl& r2& Z2& Z) —

(r r )2 ( )2]ly2

K„-K„e
«„(«„+» ) [(r, —r2)'+(z, —z, ) +4z ]'

(2. 9)
The exchange-coxrelation potential g„, becomes
dependent on z explicitly. Since p,„is related to

the quas ipartiele ener gy at the Fer mi surf ace
through

(2. 10)

one has to calculate the self-energy of electrons.
In this paper we take into account those diagrams
shown in Fig. 1, in which the vertex correction is
included in a Hubbard-like approximation. 3 De-
tails of the calculation are given in the Appendix.
Examples of the results of a numerical calculation
ax'e shown in Fig. 2, where p,„(y„g) is shown fox
several g a.s a function of y„defined by ~z,
= I/agkK, at = (2n„n, /92) ~, and ag =KII /f72028,
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FIG. 1. Approximation scheme in the calculation of
the self-energy. Vertex correction is included in a
manner discussed by Hubbard, and the Coulomb inter-
action in the vertex correction is screened by the
Thomas-Fermi dielectric function.

)fk k k„by(k)+ =F.—g+ + p„,
2fRoy 2moy

(2. 11)

where K = -,' (K„+K,„) and a = 2k/ 8 . Strictly
speaking, the energy eigenvalue «„(k) obtained
from Eq. (2. i) does not represent the quasiparti-
cle energy. Sham and Kohn proposed a local en-
ergy-dependent exchange- correlation potential
which gives quasiparticle energies. According to
their theory one should use the self-energy shift
&&(k) which satisfies

instead of p„, where E is the energy of a quasi-
particle and p, is the chemical potential in the sur-
face layer. The properties of quasiparticles near
the chemical potential can be derived in the low-
est-order perturbation, and m* is given by

PHg
1

m* =- —' —' m*(n(z); z) n(z) dz n(z) dz
$22 Op Q 0

(2. i2)
If one makes a similar argument, one gets the fol-
lowing expression for g* under weak magnetic
fields:

1 CC& -1
g* = „m*(n(z); z) g*(n(z); z) n(z) dz n(z) dz

(2. is)
where m*(n(z); z) and g*(n(z); z) are the effective
mass enhancement factor and the g factor, re-
spectively, of the uniform electron gas. These
quantities m*(r„a) and g*(r, ; a) are also calculated
jn the Appendix and t~e results are shown in
Figs. 3 and 4.

The self-energy shift 4z(k) in the case of a= 0
is shown in Fig. 5 as a function of (k/kr) together
with the exchange energy calculated in the Hartree-
Fock approximation. The k dependence of the self-
energy and consequently the energy dependence of
the potential is important in the exchange-only ap-
proximation, and higher sub-bands are not so much
affected by the exchange interaction compared with
the ground sub-band. The energy dependence of
the potential becomes much smaller when the cor-
relation effect is taken into account. One might
be able to use this result in calculating the sub-
band structure. However, such a calculation re-
quires long and tedius computer work, and further
it is expected to give a result not so much differ-

4 1.0—
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FIG. 2. Exchange-cor-
relation part of the chem-
ical potential p„~ of a ho-
mogeneous electron gas
where the mutual interac-
tion is given by Eq. (2.9).
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FIG. 3. Enhancement
of the effective mass of a
homogeneous electron gas.

1.00
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ent from that obtained by the use of the energy in-
dependent v„,(z). In this paper, therefore, one
uses v„,(z) in calculating the energy of the sub-
bands associated with the lower two valleys. In
order to calculate the energy spectra of the sub-
bands associated with the different four valleys one
has to use a different exchange-correlation poten-
tial. According to the theory of Sham and Kohn
one should use the self-energy shift 6& (k) of an
electron of these four valleys, which satisfies the
same equation as Eq. (2. 11). This energy shift is
also calculated in a similar approximation in the
Appendix. Examples of the results in the case of
a = 0 are shown in Fig. 6. In the exchange-only ap-
proximation, there is no energy shift because

there is no electron in these valleys. If one in-
cludes the correlation effect, however, one gets an
energy shift comparable to that of electrons in the
lower two valleys. We again neglect the energy
dependence and use here b, z (k= 0). Examples of
obtained ne (0) are shown in Fig. 7. Since the k
dependence of 4& (k) is larger than that of he(k),
the neglect of the dependence is less justified in
ease of && (k).

By using the numerical results one can con-
struct an interpolation formula of v„(r„' a),
m~(r„a), and m'~Q(r„' a) which covers an impor-
tant region of r, (0. 5( r, ( 7) and can be extrapolated
into the region of y, larger than seven. After
getting such a formula one can easily solve the

1.3

FIG. 4. Enhancement of
the spin susceptibility of a
homogeneous electron gas.
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III. RESULTS AND DISCUSSION

alues, m, =0. 195m&, m,H re oneuses the vaue, , = . m
= 0.916m, tg„= g, = 2,

is the mass of a free electron. An ex-
lec-' t t potential and the e ec-ample of the self- ' tlf-consisten po

case of accumula iontron density in case n

c 3, ~= — meV, N „=7.
) is shown in Fig. ogand Ns =

H t ee approximation.suit of the Har ree
ch sub-band is lomereenergy of eac re
e-correlation ef ec ls

t t for higher excited sub-ban s ln c
result of the Hartree- oc

it becomesnt of the electron densl yspatial exten o
re of the sub-bands issmaller and the structure o e s

1.0— FIG. 7. Quasiparticle
energy shift 4d'(A. = 0) of
an electron in the higher
four valleys as a function
of xs'
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FIG. 8. Charge-density distribution of electrons,
the self-consistent potential, and the edges of the sub-
bands in an accumulation layer (Nd, »=7.7&&10 cm ).
Broken lines represent the result of the Hartree ap-
proximation and the solid lines the present result.

FIG. 10. Chargedensity distribution of electrons,
the self-consistent potential, and the bottom of the sub-
bands in an inversion layer (N~, &=1.55&&10 cm ). Bro-
ken lines represent the result of the Hartree approxima-
tion and the solid lines the present result.

strongly modified. This shows that mixing be-
tween different sub-bands is large and that a per-
turbational calculation including only a single sub-

40
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FIG. 9 Sub-band energies and the Fermi energy
measured from the bottom of the ground sub-band in an
accumulation layer (see Fig. 8). Broken lines represent
the result of the Hartree approximation and the solid
lines the present result.

band is not satisfactory in the accumulation case.
In the Hartree approximation only the ground sub-
band is localized in the surface region, and all
other sub-bands become more extended and are
quasicontinuum states. Consequently, a line shape
of inter- sub-band optical transitions either has
structure corresponding to transitions from the
ground to excited sub-bands or is very broadened,
depending on the strength of scattering from im-
purities and surface roughness. When the ex-
change-correlation effect is taken into account, the
first excited sub-band becomes also localized in
the surface region. One can expect that the line
shape becomes sharp. This is consistent with the
experimental results of Kamgar ef. gl. ' who ob-
served a very narrow line shape similar to that
observed in an inversion layer. 3 The energy of
the edge of each sub-band measured from that of
the ground sub-band is shown in Fig. 9. This
again shows the importance of the exchange-cor-
relation effect clearly.

An example for an inversion layer (N =1.65
x

A

10 cm, E~= —1.12 eV, N&, ,
——1.55x10 cm

and X~ =1.0&10' cm ) is shown in Figs. 10 and

11. Since there is a strong electric field of fixed
space charges, the structure of the sub-bands and

the electron density are not so much altered as in
the accumulation case. ~5 However, energies of the
sub-bands are strongly lowered by the exchange-
correlation effect. The decrease of the energy of
the ground sub-band and of the first excited sub-
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The effective g factor under weak magnetic fields
is also shown in Fig. 12. The present result is
slightly smaller than that of Ando and Uemura, '
but its N~ dependence is similar. At very low
electron concentrations + decreases with the de-
crease of the concentration. This behavior is
similar to the result obtained by Ting et gl. and
is thought to arise from an insufficient vertex cor-
rection in the approximation of the self-energy.
The predicted N~ dependence of g* is the same as
experimentally observed by Fang and Stiles, and

by Kobayashi and Komatsubara. However, the
absolute value of + cannot directly be compared
with the experiments, since the experiments have
been performed under strong magnetic fields. Un-
der strong magnetic fields one has to take into ac-
count the singular nature of the density of states.

Since the thickness z„of the fixed space-charge
layer is much larger than the thickness of accumu-
lation and inversion layers, the sub-band struc-
tures is determined only by the value of N~, , ir-
respectively of each value of N„and E~. The en-
ergy splitting between the ground and the first ex-

FIG. 11. Sub-band energies and the Fermi energy
measured from the bottom of the ground sub-band in an
inversion layer (see Fig. 10). Broken lines represent
the result of the Hartree approximation and the solid
lines the present result. Dotted curve represents the
result of the Hartree approximation in which the image
effect is neglected.

Effective g-Factor g'lg

band is larger than that of Vi.nter who calculated
the energy shift perturbationally starting from
Stern's Hartree result. The energy of the lowest
sub-band Eo associated with the higher four val-
leys is almost the same as that of the first excited
sub-band of the lower two valleys. This is a
similar behavior as the result of the Hartree ap-
proximation.

The effective mass m* is shown in Fig. 12. For
accumulation the mass is slightly larger than for
inversion. If the mass is calculated perturbation-
ally by including only the ground sub-band, it be-
comes larger in the inversion case, since the
spatial extent of the electron density is smaller
and the effective Coulomb interaction is larger in
the inversion case. It is not clear whether this
difference relates to the mixing between different
sub-bands or whether it relates to an insufficiency
of the Hohenberg-Kohn-Sham theory. The present
result is larger than that of Vinter, 8 but is still
smaller than the experimental results of Smith and
Stiles. Recently Lee et gl. also calculated the
mass neglecting the mixing. Their result is
larger than the present one.

1\2

1.0
2

N~ (10'2crn 2)

FIG. 12. Enhancement of the effective mass and the
g factor. The g factor obtained by Ando and Uemura
(Ref. 16) is also shown for the sake of comparison.
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FIQ. 13. Energy splitting between the ground and the
first-excited sub-band for several N„epf ~ Experimental
results in an accumulation layer (Refs. 20, 21), in an
inversion layer (&, Nd, ,=1.8&10 cm ) (Ref. 23) and
the results of photoconductivity measurements in an in-
version layer (b„N~,&=1.0 &10' cm 2) are also shown.
Photoconductive response gives two peaks.

cited sub-band is plotted as a function of N~ for
several N~„, i.n Fig. 13. In ease of small N„
(~ 10 cm ) corresponding to the accumulation
case, the energy splitting is determined by the po-
tential of electrons themselves and is almost inde-
pendent of N~„,. If one neglects the so-called
vertex correction, the energy of the inter-sub-
band optical transition becomes the same as the
energy splitting shown in Fig. 13. The experi-
mental results for accumulation ' ' are shown in

Fig. 13. The Nz dependence of the theoretical
and the experimental results is the same, and
their absolute values agree with ea.ch other. The
experimental results for inversion (Xd„,=1.8
x10' em ) (Ref. 23) are also shown. The calcu-
lated energies are larger than the experimental
values, but the N~ dependence is almost the same.
Wheeler and Goldberg measured photoconductivity
and observed two peaks in the photoconductive re-
sponse. Their results are also shown in Fig. 13.
The two peaks show the same X~ dependence as
the theory, but such a two-peaked structure can-

The author is grateful to Professor J. F. Koch
and Dr. A. Kamgar for many valuable discussions.
I wish to thank Professor J. F. Koch and all the
members of Physik-Department der Technischen
Universitat Munchen for their hospitality.

APPENDIX: CALCULATION OF A SELF-ENERGY SHIFT

When one includes the diagram shown in Fig. 1
and employs a Hubbard- like approximation, one
gets the following expression for the shift in the
quasiparticle energy of an electron with a momen-
tum P, a spin o', and a valley index g:

(- IPa')

with

~&@
V( )

I »(qi (u) ~o 8 k
2vi z(q, cu)

' ~'2m„
(Al)

z —8 k /2m» —i0 z —k k /2m, + i0 '

(A2),

c (q, (u) = 1+ V(q) Q ll,„(q, (u) I',„(q, (o),
ay

~»(S ~) =1
kz igz II»(qi ~) ~

Vt(q'+ k' )' "]
+k~

(A3)

II,„(q, ~) =P . G', "(k, &) Go"(k+q, z+ ~), (A5)
2ms

where g„„=1for k& jp~, n~,„=0for 4& k~, and the
vectors used here are three dimensional. The
Coulomb matrix element V(q) is the Fourier trans-
form of Eq. (2. 9) and is given by

4me 1 K, 1
V(q) = —, —I+~ + — 1 —~ 2qz E~(2qz)

Ktg i 2 K~~ 2 K

4ve
E(2qz),

Kg

not be explained by the present theory. The ne-
glect of the vertex correction might not be fully
justified in our system, if one considers the im-
portance of the many-body exchange-correlation
effect. One can conclude, however, that the
agreement between theory and experiment is sat-
isfactory at the present stage.

Recently there have been many attempts to in-
clude nonlocal terms such as a gradient of the ef-
fective potential in the Hohenberg-Kohn-Sham the-
ory, and there has been criticism on the local the-
ory. The applicability of such local theory should
also be checked through comparison with various
experiments. Our system is suited for such kind
of investigations.

ACKNOWLEDGMENTS
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where K~(x) is a modified Bessel function. The
Thomas- Fermi dielectric function &» (q) is given
by

{q)=1+ V(q) firn P fl,„(q, 0) .
q 0 ay

As has been discussed by Rice, 3 one should re-
place the energy variable in the self-energy by a
free value 0 0 /2m„ in case that only the lowest
diagrams are included. After a little manipulation
one gets

q„tq„*)=Z(q, = " — E(q )tt —-'q)dq — ( dq~'2m„no~ ver, o

1 (2+ q)'+ (u'qs(q)(t —
t )

1
t )

Rq,
s Oy

where the length and the energy are measured in units of kF and ll kF/2m„, respectively, and

cs(q, i'd)q) = 1 + Drs 2 +(qP) 2 q ) i q 2 gg2 q +0(q) ztd)q) q

(A8)

1 tq) +4 —q {q+2) +tq) Q7 g 2+q -y 2 —q
fls(q, i~q) = —+—' ln, 2 2

——tan +tan
(fII'- 2J + N EO

As for the effective mass m*, one gets

&rs q
( )

&rs +(q &&s &~ p( ) 1
ms w t) 2 v t) qts(q, 0) 2v t) t) 2v &s(qq it))q)

(q+ 2)'+ (u' 4(q+ 2) 4(q- 2)
(q-q)' ~ '

tq ~ q)' ' tq-q)' ') '

(A10)

The spin susceptibility m +/m„g can be obtained
ferentiating the self-energy with respect to n~, „.,
t ional to 5„g„„.

V(k- k')
(-- ' a'u'/2 —a'u"/2 )

I2

Go k+q + +Go k
FP2 pg

By using the relation

by the use of Landau's Fermi-liquid theory. After dif-
one gets part of Landau's f function which is propor-

q2

(A12)

"+ sf&Kkm*g* m* a' (2v)' ' ' ' '-' 'F'- (A13)

2 3

I'(q, itd)q) (q+2) +w

q +1+(2/2)n„nsarsFf(q +1) ~ a] (q —2) +&a

2 fT(q +1)'~2)2j" ' 1 {2/) . P("1)'"~"'{q' "
In order to ca, lculate the self-energy shift of electrons in the higher four valleys, one has to put

Gt)" (k, e) = (e —ll'02/2m„+ i0) ' .

Further, the vertex correction in the self-energy part vanishes. Therefore one gets

(A15)

dtt)
( )

Gt) "(k+Qq 8 fs /2m +)d))
Zs„kq k 2m„=

2
. &q

( )
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At 4 = 0 it becomes

(o, o)= --, — ( )
1 aq

ASK 7TH%'q „O 6 (q, 1(d q) q + (d

c(q, iraq) = & + (2/v) nr, (n„n,/q ) F(qa) I'(q, iraq)?Io(q, iraq) .

~oie added in proof: A recent measurement of the capacitance has revealed that)qq„q =&.0&&O

which is smaller than the equilibrium value.

(A19)
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