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The influence of the crystalline field on the Kondo effect of compounds with cerium is studied in the
framework of an effective Hamiltonian which describes the resonant scattering character of cerium and which
takes into account combined spin and orbit exchange scattering. The third-order perturbation-theory
thermoelectric power is computed exactly in the case of two levels split by the crystalline field. The model is
applied to the thermoelectric-power measurements of Ce,_,La, Al; and the agreement with experiment is good,

especially for low cerium concentration.

I. INTRODUCTION

Cerium in compounds such as CeAl, and CeAly
is magnetic and presents a Kondo effect due to the
large resonant scattering which arises from the
mixing between conduction and 4f electrons, be-
cause the cerium 4f level is close to the Fermi
level. Such cerium compounds exhibit also a crys-
talline field, which deeply affects the nature of the
Kondo effect. The influence of the crystalline field
on the Kondo effect in cerium compounds has been
extensively studied in the framework of an effective
Hamiltonian which takes into account combined spin
and orbit exchange scattering.! It has been found,
in particular, that the magnetic resistivity com-
puted by third-order perturbation behaves loga-
rithmically at low temperatures, then goes general-
ly through a maximum at a temperature corre-
sponding roughly to the over-all crystalline-field
splitting and behaves logarithmically at high tem-
peratures, with a slope higher in absolute value
than the low-temperature slope. The experimental
resistivity of CeAl, and CeAl; is accounted for by
this model except at very low temperatures; in
particular, the resistivity of CeAl; is still de-
creasing rapidly with decreasing temperature down
to the lowest measured temperature.2

Recent measurements of the thermoelectric
power in Ce,_La,Al, compounds® can provide a
new check of the preceding model. The Seebeck
coefficients of Ce,_ La,Al; present a large positive
peak at a temperature between 25 and 50 K and
reach “giant” values up to 50 uV/K, as shown in
Fig. 6. The thermoelectric power of rare-earth
alloys and compounds has been theoretically
studied®® but no precise calculation has been per-
formed in the case of the resonant scattering ap-
propriate to cerium impurities. Peschel and
Fulde* have initially considered the case of two
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nonmagnetic singlets separated by an energy A and
they have found a maximum in the Seebeck coef-
ficient at a temperature of order 0.3A. Then,
Takayama and Fulde® have studied again the ther-
moelectric power with a general Hamiltonian de-
rived by Hirst, ® but no quantitative calculation is
available for the resonant scattering. We will
compare these previous works to our work in Sec.
VI.

The purpose of the present paper is to compute
in the perturbation theory the thermoelectric power
within the framework of the effective Hamiltonian
which describes the resonant scattering and which
takes into account both the crystalline field and the
combined spin and orbit exchange scattering.
Finally, we will apply our theoretical results to
the case of Ce,_La,Al; compounds.

II. THEORETICAL MODEL

We will compute the thermoelectric power in
the perturbation theory. In presence of a crys-
talline field (CF), the first perturbation term
which yields a nonzero contribution to the ther-
moelectric power is the third-order term, instead
of the fourth-order term in the Kondo problem
without CF.” Therefore, we can use the third-
order calculations, in particular, the relaxation
time, which have been already derived in Ref. 1
for the resistivity and we will take the same nota-
tions as in Ref. 1.

Within the framework of the ionic model, the
ground-state multiplet of a cerium impurity (47!
configuration) corresponds toj=3 (I=3, s=3).
The spin-orbit splitting is known to be much larger
than the CF effect, so that we can restrict our
consideration to the ground-state multiplet alone.
In a CF of hexagonal symmetry, the j=13 level is
split into three doublets, each characterized by a
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given j2 value, i.e., j,=+3, +3, +3,respectively
correspond to the eigenstates of the three doublets.
On the other hand, a CF of cubic symmetry splits
the j=2 level into a doublet I'; and a quartet I'y,

the energy eigenstates being linear combinations
of the eigenstates of j, as given in Ref., 1. The
following treatment is valid regardless of the sym-
metry type of the CF. We shall use M to denote
the quantum number characterizing a CF eigen-
state of energy E,.

By applying the Schrieffer-Wolff transforma-
tion® on the Anderson Hamiltonian, the following
Hamiltonian for a Ce impurity in a metallic host
has been previously obtained:

- - \+ t .
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Here C[, represents the operator for creating a
conduction electron of energy ¢, in the partial-
wave state M (in the subspace of [ =3, s=3, and
j=%), while C, represents that for creating an
electron in the localized CF state M of the Ce ion.
n,y and n, are the corresponding number opera-
tors. The energies ¢, and E are defined with
respect to the Fermi energy. The exchange-cou-
pling parameters are given by

T =5 Vgl (/E +1/E) (2)

with a cutoff D such that J,, =0 if |¢,! or l¢,.!

is greater than D; the cutoff D is chosen to be of
order the mean value E,. V,,; denotes the matrix-
element of mixing between the 4f and the conduc-
tion electrons at the Fermi energy. The elements

Oy = Vs = T M) (3)

represent pure direct scattering. <{(n,) is the
equilibrium population of the state M. Clearly,
for cerium impurities

;(m) =1. (4)

With the Hamiltonian (1), we follow Kondo’s ap-
proach9 of calculating the scattering amplitude in
the second Born approximation. The scattering
probability is then calculated up to the third order
of perturbation. This calculation has been pre-

sented in Ref. 1: here we simply quote the results,

The relaxation time of a conduction electron is
found to be

_(2j+1)an? (i Sk>,

R= ’ -
mkvyc

R, TR ®)

where m is the mass of the electron, % is its wave
number, v; is the sample volume, and c¢ the con-

centration of Ce atoms, R, and S,, respectively,
denote the second- and third-order term.

At this point, as in Ref. 1 we switch over to in-
dices representing the CF energy levels rather
than the eigenstates: leti (=1, 2,3, ...) denote the
energy level E; of degeneracy «;. Then

rody;
Ry=A+y =i (6)
ii Je—Pij
where the prime on the summation is to indicate
that the term 7=j is to be omitted. f, is the Fermi
function

fa=(L+ePn)?, @)

A:Zai[-(ﬁi+aiJ2“(ni> (1-0;—>>] (8)

piy=(1=eiyt, (9)
with

8;=E;-E, (10)
and

dij==pia0;J% (), (11)
we have

(n,-):e'ﬂE"/ch,. e fEi (12)

In Eq. (6) the first term represents elastic scat-
tering, while the sum gives inelastic processes.
The third-order term can be written

Sk=zclig(€k+Axi)+ Z D} M, (13)
i1

ShoY f=by
(%))
where
fo=2 24 /.
= 9= —q
&(w) Ea o~ (14)

is the usual function appearing in the Kondo prob-
lem and

Ci=2a;[J;; 9%, (ny) (a0, - 85)
= Vi d%ay((ng) = ()], (15)
Dij==2p;;di;JuJy a0,y . (16)
Clearly, we have
djy==dy;, Dij==Dj;. (17

Note that in writing Eq. (13) for S,, terms of third
order that are not proportional to the function
g(w) have been neglected.

[Il. DERIVATION OF THERMOELECTRIC POWER

The thermoelectric power is given by the clas-
sical formula
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f_m( af:> T,‘dek] (18)

with e >0.
It is easy to check that R, given by Eq. (6) is an
even function of €, so that

j e,,(é)( 2/ > €=0. (19)

Thus,
1 1 5 8 fy
S_eT 072_)[“ E‘g’ Ek(‘ 8€k>d€k, (20)
where
o“’:] 1—(-—"-)ds ) (21)
e Ry \ 0€,)  *

The inversion of R, has been worked out in Ref. 1,

1 1 v Mg
—-=(1- Ha )
R, A( :z; fk""u)

(22)
where X;; are the roots of R,(f,)=0. We follow
the method of Ref. 1: the labeling scheme is such
that for negative p;; values, 2;; is the root closest
to and smaller than p;;, whereas for positive p;
values, \;; is the root closest to and greater than
D;j. The coefficients p;; have been explicitly
given in Ref. 1. It can be shown that

Nig+Ni=1, py=-pg. (23)

It turns out to be convenient to write (in analogy to

biy)

A=(1= e“u)‘ (24)
i.e.,
a%;=(1/8)In(1 - 1/7;;). (25)
Then, we have
A?j=—'A?i . (26)
One easily obtains
0@ =,_41_ (1 -2y ﬁA?,) . (27)
i,J
Now, we have
R =—15(1+Z' by 22'“‘1”1) (28)
Ry A 7 = 2iy) Se=2
where
1 Momn
Yi=1- N (29)
4 Z,;,, Xij = A

The symbol 2, , means that we sum over m and »
except for m=n and mn=:j. Clearly, we have

Yij=Vji- (30)
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We thus obtain S,/R2 by multiplying Eq. (13) by
(28). By defining

a5y | o (38)

M i((sfté)ao T de,, (31)

we finally obtain

ky 1 n(e
S'_B"‘(‘) 1(42F)<ZC§G1(AH,0)

+ZI Z: [Unirll'G (Aha Ann'

n,n’ i, 1l
VG, A%)), @)

where n(€;) is the density of states at the Fermi
level for one spin direction, and

i 1
U;Hll' = r [Zu'rm"}/nn’ Ci
nn?

+ Z D <(X /J-rm' zunn’-)/rm' ], (33)

fren) e =P i) Ao =Dy

Dk
Vi, = > (c' —2i ) : 34
()‘nn' Jgi:) )‘nn' _pij ( )

The calculation can be considerably simplified by
using some symmetry properties of the intergrals
G,(0,8'). Let us introduce:

I,(5, 5) = — '°°< 3fk)

n(EF) o \ O0€,

[___% de, - (35)

By noting that g(w)=g(— w), and also that for ¢,
=€, +0,

it is easy to deduce the following relations:

Gy(5,6") =€ [G,(5+6',0)+p5'T,(6+56",0)], (362)

eB(tm‘a') 1
G,(5,8") = — T [G,(0,6+5")—B5T,(0, 5 +8")]

1-¢e®
+oBT ] [G,(0, 8) - p5T(0, 5)], (36b)
Gy(=6,8")==e™" G,(5, -8"), (36¢)
Iy(=5,0")=e™"T(5,-3"). (36d)

In order to calculate S we thus need to evaluate
only four integrals: G,(5, 0), G,(0,5), T',(3, 0),
I',(0,6). This is done in Appendix A, by using the
expression of g(w) in terms of the digamma func-
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tion®

+Re1,b< Z:T)} (37)

where D and w are expressed in K. The results
are (with 5 expressed in K)

rgqm_%%libn%T+Rw(22> q, (382)

#(w)=n(e ) [mz

27 )
r,(,0)= 1n—+Red)<2 T) 1

zéImW(;T> (38b)

G4(0, )= 7Q¢f73b %%+Rw<2%> ﬂ’
(38¢)
(gw,m=§%E+ZiT1an<zéTﬂ (38d)

Here ¥(z) and ¢’ (z) are the digamma and trigamma
functions, respectively.

Equation (32), in conjunction with Eqs. (36a)
and (36b) and (38a)-(38d), provides a closed-form
expression for the CF-induced Seebeck coefficient
obtained in the third-order perturbation calcula-
tion. As is well known, in the absence of CF
splitting, i.e., if A;;=0 the third-order calcula-
tion yields a zero thermoelectric power and the
first nonzero perturbation order is the fourth one.

1V. CASE OF TWO LEVELS SPLIT BY THE CRYSTALLINE-
FIELD EFFECT

Up to this point, our treatment is completely
general with respect to the number of levels split
by the CF effect. In this section, we present the
results for the Seebeck coefficient in the particular
case of two levels split by the CF for a cerium
impurity (o, +a,=6).

The calculation of the Seebeck coefficient pro-
ceeds from the general formula (32), but, in the
two level case, the roots X;; and the coefficients
ui; can be expressed analytically. So, it results
that the thermoelectric power can be written ana-
lytically in the case of two levels. The deriva-
tion, although straightforward, is rather tedious;
the final expression is given in Appendix B.

We have summarized in Figs. 1-3 the main re-
sults concerning the Seebeck coefficient in the two
level case. The mixing parameter V,; used in (2)
is taken equal to V,,;=0.07 eV throughout the paper;
similarly the density of states n(e) involved in
(32) is also taken constant and equal to n(€z)=2.2
states/eV atom which is the density of states of
pure lanthanum.!! Thus, there are five remaining
parameters: the cutoff D, the ground-state de-
generacy «,, the direct scattering potential U
which is assumed to be independent of the con-

t
sl S(KWK)
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=-0.1
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-100-
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FIG. 1. Seebeck coefficient S (expressed in pV/K) vs

temperature T (in K) in the exact two-level case: de-
pendence on U (in eV). The parameters used here are:
Vis=0.07 eV, n(€p) =2, 2 states/eVatom, D=850 K, o,
=2, a,=4, A=150 K, Jyy=—0,15 eV,

sidered level, the exchange integral J,, and the
CF splitting A =4,,.

We have found that the Seebeck coefficient is
quite insensitive to the considered value for the
cutoff D. So, we have chosen D equal to D=850 K
which is the value adopted for the resistivity of
CeAl; in Ref. 1 and we keep D equal to that value
in the following.

On the other hand, the dependence of the ther-
moelectric power on A is significant, but not real-
ly drastic if we restrict ourselves to values of A
typical for cerium impurities. So, we choose
here A =150 K and we keep this value constant in
Figs. 1-3.

Therefore, the parameters that we make vary in
Figs. 1-3 are essentially v, Jy;, and a,. Figurel
gives the variation of the thermoelectric power
with U for a doublet ground state; the different
parameters are A=150 K, a;=2, a,=4, Jy,
=-0.15eV, and U is ranging from - 0.6 to 0.4
eV. We see that a “giant” negative thermoelectric
power is obtained for V=0, in contrast to the re-
sults of Takayama and Fulde®; this point is dis-
cussed later. The addition of the direct scattering
potential U makes the thermoelectric power S
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FIG. 2. Seebeck coefficient S (expressed in 1 V/K) vs
temperature T (in K) in the exact two-level case: de-
pendence on U (in eV), The parameters used here are:
Vi =0.07 eV, n(€p) =2, 2 states/eVatom, D=850 K, o
=4, a,=2, A=150 K, Jy;=—0.15 eV,

increase; in particular S becomes positive for
relatively large negative values of U. In the ex-
ample of Fig. 1, with A =150 K, the temperature
of the peak varies with ¥ from 23 to 55 K. There-
fore, the peak of the Seebeck coefficient S occurs
at a fraction of A, ranging between roughly A/6
and A/3, while the maximum of the resistivity
occurs roughly at A,

Figure 2 gives the variation of the thermoelec-
tric power with U for a quartet ground state; the
different parameters are A=150K, «a;=4, a,=2,
Jyi;==0.15 eV, and U is ranging from - 0.6 to
0.4 eV. A “giant” thermoelectric power is also
obtained for V=0 and the thermoelectric power
increases with the absolute values of U. A large
positive S value can be obtained for negative and
relatively large J;, and U values; for instance,
with A=130K, J;;==0.3 eV, and VU=-0.8 eV
give a peak of 22 pV/K at 26 K, Therefore, we
obtain for o, =4 the same S values as for o, =2,
but with |J;;| and [Vl much larger than generally
used for cerium impurities. !

Finally, Fig. 3 gives the variation of the ther-
moelectric power S with J;, for a doublet ground
state (a, =2, @, =4) and for two values of V: =0
and U=-0.3 eV. In the case of V=0, S is nega-
tive and its absolute value increases regularly with
increasing |Jy,| values: the different curves are
roughly homothetic with a peak occurring at roughly
the same temperature of A/6. On the contrary,

in the case of V=~ 0.3 eV, the shape of the curves
does not remain constant: S increases at low tem-
peratures with |J;,| and decreases at high tem-
peratures; moreover, S changes sign when J,, and
L become roughly comparable, for instance in

the case V=-0.3 eV and J;; =- 0.2 eV; we can al-
so note that, in the case V=-0.3 eV, the tem-
perature of the maximum decreases with an in-
creasing |Jy,| value,

Thus, in the two-level case, we obtain giant
thermoelectric power values the sign and the mag-
nitude of which vary with essentially 0 and a, but
also with J, and A,

V. "fx =-‘2‘ APPROXIMATION” AND THE CASE OF THREE
LEVELS

Equation (32) represents an exact expression for
the third-order-perturbation calculation of S, As
seen in Sec. IV, the calculation can be carried
out analytically in the two-level case, but according
to Appendix B the calculation is rather tedious.

On the other hand, in the case of three or more
than three CF levels, the roots A;; and the coef-
ficients u;; have to be determined numerically and
finally the calculation becomes rapidly inextricate.

A
S(uw/K
+50 3 ) s
_3.=-01
n ¥=-03
J;y=-02
0 i

-50 Jﬂ=—005;
Jﬂ=—0.10g1?=0
Jy=-015

-100

-150

- 1 I i >

2005 50 100 150 T(K)

FIG. 3. Seebeck coefficient S (expressed in uV/K) vs
temperature 7 (in K) in the exact two-level case: de-
pendence on Jy; (in eV) for two values of U: U=0 and v
=—0.3 eV. The other parameters used here are: Vyy
=0.07 eV, n(€p)=2.2 states/eVatom, D=850 K, a;=2,
ay=4, A=150 K,
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b S(uv/K)
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+100F
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1 1

0 50 100

FIG. 4. Seebeck coefficient S (expressed in pV/K) vs
temperature 7 (in K) in the two-level case: comparison
between the exact calculation (full lines) and the “f,=3%
approximation” (dashed lines) for two values of Jyy: Jy
=-0.15 eV and Jj; =—0.3 eV, The other parameters
used here are: V,,=0.07 eV, n(€p) =2,2 states/eV atom,
D=850 K, a;=2, ay=4, A=150 K, v=-0,3 eV,

Thus, in order to have an idea of the variation
of the thermoelectric power in the case of more
than two levels, we can use the so-called “f, =3
approximation, ” which consists in replacing f, in
the denominators of R, and S, by its Fermi level
value .! Inthis section we will first compare the
exact result and the f, = 3 approximation result in
the case of two levels and then we will briefly de-
scribe the case of three levels,

The f,,:% approximation yields an energy-inde-
pendent R, term that we call R,

v od,.
R=Ry=A+2] Toh— (39)
7 oz Dij
so that the thermoelectric power is given by

ky 1 (" (8,
S—e E » <——a—€>ﬁ€kshd€k! (40)

where S, is equal to

€, +A;;
5k=ZC§g(€k +A5) + E Dijg(—lk—‘—l—')- . (41)
i1 irdy1 z—Pij
(%)
By use of the definition (31), S becomes

n

k
S=_e§' (;F) ‘Z;'Yi G),(AH; O)’ (42)

where

{43)

If we use the symmetry relation (36c) for G,(5, 0),
the expression (42) can be also written again as

s=22 D) 57 o1 yheyan, 0). (44)
e R Yy
(i)

The comparison between the f,,:% approxima-
tion results and the exact ones computed numeri-
cally from the expression (32) is shown in Fig. 4
in the two-level case. The parameters used in
Fig. 4 are A=150K, a;=2, a,=4, U=-0.3 eV,
and two values of J,;, i.e., J,;=—-0.15and - 0.3
eV. We have chosen these two cases because they
represent two typical cases for the behavior of S.
We see that the f, =3 approximation result differs
noticeably from the exact one by an amount which
can reach 50% of the exact value; from that point
of view, the thermoelectric power differs from the
resistivity where the difference between the f,=3
approximation calculation and the exact one is
much smaller. However, as shown on Fig. 4, in
spite of the differences in magnitude, the shapes
of the thermoelectric power curves and their qual-
itative features are the same. Therefore, we
believe the same would be true for the case of
three levels or even more than three levels.

Figure 5 shows the thermal variation of the See-
beck coefficient computed in the f, =3 approxima-

Iy
S(uv/K)

0 50 00 T(K) 150

FIG. 5. Seebeck coefficient S (expressed in uV/K) vs
temperature T (in K) in the three-level case treated in
the “f, =7 approximation”: dependence on A, (in K).
The parameters used here are: Vy=0.07 eV, n(€g)
=2.2 states/eVatom, D=850 K, a;=a,=0;=2, Ay
=130 K, Jy;=—0.145 eV, v=—0,28 eV.
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tion for the case of three levels split by the CF
effect. The parameters used in Fig. 5 are D
=850 K, n(ez)=2.2 states/(eV atom), U=~ 0,28
eV, J;;=-0.145eV, o,=a,=03=2, an over-all
CF splitting A,;,=130 K and a distance A,, between
the ground state and the first excited state varying
between 20 and 120 K. We have chosen here the
parameters which will be used in Fig. 6 for

Cey. 0112y, ggAl;, except that we will take the two-level
case with a doublet ground state. Therefore, Fig.
5 is useful to compare the three-level case to the
two level with a doublet ground state, when the
over-all splitting is the same in the two cases.
We observe in Fig. 5 that, when 4,, increases we
obtain both an increase of the magnitude of the
peak and an increase of the temperature of the
peak which occurs at roughly A21/3' Even for a
A,y value much smaller than 4,,, there is only one
peak which becomes broader when 4,, increases.
Finally, all the curves with A,, varying from 20 to
120 K have essentially the same shape, with only
a change in the location and the magnitude of the
peak.

VL. COMPARISON WITH EXPERIMENTS AND CONCLUDING
REMARKS

In previous papers, we have applied our model
to the resistivity of CeAl, and CeAl; compounds
at normal pressure! or under high pressure!? 3
and reasonable fits have been obtained except at
very low temperatures. Here we would like to
finally apply our model to the giant Seebeck coef-
ficients of Ce,_, La, Al; compounds. Figure 6
shows the experimental values of the “magnetic”
Seebeck coefficient of Ce,_, La, Al; for x=0. 99,
0.9, 0.5, and 0, as well as the four corresponding
theoretical curves. The experimental “magnetic”
Seebeck coefficient corresponds to the difference
between the measured Seebeck coefficients of
Ce,_, La, Al; and of LaAl, (Ref. 3); this procedure
which is equivalent to the Matthiessen rule is
certainly justified here because the magnetic See-
beck coefficient and the corresponding value for
LaAl, are never of the same order of magnitude.
The Ce,_, La, Al; have a hexagonal crystallographic
structure so that the j=3 multiplet of cerium is
split into three doublets. However, since we can-
not really evaluate both the distances A,, and 4,
only by resistivity or thermoelectric power ex-
periments and since moreover the Seebeck coef-
ficient keeps the same shape in the three-level
case as in the two-level case with a doublet ground
state according to Fig. 5, we have determined the
theoretical curves of Fig. 6 by taking the exact
two-level case with ¢, =2 and a, =4; we have taken
also V,,=0.07 eV, n(ep)=2.2 states/eVatom, D
=850 K and only A, v, and J,; are considered as
adjustable parameters. The value of the maximum

4
S(pWK)
75._
501 o) o
25- ° °
" e _(d)”
i £ (a) (6] (<)
¥

-25 1 |

0 50 100 150 T(K) 200

FIG. 6. Comparison between experiment and theory
for Cey., La, Al;. Experimental points show the differ-
ences between the Seebeck coefficients of Cey_, La,Alg
and of LaAly for x=0.99 (o), 0.90 (A), 0,50 (o), 0 (x).
The theoretical curves correspond to the exact two level
case (@ =2, ay=4) for Vy=0.07 eV, n(eg) =2, 2 states/
eVatom, D=850 K, and the following set of parameters:
curve (a): A=130K, v=-0,27 eV, J;; =—-0.145 eV
(i,e., E;=-395 K); curve (b): A=166 K, v=-=0,7 eV,
Jyy=—0.2 eV (i.e., E;=-285K); curve (c): A=203 K,
V==-0.85eV, J;;=—0,195 eV (i.e., E;=—290 K);
curve (d): A=255K, v==0.93 eV, Jy;==0.16 eV
(i.e., E;=—355K).

temperature yields an estimation of A and the
shape of the curve allows to determine also U and
Jy;. Curve (a) (obtained with A=130 K, v= —0.27
eV, J;;=-0.145 eV) gives an excellent fit of the
Ceq.0;L2g,99Al; curve from 10 to 130 K; curve (b)
(A=166 K, 0v=-0.7eV, J;;=-0.2 eV) provides

a good fit for Ce,,,La, 4Al;, while curves (c) (A
=203 K, U=-0.85eV, J,;=-0.195 eV) and (d)
(A=255K, 1=-0.93 eV, J;;=-0.16eV)yieldworse
fits to the two cerium-concentrated compounds,
although both the location and the magnitude of the
maxima are well described by these choices of
parameters. Therefore, while the exchange inte-
gral J,, remains roughly constant leading to a val-
ue of E, between 300 and 400 K, the two other pa-
rameters A and U are found to increase rapidly
with cerium concentration. Indeed, the values for
the different parameters [except those used for the
curves (a)] cannot be considered too seriously be-
cause of both our approximations and the absence
of a very good fit. However, two positive con-
clusions can be drawn from the analysis of Fig. 6:
First, the fit (a) of the 1% cerium compound,
which is the only one to be really justified in our
one impurity model, is excellent and the deduced
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parameters are quite realistic for a cerium im-
purity; in particular, the values of J,; and V|
agree with the values deduced by the analysis of
the resistivity of CeAl; and the difference of sign
for U has no real meaning because only the ther-
moelectric power experiments can determine the
sign of U. Second, the over-all splitting A in-
creases with cerium concentration, exactly as for
the resistivity of CeAl; under applied pressure’s;
the increase of A both with Ce concentration and
applied pressure can be well understood because
the lattice parameters decrease in the two cases.

The crystalline-field over-all splitting of CeAl,
has been found to be 50 K from fitting resistivity
experiments, ! 255 K here from thermoelectric
power ones, 113.6 K from specific-heat measure-
ments, * and 280 K from magnetic susceptibility
data.'® The large variation of S with the cerium
concentration, the relatively bad fits shown by
curves (c) and (d) and the too large values of U ob-
tained for the cerium-concentrated compounds
seem together to indicate that our one-impurity
model is perhaps not very good for large cerium
concentrations. In particular, the interactions be-
tween magnetic impurities, which have been seen
to increase the thermoelectric power, !¢ could
eventually explain the variation of S with cerium
concentration.

We can also observe that the theoretical curves
of Fig. 6 cannot fit the experimental data at very
low temperatures, i.e., below 10 K. In this re-
gion, S can become negative and changes with the
cerium concentration. Similarly, the resistivity
of CeAl; is still decreasing with decreasing tem-
perature down to? 0.3 K; magnetic susceptibility, ?
magnetization, 17 and specific-heat!* measurements
on CeAl, suggest also that a transition into a non-
magnetic state occurs at low temperatures. We
can think that the disappearance of the magnetic
moment at low temperatures is due to the Kondo
effect and the Kondo temperature of CeAl; has
been estimated to be 5 K according to Edelstein
et al.'", moreover, the Kondo effect of CeAl, is
certainly peculiar because cerium atoms lie on an
ordered lattice and the decrease of the resistivity
with decreasing temperature must be connected to
that effect.

Giant thermoelectric powers have been also ob-
served in other cerium compounds such as CeSn,,
CeBe,;, or CePby, !® but the large maxima encoun-
tered in these compounds are also probably con-
nected to a gradual change of valence when tem-
perature decreases. Anomalies in the thermo-
power have been also observed in the dilute LaCe,!®
or YCe, 2 alloys. A small negative minimum is
observed in LaCe at around 20 K and it is indepen-
dent of the nominal cerium concentration.!® Since
the Kondo temperature of LaCe is of order 0.1 K,2!

the presence of a minimum at 20 K, if it is really
due to cerium impurities, !° indicates probably that
the first CF excited level lies 60 to 100 K above the
ground state. A small positive peak is also ob-
served in YCe at around 20 K (Ref. 20); since the
Kondo temperature of YCe is close to 20 K, we

can attribute the peak of the thermopower to the
Kondo effect itself,

The theoretical results that we have derived
here differ from those of Fulde and co-
workers, % because we start from the effective
Hamiltonian which describes the resonant scat-
tering and takes into account combined spin and
orbit exchange scattering. Inparticular, Takayama
and Fulde® have found that the isotropic exchange
interaction by itself is practically excluded from
being the origin of a giant thermopower; on the
contrary, we obtain here a giant contribution when
only the resonant exchange mechanism is taken in-
to account, i.e., when U=0. This point indicates
that the Hamiltonian (1) is well appropriate to de-
scribe the giant Seebeck coefficient of Cerium
compounds, as it was already recognized for the
resistivity, Moreover, our calculation is per-
formed for any value of the ratio U/J and not in
the usual limit [V | > |J|. It results that there
is a large Seebeck coefficient S even when U =0 and
that also the signof S is not only function of the
ratio V/J, as it was the case for Peschel and Fulde. 4

Thus, the present model which describes both
the Kondo and the crystalline field effects yields
giant thermoelectric powers which have a peak at
a temperature between A/6 and A/3. In particu-
lar, a giant negative Seebeck coefficient is found
when only the resonant exchange scattering mech-
anism is considered, but large positive values re-
sult in the presence of an attractive direct poten-
tial, which accounts for the giant thermoelectric
power of Ce,_, La, Al; compounds.
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APPENDIX A

We wish here to evaluate the four integrals:
r,(0,8), I'y(5,0), G,(0,5), and G,(5,0). We start
from the definition

' 1 -
06 8= [ g+ 0)dq, (AD

6,6, 8" =1 [~ (=2/a/0¢) Be,

W) ). To7 (1= ef) Blen+D)de, . (A2)

Now, we have

- 8f,/9¢, _ B
17, (1= eP%) ~ (1 + e %) (ePer 4 £

(A3)
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and 10

) e

with 8 expressed in K. Thus, we have

g€, +6)=n(ez) [ln zzT +Rew<

, b dx
r1(5;6 )='[ (1+e-x)(ex+eﬂ'/7‘)

[anW—T +Re¢< “E%T +1 -;%T-)] (A5)

xdx

Gl(éy 61)‘_‘ J:” (1+e-x)(ex+eﬁ’/ 7)

X [ln%rZ +Rew< 26T+i—2%)]. (A6)

Let us define

_ %© eax
’(""=f._, Do (eTr 7Ty (A7)

For - 1<Rea<+1, 9(a) can be evaluated by using
the integral (3.223.1) of Gradshteyn et al.,

eaa'/T_l

s(a)=—5r7r— , —1<Rea<+1. (A8)

sinaw

Then, we have

ne [ x"dx _an
In(6 )"j:n (1+e-x)(ex+66'/T) “dang(a)

a=0
(A9)
Clearly, we have
10(5')=-5§}% (A10)
and
zl(a')=§(%4—?——-i1) . (A11)
Thus, we can write
r,(5, 5')=[1 (2; )+Rew( +z2—fﬁ>]
X Io(6") + (5, 8"), (A12)
G,(5,8") = [lnyLz +Rew( HZ?TT)]
XI,(8") +9,(5, 8", (A13)
where

x"dx
420,= [ G rrae

1 ) x 1 .5
X Re [lb(z +i— 5aT 2ﬂ) zb(E +z'ZTr—T>] .
(A14)
In order to calculate 4,(5, 6’) we shall make use of

Gauss’s integral formula® for ¥(z),

W(z)= j (

Then, we have

ENIINVE AN
2 Y'orT tion) " Y2 ot

-(1/2+lb/21T)t

Y i
[«

> dt, Rez>0. (A15)

(i/z,)tx) dt. (AIG)

Thus, we obtain

© e-(1/2+i6/2rT)t
At~
0 1-

), (A17)
a=-it/2r,

9’,(5’ 6') =Re

% (16" - 7 s(a)

that is
5'/T o e-i 6/27T)¢
5,5")= f e
9% 00 =grr T Re | Sy
(1T PRICEII T
< " sinh(3f)  8'/T

1>dt (A18)

and

6 /T 5 © J e-l(G/ZIT)t
4,(5, &' ; f a
10 00 = 3w 7T )[ “Re ) ar <2sinh(%l))

' 47 e-i (6’ /27T)¢t -1
><(“T""“sinh(gt) 57T )] - (A19)

Using (A18) and (A19) in (A12) and (A13), respec-

tively, one obtains, after some manipulations,

ry0, 0= o [ 2aE + i+ o(pr)], (a20)

46, 0=+ u(h) w64 (577 | (a21)

6,0, 5)= 5(—5?7/”—) [nzn—T+¢‘(2)+¢s( )]

(A22)
G,(5, 0)=b4(5/27T), (A23)
where
_ ([ dt sinxt
‘b!(x)'fo 2 sinh(37) (1 X Zsinh(2h)’ (a24)
_ (T dt tcosxt
$2(%) = jo- 2 sinh(4f) (1 T2 sinh(%t)) ’ (425)
_(*,, cosh(zt) 1 cosxt—1
(%) = fo a3 sinh®(1?) (’ Tsinh(3h) ~ x2% )
(A26)
_ © sinxt t
¢4(x)—1r£ dtm( cothz l). (A27)

The integrals (A24)-(A27) can then be expressed
in terms of ¥(z) and ¢'(z). Starting with
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©

e-t/z

Red(1 +ix)=P(1) + A E_S—l—nT(%T) (1 - cosxt), (A28)

it needs some judicious integrations by parts to
arrive at the following relations:

¢,(x) =Red(1 +ix) = P(1)+2In2 -1, (A29)

Pa(%) = (%) + x Red)(l +ix), (A30)

bg(¥) =3 +¢4(x), (A31)

d4(x)=7mx (1 - ngz Red(1 + ix)) . (A32)
However, since

Red(1 +ix) = Rey(ix) (A33)
and

P(z)=(1) - 21n2, (A34)

if we substitute (A29)—-(A32) into Eqs. (A20)—-(A23),
we finally obtain

I‘I(O, 5):2-27/-;_-—1 [ln 2gT +Red)(26T> 1],

ry6, 0= 27 rey (52 -1 (A35)
25T Imd)’( Z:T) (A36)

G,(0, 8)= E(e-(%éT_)_) [mzn:r R ‘1’<26T) %]
(A37)
e 0)=;—T[ 2n zo7 (21617)] (A38)

The expressions (A35)—(A38) are then used to com-
]

S=(kp/e)n(eg) p{- aG,(A, 0)+b[G,(0, A) - BAT,(0, &)}

- (c+ - C-) [Gx(6+, 0) + ﬁ6¢ r1(6n 0)] -
—h][G,(0, 5 +8,) = BAT (0, A +5,)]+kG,(0, 8,)},

where

) o b,
p=1/[A(1-2up5,)], C+->\,(x*_1)< bp )

BoXe (@a-z,p), n=Bezle

h+= )\_p* + +/y *p

with

2
[ 1
E: - = —
' ( m—x)m—xu FmBo b

-c[Gy(a=-5,,0) -
c[Gy(a+5,,0)+p0,Ty(A+5,,0)]+h[G,(0,A=5,)-BAT,(0, A =3,)]

——— (ad-Z_bp,),

pute the thermoelectric power given by (32).
APPENDIX B

We present here the analytical calculation of
the thermoelectric power in the case of two levels
split by the CF effect. We use the notations of
Secs. III and IV and also the following ones:

p~=p21y p-=0127
7\+=)\'12y 7\-=)‘21,
A=04,,
5,,=A?2=—Agl=—5_
1 1 d 1/2
7\*=§i§((p21—p12)2+47§1(2p12—1)) ’

a=2a,0, J %[ apdp(np) = a0ydy(ny)
+ (sz + Vu) (<n1> - ("g»],
I3 (ny) (015 55 =

:'yp¢(2p-_ 1)
K= x‘_)‘_ ’

b=20,0, aydy,),

where

y=a,0,d5(n) /A,

d=2u[l+u/(,=-2)],
A=6V+a,(n) (a, = (np)J%,
+ dg("a) (012 - <n2>) ng ’

if we take U for the assumed common value of U,
and Ug,.

Then, the Seebeck coefficient in the case of two
levels is exactly given by

ﬁ6+r1(A - 64, 0)]

*Laboratoire associe au Centre National de la Re-
cherche Scientifique.
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