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Thermoelectric power of compounds with cerium: Influence of the crystalline field on the
Kondo effect

A. K. Bhattacharjcc
Groupe de Physique des Solides de l'Ecole Norrnale Superieure, ~ Tour 23, 2 Place Jussieu, 7522/ Paris Cedex 05, France

B. Coqblin
Physique des Solides, Universite Paris-Sud, Centre d'Orsay, N405-0rsay, France

(Received I4 July 1975)

The inAuence of the crystalline field on the Kondo effect of compounds with cerium is studied in the
framework of an effective Hamiltonian which describes the resonant scattering character of cerium and which
takes into account combined spin and orbit exchange scattering. The third-order perturbation-theory
thermoelectric power is computed exactly in the case of two levels split by the crystalline field. The model is

applied to the thermoelectric-power measurements of Ce, „La„Al,and the agreement with experiment is good,
especially for low cerium concentration.

I. INTRODUCTION

Cerium in compounds such as CeAl~ and CeA13
is magnetic and presents a Kondo effect due to the

large resonant scattering which arises from the
mixing between conduction and 4f electrons, be-
cause the cerium 4f level is close to the Fermi
level. Such cerium compounds exhibit also a crys-
talline field, which deeply affects the nature of the
Kondo effect. The influence of the crystalline field
on the Kondo effect in cerium compounds has been
extensively studied in the framework of an effective
Hamiltonian which takes into account combined spin
and orbit exchange scattering. ' It has been found,
in particular, that the magnetic resistivity com-
puted by third-order perturbation behaves loga-
rithmically at low temperatures, then goes general-
ly through a maximum at a temperature corre-
sponding roughly to the over-all crystalline-field
splitting and behaves logarithmically at high tem-
peratures, with a slope higher in absolute value
than the low-temperature slope. The experimental
resistivity of CeA12 and CeA13 is accounted for by
this model except at very low temperatures; in
particular, the resistivity of CeA13 is still de-
creasing rapidly with decreasing temperature dow&z

to the lowest measured temperature.
Recent measurements of the thermoelectric

power in Ce, „La„A1,compounds' can provide a
new check of the preceding model. The Seebeck
coefficients of Ce, „La„A13present a large positive
peak at a temperature between 25 and 50 K and
reach "giant" values up to 50 pV/K, as shown in
Fig. 6. The thermoelectric power of rare-earth
alloys and compounds has been theoretically
studied4' but no precise calculation has been per-
formed in the case of the resonant scattering ap-
propriate to cerium impurities. Peschel and
Fulde4 have initially considered the case of two

nonmagnetic singlets separated by an energy 4 and
they have found a maximum in the Seebeck coef-
ficient at a temperature of order 0.36. Then,
Takayama and Fulde' have studied again the ther-
moelectric power with a general Hamiltonian de-
rived by Hirst, but no quantitative calculation is
available for the resonant scattering. We will
compare these previous works to our work in Sec.
VI.

The purpose of the present paper is to compute
in the perturbation theory the thermoelectric power
within the framework of the effective Hamiltonian
which describes the resonant scattering and which
takes into account both the crystalline field and the
combined spin and orbit exchange scattering.
Finally, we will apply our theoretical results to
the case of Ce, „I.a,A1, compounds.

II. THEORETICAL MODEL

We will compute the thermoelectric power in

the pexturbation theory. In presence of a crys-
talline field (CF), the first perturbation term
which yields a nonzero contribution to the ther-
moelectric power is the third-order term, instead
of the fourth-order term in the Kondo problem
without C F. ' Therefore, we can use the third-
order calculations, in particular, the relaxation
time, which have been already derived in Ref. 1
for the resistivity and we will take the same nota-
tions as in Ref. l.

Within the framework of the ionic model, the
ground-state multiplet of a cerium impurity (4f ~

configuration) corresponds to j=2 (l =3, s= &).
The spin-orbit splitting is known to be much larger
than the CF effect, so that we can restrict our
consideration to the ground-state multiplet alone.
In a CF of hexagonal symmetry, the j= & level is
split into three doublets, each characterized by a
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given j', value, i.e. , j,=+~, + z, +~, respectively
correspond to the eigenstates of the three doublets.
On the other hand, a CF of cubic symmetry splits
the j= —level into a. doublet I'7 and a quartet Fs,
the energy eigenstates being linear combinations
of the eigenstates of j, as given in Ref. 1. The
following treatment is valid regardless of the sym-
me try type of the CF. We shall use M to denote
the quantum number characterizing a CF eigen-
state of energy E„.

By applying the Schrieffer-Wolff transforma-
tion on the Anderson Hamiltonian, the following
Hamiltonian for a Ce impurity in a metallic host
has been previously obtained~:

centration of Ce atoms. Rk and S„respectively,
denote the second- and third-order term.

At this point, as in Ref. 1 we switch over to in-
dices representing the CF energy levels rather
than the eigenstates: let i (=1, 2, 3, . . . ) denote the
energy level E; of degeneracy n;. Then

R» =A++ dt

p
)

f„=(1+e"»)',

where the prime on the summation is to indicate
that the term i =j is to be omitted. f, is the Fermi
function

0 = ~ ~k'P2kM+~E, )f+M ~ JMM. Ck. M CkMCMCMo A =Qn; g;; + n;J;; (n;) 1— (8)
k, M k»k'

M', M'

+ MM Ck'M CkM

M

Here Ck~M represents the operator for creating a
conduction electron of energy ek in the partial-
wave state M (in the subspace of I = 3, s= —,', and

j = —,), while Cte represents that for creating an
electron in the localized CF state M of the Ce ion.
nkM and nM are the corresponding number opera. -
tors. The energies ek and EM are defined with
respect to the Fermi energy. The exchange-cou-
pling parameters are given by

with

we have

(n )=e ~ go. e ~~.

(10)

(12}

(2)

with a cutoff 0 such that 4», =0 if I ck I or
is greater than D; the cutoff D is chosen to be of
order the mean value EM. Vk& denotes the matrix-
element of mixing between the 4f and the conduc-
tion electrons at the Fermi energy. The elements

In Eq. (8) the first term represents elastic scat-
tering, while the sum gives inelastic processes.

The third-order term can be written

where

represent pure direct scattering. (n„) is the

equilibrium population of the state M. Clearly,
for cerium impurities

(3)
1

g( }=+
e c a a

—(d
(14)

is the usual function appearing in the Kondo prob-
lern and

(n„)=1. (4)

With the Hamiltonian (1), we follow Kondo's ap-
proach' of calculating the scattering amplitude in
the second Born approximation. The scattering
probability is then calculated up to the third order
of perturbation. This calculation has been pre-
sented in Ref. 1: here we simply quote the results.
The relaxation time of a conduction electron is
found to be

C', =2a;[J;;J, , (n;) (n;ot. , —5;,)

—V, , J';, o, ((n, ) —(n,))], (15)

(16)

Clearly, we have

Note that in writing Eq. (13) for S„,terms of third
order that are not proportional to the function
g(u) have been neglected.

(2j+1)w@' 1 S»

mkvoc Rk I(l k
(5) III. DERIVATION OF THERMOELECTRIC POWER

where ~n is the mass of the electron, k is its wave
number, ~'0 is the sample volume, and c the con-

The thermoelectric power is given by the clas-
sical formula
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'f.S = —— Ek — Tk ~6k

7'k ~6k (18)

We thus obtain Sn/R2» by multiplying Eq. (13) by
(28). By defining

n„&t,I'I=- ' j tt, (-' ')
with e &0.

It is easy to check that Rn given by E&I. (6) is an
even function of &k so that

a'(en+ ~)
[1 f (1 e&&&& )]II n t

we finally obtain

(31)

k (19)
S =

&q) 2 Q C&ct(h«0)k~ 1 n(pe)

where

"
S& sfn

g) R2 ~k ~k)eT O' Rk
(2o)

(21)

(32)

where n(ee) is the density of states at the Fermi
level for one spin direction, and

(22)

where X&& are the roots of Rn(fn) =0. We follow
the method of Ref. 1: the labeling scheme is such
that for negative P;, values, X;,. is the root closest
to and smaller than P... whereas for positive P;,.
values, X;, is the root closest to and greater than

P;&, The coefficients p. ;,. have been explicitly
given in Ref. 1. It can be shown that

(23)

It turns out to be convenient to write (in analogy to

p;i)

x;,. =(I —e"ai) ',
l. e. ,

(24)

The inversion of Rk has been worked out in Ref. 1, il
nn'

2P Dl Ann' 2 linn'Ynn

j &n&& ( nn' P&i} ~nn' Pi j

Ann Ci gg

The calculation can be considerably simplified by
using some symmetry properties of the intergrals
G„(5,5'). Let us introduce. '

g(e, +6)
[I-fn(l —e"'}]"

Bynohng that g(&I&)=@(-&u), and also that for e„,
= &k+»

4;i ——(1/p) ln(1 —1/&;i) .
Then, we have

One easily obtains

Now, we have

~R A~ (f x ~ f

~ rI P fffn
+ig

(26)

(26)

(29)

sf. e" sfn
sea [1 -fn (1 —e }] sen

it is easy to deduce the following relations:

G, (&, &') = e "' [G,(&+ &', O) + p6'r, (6+ &', O)], (36a)

ePQ+6' )

G, (6, 6') = „, [G,(O, 6+ 6') - P6r, (0, 6+ 6')]

(36b)

(36c)

(36d)

The symbol g~„means that we sum over m and n

except for m=n and mn=ij. Clearly, we have

Yij Yji ~

In order to calculate S we thus need to evaluate
only four integrals: G,(5, 0), G,(0, 5), r, (5, 0),
r&(0, 5). This is done in Appendix A, by using the
expression of g(m) in terms of the digamma func-
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S( (LV/K)

E()= ( )(„~ 1 . z)n—
2

where D and co ar
are (with 5 expres d

'
&u are expressed in K. The re
xpressed in K

r ~(5t 0)=ln +Ref i
D 27' T

Imp' i
2~T '2~T (38b)

(5/T)' -
2~T

ggr l) ln +Ref 'l

2mT 2 '

(37)

(38c)

(38d)G, (5, 0) =—l+ — Imp' i' ' -2T 2T '2T
Here ]&(z) and q'~' z(z) are the digamma andz a an trigamma

pec ively.
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Thus, in order to have an idea of the variation
of the thexmoelectrie power in the ease of more
than two levels, we can use the so-called "f,=,
approximation, "which consists in replacing f, in
the denominators of R, and S~ by its Fermi level
value ~. ~ In this section we will first compare the
exa«result and the f, = 2 approximation result in
the case of two levels and then we will briefly de-
scribe the ease of three levels.

The f~ = ~ approximation yields an energy-inde-
pendent RA, term that we call R,

FIG. 4. Seebeck coefficient S (expressed in. pV/K) vs
temperature T (in K) in the tvvo-level case: comparison
between the exact calculation (full lines) and the "fz= 2
appl oxlmatlon (dashed lines) for two values of Jgg'. ef(g
= —0. 15 eV and J&& = —0. 3 eV. The other parameters
used here are: V&&=0. 07 eV, n(&F) =2.2 states/eVatom,
D = 850 K, 6( =2, n2 =4, 5= 150 K, 'U = —0. 3 eV.

If we use the symmetry relation (36c) for G&(5, 0),
the expression (42) can be also written again as

g (1;-1,) G,(~, , 0). («)ks n(q„)
f, l

(i&5 }

The comparison between the f, = ~ approxima-
tion results and the exact ones computed numeri-
cally from the expression (32) is shown in Fig. 4
in the two-Level case. The parameters used in
Fig. 4 are 4=150 K, @&=2, F2=4, 'U= —0. 3 eV,
and two values of J», i.e. , 4» = —0.15 and -O. 3
eV. %e have chosen these two eases because they
represent, two typical cases for the behavior of S.
We see that the f„=2 approximation result differs
noticeably from the exact one by an amount which
ean reach 50% of the exact value; from that point
of view, the thermoelectrie power differs from the
resistivity where the difference between the f„=—,

approximation calculation and the exact one is
much smaller. However, as shown on Fig. 4, in
spite of the differences in magnitude, the shapes
of the thermoeleetrie power curves and their qual-
itative features are the same. Therefore, we
believe the same would be true for the case of
three levels or even more than three levels.

Figure 5 shows the thermal variation of the See-
beck coefficient computed in the f, = k approxima-

S( (LV/K)

20- 120K

so that the thermoelectric power ls given by

k~ 1 "'"
Bf~S=——

~
— Pf S

R
(40) 10-

60K

IOK

20K

S, =QC!Z(~..n, ;).g ~l +(ek++li) (4l)--Pg~
I

50 100 T(K) 150

By use of the definition (31), S becomes I'IG. 5. Seebeck coefficient 8 (expressed in pV/K) vs
temperature T (in K) in the three-l. evel case treated in
the "fq ——+2 approximation": dependence on ~2( (in K).
The parameters used here are: V&=0. 07 eV, n(&+)
=2.2 states/eVatom, D=850 K, G&=o.&=~3=2, &3&
=130 K, 8'(~=-0. 145 eV, v = —0.28 eV.
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tion for the case of three levels split by the CF
effect. The parameters used in Fig. 5 are D
=850 K, n(e~) =2. 2 states/(eV atom), '0 = —0, 28
eV, ~»=-0. 145 eV, n, =n2=n3=2, an over-all
CF splitting ~»=130 K and a distance ~~, between
the ground state and the first excited state varying
between 20 and 120 K. We have chosen here the
parameters which mill be used in Fig. 6 for
Ceo 0&Lao 99A13, except that we mill take the two-level
case with a doublet ground state. Therefore, Fig.
5 is useful to compare the three-level case to the
two level with a doublet ground state, when the
over-all splitting is the same in the two cases.
We observe in Fig. 5 that, when 62, increases we
obtain both an increase of the magnitude of the
peak and an increase of the temperature of the
peak which occurs at roughly n2, /3. Even for a
4» value much smaller than 5», there is only one
peak which becomes broader when 42, increases.
Finally, all the curves with hz, varying from 20 to
120 K have essentially the same shape, with only
a change in the location and the magnitude of the
peak.

VI. COMPARISON WITH EXPERIMENTS AND CONCLUDING
REMARKS

In previous papers, we have applied our model
to the resistivity of CeA12 and CeA13 compounds
at normal pressure' or under high pressure
and reasonable fits have been obtained except at
very low t:emperatures. Here me would like to
finally apply our model to the giant Seebeck coef-
ficients of Ce& „La„A13compounds. Figure 6
shows the experimental values of the "magnetic"
Seebeck coefficient of Ce, „La„Al,for x= 0. 99,
0. 9, 0.5, and 0, as well as the four corresponding
theoretical curves. The experimental "magnetic"
Seebeek coefficient corresponds to the difference
between the measured Seebeck coefficients of
Ce, „La„Al,and of LaA1, (Ref. 3); this procedure
which is equivalent to the Matthiessen rule is
certainly justified here because the magnetic See-
beck coefficient and the corresponding value for
LaA13 are never of the same order of magnitude.
The Ce, „La,Al, have a hexagonal crystallographic
structure so that the j= & multiplet of cerium is
split into three doublets. However, since me can-
not really evaluate both the distances ~» and ~3)
only by resistivity or thermoelectric power ex-
periments and since moreover the Seebeck coef-
ficient keeps the same shape in the three-level
case as in the two-level case with a doublet ground
state according to Fig. 5, me have determined the
theoretical curves of Fig. 6 by taking the exact
two-level case with ~&=2 and ~~=4; we have taken
also V,&--0. 07 eV, n(e~) =2. 2 states/eVatom, D
=850 K and only 4, g, and d, ~ are considered as
adjustable parameters. The value of the maximum

S( p. V/K)

&I T(K) zoo

FIG. 6. Comparison between experiment and theory
for Ce~ „La„Al3.Experimental points show the differ-
ences between. the Seebeck coefficients of Ce& „La„Al3
and of r,aAl3 for x=0. 99 (o), 0. 90 (Z), 0. 50 (0), 0 (x).
The theoretical curves correspond to the exact two level
case {G.'& = 2, n& = 4) for V~&

= 0.07 eV, n (&+) = 2. 2 states/
eVatom, D=850 K, and the following set of parameters:
curve (a): Q=130 K, w = —0.27 eV, J&~ = —0.145 eV
(i. e. , E~= —395 K); curve (b): Q=166 K, a= —0. 7 eV,
Z«= —0. 2 eV (i. e. , E, = —285 K); curve (c): a=203 K,
~=-0.85 ev, t„=-0.195 ev {i.e. , E, =-290 K);
curve (d): &=255 K, x = —0. 93 eV, 4&&

= —0.16 eV
(i. e. , E&= —355 K).

temperature yields an estimation of ~ and the
shape of the curve allows to determine also 'U and

Curve (a) (obtained with n = 130 K, ~ = —0. 27
eV, Jgt = —0. 145 eV) gives an excellent fit of 'the

Ceo O, Lao 9+1, curve from 10 to 130 K; curve (b)
(n =166 K, 'U= —0. 7 eV, 8„=—0.2 eV) provides
a good fit for Ceo,Lao,Al„while curves (c) (n
=203 K, v= —0. 85 eV, 8„=—0. 195 eV) and (d)
(n =255 K, '0= —0, 93 eV, 2»- —(). 16eV) yieldworse
fits to the two cerium-concentrated compounds,
although both the location and the magnitude of the
maxima are well described by these choices of
parameters. Therefore, while the exchange inte-
gral 4» remains roughly constant leading to a val-
ue of E, between 300 and 400 K, the two other pa-
rameters 6 and V are found to increase rapidly
with cerium concentration. Indeed, the values for
the different parameters [except those used for the
curves (a)] cannot be considered too seriously be-
cause of both our approximations and the absence
of a very good fit. However, two positive con-
clusions can be drawn from the analysis of Fig. 6:
First, the fit (a) of the 1% cerium compound,
which is the only one to be really justified in our
one impurity model, is excellent and the deduced
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parameters are quite realistic for a cerium im-
purity; in particular, the values of 8» and Ig I

agree with the values deduced by the analysis of
the resistivity of CeAl, and the difference of sign
for & has no real meaning because only the ther-
moelectric power experiments can determine the

sign of V. Second, the over-all splitting 6 in-
creases with cerium concentration, exactly as for
the resistivity of CeA1, under applied pressure";
the increase of 4 both with Ce concentration and

applied pressure can be well understood because
the lattice parameters decrease in the two cases.

The crystalline-field over-all splitting of CeA13
has been found to be 50 K from fitting resistivity
experiments, ' 255 K here from thermoelectric
power ones, 113.6 K from specific-heat measure-
ments, ~ and 280 K from magnetic susceptibility
data. ' The large variation of S with the cerium
concentration, the relatively bad fits shown by
curves (c) and (d) and the too large values of '0 ob-
tained for the cerium-concentrated compounds
seem together to indicate that our one-impurity
model is perhaps not very good for large cerium
concentrations. In particular, the interactions be-
tween magnetic impurities, which have been seen
to increase the thermoelectric power, ' could
eventually explain the variation of 8 with cerium
concentration.

We can also observe that the theoretical curves
of Fig. 6 cannot fit the experimental data at very
low temperatures, i. e. , below 10 K. In this re-
gion, S can become negative and changes with the
cerium concentration. Similarly, the resistivity
of CeA13 is still decreasing with decreasing tem-
perature down to~ 0.3 K; magnetic susceptibility, ~

magnetization, and specific-heat measurements
on CeA13 suggest also that a transition into a non-

magnetic state occurs at low temperatures. We
can think that the disappearance of the magnetic
moment at low temperatures is due to the Kondo
effect and the Kondo temperature of CeA13 has
been estimated to be 5 K according to Edelstein
et al. '7; moreover, the Kondo effect of CeAl, is
certainly peculiar because cerium atoms lie on an
ordered lattice and the decrease of the resistivity
with decreasing temperature must be connected to
that effect.

Giant thermoelectric powers have been also ob-
served in other cerium compounds such as CeSns,

eBe$3, or CePb3, but the large maxima, encoun-
tered in these compounds are also probably con-
nected to a gradual change of valence when tem-
perature decreases. Anomalies in the thermo-
power have been also observed in the dilute L&Ce, ~9

or Y'Ce, alloys. A small negative minimum is
observed in LaCe at around 20 K and it is indepen-
dent of the nominal cerium concent;ration. ~9 Since
the Kondo temperature of LaCe is of order 0. 1 K,2~

the presence of a minimum at 20 K, if it is really
due to cerium impuxities, '9 indicates probably that
the first CF excited level lies 60 to 100 K above the
ground state. A small positive peak is also ob-
served in YCe at around 20 K (Ref, 20); since the
Kondo temperature of ~Ce is close to 20 K, we
can attribute the peak of the thermopower to the
Kondo effect itself.

The theoretical results that we have derived
here differ from those of Fulde and co-
workers, ' because we start from the effective
Hamiltonian which describes the resonant scat-
tering and takes into account combined spin and
orbit exchange scattering. In particular, Takayama
and Fulde~ have found that the isotropic exchange
interaction by itself is practically excluded from
being the origin of a giant thermopower; on the
contrary, we obtain here a giant contribution when
only the resonant exchange mechanism is taken in-
to account, i.e. , when 'U =0. This point indicates
that the Hamiltonian (I) is well appropriate to de-
scribe the giant Seebeck coefficient of Cerium
compounds, as it was already recognized for the
resistivity, Moreover„our calculation is per-
formed for any value of the ratio 'U/8 and not in
the usual limit IV I

»
I 4 I. It results that there

is a large Seebeck coefficient S even whenU =0 and
that also t:he sign of S is not only function of the
ratio U/&, as it was the case for Peschel and Fulde. '

Thus, the present model which describes both
the Kondo and the crystalline field effects yields
giant thermoelectric powers which have a peak at
a temperature between b, /6 and 6/3. In particu-
lar, a giant negative Seebeck coefficient is found
when only the resonant exchange scattering mech-
anism is considered, but large positive values re-
sult in the presence of an attractive direct poten-
tial, which accounts for the giant thermoelectric
power of Ce, „La„Al,compounds.
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APPENDIX A

We wish here to evaluate the four integrals:
I'~(0, 6), I'~(5, 0), G&(0, 5), and G~(&, 0). We start
from the definition

Now, we have
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g(en+5)=tt(cz) ln +Ref —+t, (A4)
2gT 1 .&A+5

Gauss's integral formula 2 for ((')(2),

wf wfg

$(z) = ——,dt, Rez &0.
e

with 6 expressed in K. Thus, we have

t)2) dx
1 (6 6')= I2( n J (1 + S-x) (ex Cp'/ T)

2mT 1 . 5 . x
ln +Re/ —+i

c &v, e'&=,
(1+e ")(e"+e" }

2FT 1x ln +Ref 2+t2 &+I&2mT 2r

I et us define

(A6)

(A6}

Then, we have

e-( j.ya+&osa~r&&

(1 e-(i/2t)tx) dt
1 —e

Thus, we obtain

(g))'8+ t5/3N'2) t
tt„(5,5') = Re dt

0 1-e'
x 1„5'— „g~ (Alv)

4O eLX

(1+e ')(e"+e"T) ' (Av)

m e ""-1
tt(tR) = 5 /T -1&Re~ &+1.e —1 sino@

Then, we have

(A8)

n( ) (1 ~ e-x) (ex sp'/T) d n (c(

(AQ)

For - 1 & RetR & + 1„)t((R)can be evaluated by using
the integral (3.223. 1) of Gradshteyn et /RL. ,

2

(
x 1 i

s.inh( —' I)

5(/Z ( 5 d t(5/Rr-T)t

2 i(5'/RrT)t 1
"I

5(/T ni c-t(5/2rT)t
t)P( i ) 5'/T

C-t(5'/Rr T) t
dt (A18)

Clearly, we have

gl
Ip(5 ) 5~ /T8 —1

(5'/~)'""'=2("' -1) .

Thus, we can write

(',(n, n') In(& )+net(=r+it r)

x Ip(5') + ttp(5, 5'),

G,(5, 5')= ln +Ref —+22 &
2mT 1
D 2 2mT

(Alo)

(All)

(A2o)

&,(n, n&=(» n +t(')+xi(t r), (A21}

(5/r)' 2TT
G)(0, 5)=

( 5/T )
ln $+( )2+/ 2

G,(5, O}= 4,(5/2vT),

where

1 sinxt
2si h(-'t) x 2sinh(-'t)

(A22)

(A23)

Using (A18) and (A19) in (A12) and (A13), respec-
tively, one obtains, after some manipulations,

5/T 2)tr, 5
I'q(0, 5)=-5/T

1
ln +$(R)+(t)q

xI)(5')+ttt(5, 5'), dt t cosxt
2 sinh(-', t) 2 sinh(-', t) '~~ ~~ (A26)

x dx
II( 1 I

(1 S x)(ex pi/T

&Re p -+i +i—- g 2 +i2 T

(A14)

cosxt- 1
xR

(A26)

(A2v)

cosh(2 t) 1
4sinhR(-,'t) +sinh(-,'t)

( ) tnt( n. „,, —,=-nn(n-, -().sinxt t
5 2sinh Rt 2

The integrals (A24)-(A2V) can then be expressed
in terms of (I)(z) and (I)'(2). Starting with
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-g/p

Re&(1 +ix)=g(l)+
2

. „,i (1 —cosxt), (A28)2slnh 2i

it needs some judicious integrations by parts to
arrive at the foQoming relations:

P~(x) = Re/(I+ ix) —$(1)+ 2 in2 —1,

pute the thermoelectric power given by (32).

APPENDIX S

%'e present here the analytical calculation of
the thermoelectric power in the case of bvo levels
split by the CF effect. %e use the notations of
Secs. QI and IV and also the following ones:

6
P, (x) = @,(x) + x—Ref(1+ix),

43(x) = ~2+ 4g(x),

P (x)=ex 1 —x—R ge(i pi )x4 GX

(A30)

(A31)

P+ ~gg& @- ~j,a &

X, =hap,

However, since

Re/(I + ix}= Ref(ix) (ASS)
&, =

2
+—(Pg, —P,p) + 4~~ (2Pn —1)

2 2

g(~) = $(1) —2 ln2, (A34)

if we substltllte (A29}-(A32) into Egs. (A20}-(A23},
ere finally obtain

I', (0 5)=,~r 1
ln +Ref i —1,5/7' 2xr

(A35)
I"&(5, 0)=ln +Ref i —1

D 2mT

a 2n, n, Z„[a,Z„(n,&-a,d„&n,&

+(I' +I' )((n,&-(n &)],

b=2 8 ( &( 8 — J ),

y= n, a,Z~(n, &/A,

Imp' i

(5/r)' 2x7'
G~(0, 5)= (,qr )

ln +Ref i

5
I

G, (5, 0)=—1+ Imp' i (A38)
I

The expressions (A35)-(A38) are then used to com-

d =-2 p [1+p, /(x, —x )],
A = 8u'+ n, (n,& (a, —(n,&) Z~„

+ a~(n, & (na —(n,)) J",~,

if we take 'U for the assumed common value of U&&

and *U32.

Then, the Seebeck coefficient in the case of hvo
levels is exactly given by

S = (ke/e) n(e~) p(- aG~(4, 0) + b[G)(0, 5) —pal'~(0, 5)]—e,[G~(h —5„0)—p5, 1'~(5 —5„0)]
—(C, -C ) [G,(5., 0)+P5, I',(5., 0)]-c [G,(&+5„0)+P5,1',(6+5„0}]+b,[G,(0, & —5,) —P5.1',(0, 6 —5,)]
—b [G,(0, ~+5,) —Pnr, (0, 5, +5,)]+xG,(0, 5.)),

p=l/[A(1 —2pP5, )], c,= a —5 ', c = a-b
+ + + + + + + 0%

h. = '
p

' (ad-Z, bp„), b = ' (ad-Z bp, ), x=—'b,p -x. P. -x- p
+ + + +
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