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Unrestricted-Hartree-Fock approach to cluster calcu&ations: Application to lithium*
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In this paper, we examine theoretical techniques for studying clusters of atoms. We examine the traditional
restricted-Hartree-Fock method, the general-valence-bond method, and the space-spin unrestricted-Hartree-
Fock method. We perform a series of calculations to determine the structure of fine particles of lithium and
conclude that the most accurate available simple Hartree-Fock-type method is the unrestricted-Hartree-Fock
method. These results are contrasted to recent studies on similar systems employing the self~nsistent field
Xa scattered-wave approach, and we conclude on the basis of inferences from experimental data that the
unrestricted-Hartree-Fock method produces results in fair agreement with the Xa method for such metal
systems, and that important differences exist between both methods.

I. INTRODUCTION

In the past several years, cluster approxima-
tions have proven successful in solving problems
of interest in the areas of solid-state and surface
physics. ' ' By the cluster approximation, we
mean that a large solid system is approximated by
a finite group of atoms or ions which may in turn
be placed in a field to simulate the remainder of
the solid. More recently, cluster methods have
been employed because small clusters are of inter-
est in themselves, rather than merely a represen-
tation of a larger system. "' Small clusters are
of great. current importance in that they may real-
istically represent systems of use for homoge-
neous catalysis or the active site (usually groups
of 6-12 transition-metal atoms) used on a silica
or alumina-supported industrial catalyst. ' In ad
dition such small systems may represent some of
the radiation-damage products occurring in ma-
terials subjected to intense radiation.

In this article we attempt two things. The first
is a systematic critique of methods to be used for
cluster calculations, and the second is a study of
fine particles of metallic Li. We conclude that the
unrestricted-Hartree-Fock (UHF) method or per-
haps a semi-empiricalderivative of it would be an
adequate model for such a system. We further argue
on the basis of a comparison of results from the
present calculation with those of the self-consis-
tent-field Xn scattered-wave approach, ' ' and
with inferences from experimental data, that the
UHF method may be in better agreement with ex-
periment than is the Xa result.

In Sec. II, we discuss the salient features of
the various theoretical methods available for clus-
ter studies and draw some preliminary conclu-
sions. In Sec. III, we discuss the specific calcu-
lations performed on the Li cluster, and finally
in Sec. IV we discuss the experimental situations
and arrive at our conclusions.

II. THEORETICAL METHODS

We begin the theoretical discussion by a general
discussion of the Hartree-Pock technique. We as-
sume the usual nonrelativistic Hamiltonian

In Eq. (1), upper case letters refer to nuclear to
coordinates, with Z~ being the charge on the Ith
nucleus, and R~ its position. Lower case letters
refer to electronic coordinates. The mass of the
electron is m and e is the electron charge. In
this article we adopt atomic units, so that e = m
=5=1. The unit of energy is the Hartree (1 Har-
tree =27. 2 eV), the unit of length in a.u. is the hy-
drogen-atom bohr radius (1 a. u. = 1 bohr radius
=0. 52 A). We assume that we may approximate
the eigenstates of K given by Eq. (1) by a single
Slater determinant of one-electron eigenfunctions
so that

4 (r, "r„)= (n !) '~ A[rp, (r, ) a@2 (r2) n ".
x y,.(r, ) ny. ..(r...) P " y„(r„)P] . (2)

In Eq. (2) we assume n electrons in the system of
which j have spin up and n, -j spin down. A is the
antisymmetrizing operator and n is the spin-up
spin eigenfunction and P is the spin-down eigen-
function. If one requires that

~ (P~(X) (Pp(X) dX = 5~g

when x includes both space and spin coordinates of
the orbital, and if one requires the expectation
value of 3C to be minimized for the orbitals of Eq.
(2), one has the equation for the y's occurring in
(2) of the form
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Here one has

p(x, x') P(x, x')
p~ x)

I r —r'
l

(4)

n

p(x, x') = Q y,. (x) p,'. (x'), (6)
j=1

and P(x, x') is the operator which interchanges co-
ordinates x and x'.

If Eq. (4) is solved in its full generality for the

q, (x) with no further assumptions or constraints
being placed upon the y, (x), we term this equation
the unrestricted-Hartree- Fock equation (UHF).
Lowdin has devoted much effort to discussing the
effects of adding constraints to this equation and
the potential for degrading the quality of the re-
sulting variational energy due to such constraints.
We shall here consider only the effects of two
such constraints and refer the interested reader
to the article by Lowdin for further detail. We do,
however, note two substantial advantages to the
unrestricted form of the Hartree-Fock theory.
The first advantage is that chemical bonds disso-
ciate properly, an advantage shared with the Xn
local-density energy-functional method. The sec-
ond advantage is that electrons of opposite spin
may begin to avoid each other on the average.
That is, electrons of opposite spin may correlate.
In fact, for the case of a free-electron gas, the
UHF solutions tend to appear like a Wigner lat-
tice 10' 11

The simplest level of additional constraint
which one may employ is to require that the spin-
up, spin-down solutions be different but that the
spatial part of each orbital be asymmetry-adapted
orbital. By symmetry adapted we mean that the
electron orbitals transform according to some ir-
reducible representation of the point group appro-
priate to the nuclear configuration. One may gen-
erate this solution from the Fock operator given
in Eq. (4) by use of Lagrange multipliers. Thus
one solves

n

&9'a = g &a~ &| ~

b=1
(6)

Here F is still as given in Eq. (4) but the parame-
ters c~ are chosen to satisfy orthonormality of the
solutions and to satisfy the symmetry constraint.
This level of equation is called the spin-polarized-
Hartree-Fock theory (SPHF). Unlike the UHF for-
malism, chemical bonds may not properly dissoci-
ate owing to the constraint on symmetry. However,
the SPHF formalism shares one advantage in com-
mon to the UHF formalism. That is, when one
used Koopman's theorem to construct the ioniza-
tion energies, one retains information on the mul-
tiplet splitting of the resulting ion. We have not
tested the SPHF formalism in this study.

The next important level of constraint is to re-
quire that all orbitals be symmetry adapted and to
require that orbitals be doubly occupied insofar as
is possible. That is, electrons are grouped in

spin-up, spin-down pairs and the spatial parts of
such a spin-up, spin-down pair are identical.
This approximation is called the restricted-Har-
tree-Fock formalism (RHF) and is usually what
most authors refer to as Hartree-Fock theory. '

We note historically, that Wigner, '2 in defining
the concept of correlation energy, based his defi-
nition on the RHF ground state of a free-electron
gas, and thus one may properly think of SPHF or
UHF theories as containing correlation insofar as
they produce lower total energies than does the
RHF wave function. The RHF theory does not
permit chemical bonds to properly dissociate, nor
does it retain multiplet information when using
Koopman's theorem. The orbital equation for the
RHF system is formally similar to Eq. (6) with
the e„properly chosen to allow one to satisfy the
constraints.

It is possible to remedy some of the defects of
the RHF method, or indeed even the UHF method,
by construe'. ing a multideterminantal trial wave
function. That is, one assumes

+(x, " x„)=—Q a.g. (x, " x„) .
0.=1

Here the g are the Hartree-Fock states, and the
a are variationally chosen. If the functional
forms of the y's in the g,. 's are varied along with
the a, then a mult iconf igurat ion, self- cons istent-
field solution (MCSCF) is found. We will discuss
a particular form of MCSCF theory which is in
common use for chemical studies. This method
is the general-valence-bond method (GVB) in the
perfect-pairing limit. ' In this model the trial
wave function is

2 2

(8)
In Eq. (8) the y, ,indicates a doubly occupied spin
orbital. Thus, in the GVB formalism, electrons
are correlated in pairs, and any number of pairs
may be correlated. Thus, if the pair of electrons
in state i is in a chemical bond, the GVB formal-
ism permits proper dissociation of this bond. The
noncorrelated orbitals occurring in Eq. (8) are ob-
tained in an RHF form. We shall see from the
study on Li that the UHF formalism permits a
higher degree of correlation, than does the GVB
formalism for some small metal particles.

There seems, tous, to exist substantial differ-
ences between small covalent molecules, for
which the perfect-pairing GVB method was de-
veloped, and even small pseudometallic clusters
such as studied here. These differences may be
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stated qualitatively. In the case of a small cova-
lent molecule one may regard bonding electrons as
being localized in bond pairs, and the dominant
correlation present as being the dynamic correla-
tion of the pair of elect;rons in each bond. This
limit is well treated in the GVB formalism since
the wave function, Eq. (8), for such a pair of elec-
trons contains explicit correlation for this pair.
Mathematically speaking one can generate local-
ized solution for electrons in a bond in such sys-
tems by rotation in the RHF manifold. In the case
of metals or even quasimetals, such localization
may not be obtainable. For example in the cur-
rent case of a nine-atom Li cluster, look at a
state S, =-,'. Here, for a cubic cluster in the RHF
limit, the ground state is degenerate and one can-
not rotate the RHF solution into simple local form
without also raising the system energy by pro-
moting the system to an excited state. Further-
more each electron appears to strongly interact
dynamically with all others and hence the first
electron of the nine valence electrons in Li9 needs
to be correlated with all eight other electrons, and
these in turn with all others, so that a simple
GVB-pair correlation calculation requires at least
37 configurations to take care of all valence pairs.
Furthermore this neglects all three-body or high-
er correlations which are likely to be important
in such a system. Finally each electron partici-
pates in more than one bond pair and hence this
system is not well described in the simpler GVB
formation if at all. The situation for eight;-atom
Li systems is different. In this case the ground
state is nondegenerate and one can easily rotate
into a local-bond-type representation, and the
GVB formalism is an improvement over UHF (in
this case we find the UHF and RHF solutions
equivalent at the equilibrium lattice separation).
Because of these considerations, we find a UHF
formalism preferable to the RHF or GVB perfect-
pairing description for general studies of metallic
or pseudometallic clusters.

The final approach is the Xa method. Since this
method has been the subject of numerous recent
reviews, we only briefly mention the basic con-
cepts here. ' This method is an attempt to use the
Hohenberg-Kohn theorem. This theorem says the
ground-state energy of a nondegenerate Fermi
system in a local field is a unique functional of the
particle density. That is, if n(r) is the electron
density, one has

The proper functional E(n(r)} is not known, in gen-
eral, but the Xn method is one attempt to approxi-
mate this functional. The Xa functional shares
one virtue in common with the UHF method, and

this is that chemical bonds properly dissociate in

this method. By contrast with the UHF solution,
however, the Xa solution is not variational, and

hence the resultant energy is not an upper bound to
the true energy. There is one additional problem
in applying the Xn method to metals and cluster
systems. The Hohenberg-Kohn theorem is only
true for systems in their ground state if the sys-
tern is in a nondegenerate state; therefore, if one
studies degenerate systems such as magnetic ma-
terials or even certain Lig or Li» atom clusters
which have degenerate ground states, the energy
functional, in Eq. (9), is now a functional of the
first-order density matrix, not the particle densi-
ty and the X& model contains a further and as yet
ill- def ined approximation.

III. APPLICATION TO LITHIUM CLUSTERS

To test the applicability of the various forms of
Hartree-Fock theory and to obtain comparisons
with existing Xa calculations, we set out to do a
series of calculations on eight- and nine-atom
clusters of Li. %e made preliminary calculations
using the RHF, the GVB, and the UHF methods.
Initially we attempted a solution to the RHF equa-
tion for the Li nine-atom cluster. It was found,
when all effects of the RHF constraints were im-

posed, that the outer valence electrons were un-

bound. This clearly indicat;ed to us that severe
spin polarization was occurring. A next attempt
was made to split the pairs of valence electrons
by the GVB method. In this calculation, we found

that the valence and core electron densities shifted
severely with respect to one another, but theener-
getics were little improved. This result indicated
two possibilities. The first is that core polariza-
tions might be important and the second, that cor-
relations beyond simple pair correlation might be
important. To remedy these defects most eco-
nomically, we proceeded to study our system us-
ing the UHF method. The UHF solutions to the
Li nine-atom cluster exhibited none of the defects
of the RHF or GVB solutions. In what follows, we

discuss our UHF results for a Li atom, Li, mole-
cule, and eight- and nine-atom Li clusters.

Our calculation employed an analytic, Cartesian
Gaussian basis. The basis consisted of three @-

like contracted orbitals on each Li atom and a
polarization p„, p„p, function. The basis set is
given in Table I. The eight-atom cluster geome-
txy chosen was a simple cube, and the length of
the cube edge (also here the nea. rest-neighbor dis-
tance) was varied to find a least energy. The
eight-atom cluster is found to be bound with a bind-
ing energy of 0. 008 hartree/atom for a, cube edge
of 6, 15 a u. By means of comparison the UHF,
Li~ molecule has a binding energy of 0.002 har-
tree/atom and a nearest-neighbor distance of 5. 75
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4. 0
0.6
0.09
0.03
0.08
0.02

0.569 22
0. 58341
1.0
1.0
0.738 88
0.673 84

a. u. The UHF solution dissociates properly into
atoms. The nine-atom cluster was studied in a
bcc array and the nearest-neighbor (nn) distance
(here the nn distance is v' 3/2 the cube edge)
varied to find the minimum energy. The geome-
tries are shown in Fig. 1. The binding energy
here is found to be 0.0105 hartree/atom for a. nn

d t f 5 66 a. u. The one-electron energy
levels a.nd the approximate symmetries of the one-
electron orbitals are given for the Li atom and for
the eight- and nine-atom clusters in Table II. The
results of Fripiat eI; al. are also given for com-
parison. In the case of the eight-atom cluster,
the UHF orbitals were exact symmetry orbitals,
whereas for the nine-atom cluster the orbitals
were not, and only the dominant symmetry com-
ponent is seen in Table II. In Fig. 2, we show
the binding energy versus nn distance for Li~ and
the eight- and nine-atom clusters. In Fig. 3 we
show the electronic charge density obtained for
both the eight- and nine-atom clusters as a func-
tion of position for the line joining the center of
the cube to an atom at the cube corner. In the
case of the nine-atom cluster we find the density
in the interstitial region to be constant 0. 008
electrons/a. u. ', whereas for a perfect free-elec-

TABLE I. Basis set used in these calculations. Only
the P„ function is shown here as the P~ and Pg are simi-
lar except for the angular part. Each basis function is a
sum of Gaussians of the form x;(r) =I'(0, y) &» a& N» e
The Ny Rx'6 chosen to normalize the 1ndlvlduRl QRusslRns
and the I (8, y) are the angular parts (i.e. , s-like, P„-
like, etc. ).

Basis
function
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—.12-

I I' 48 50 5.2 5.4 56 5.8 60 6.2 6.4 6.6 68
R (!30HR I

FIG. 2. Bindingenergyper atom is shownas afunction
of nearest-neighbor distance for Li2 and the eight- and
nine-atom Li systems. Results in a. u.

tron gas the density would be 0. OOV electron/a. u. '
This indicates a migration of the electrons into
the sample and hence a "surface dipole layer" is
formed here. In Sec. IV we argue that this layer
has the proper sign and perhaps a reasonable
magnitude.

IV. DISCUSSION OF RESULTS AND CONCLUSIONS

The authors are not aware of any direct evi-
dence for the properties of fine particles of lithi-
um. However we do know some limiting behavior.
That is, the lithium-atom properties and the
properties of bulk metallic lithium are well
known. In Table III we summarize some known
experimental evidence for I.i and also give a sum-
mary of cluster results using our UHF calcula-
tions. By way of comparison we also quote the
cluster results obtained by Fripiat et al. , using

.70

.40

.50

I

I

l

c'

%F ~r
Li Li8

FIG. l. Geometries of the Lia and the Lie atom systems
are shown.

—.10
0.00 1.50 5.00 4.50 6,0 7.50

R(BOHR)

FIG. 3. Charge density for Lis and Li& for the line
th center of the cube to an atom on the cube cor-

ner is shown. The plots are for the equilibrium geome-
try and results are in a.u.
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TABLE II. Valence-electron energies for the various size Li clusters. The UHF values are from the present cal-
culation and the Xe values are from Ref. 6. Results are in eV.

-7.59
-4, 54
-4.54
-4. 54
-7.59
-4.54
-4.54
-4.54

Li8 UHF

Spin type and

approx. symmetry

Qy &

ttu 0'

t3u +
t»e

asap

t» p
t~u p

4u p

—3, 8
-3,8

—3.8

Li8 Xo

Spin type
and symmetry

gy G

t~u 0'

t» 0.'

tg„n
a) p

t» p

4. p

-6.97
-5.06

4.96
-4.87
-3.41
~7 ~ 72

5, 22
-5.13
-4.67

Lip UHF

Spin type and
approx. symmetry

8gg Q

t» G.'

t)g Q

t» G.

g~ G

a(, p

t)„p
t)„ p

—5.6
-4.1
-4, 1
-4.1
~2 7
-5.0
-3.8
—3.8
-3.8

Li& Xa

Spin type
and symmetry

C~& Q

tgg G'

t» &

t}u 0'

eg Q

ai p
tiu p

t)„ p

the Xn method. 6 The experimental data are ob-
tained from standard sources. '4 %'e note that the
properties of other small particles of metals such
as Be are known and that the available evidence
tends to suggest that experimental quantities such
as the work function tend to the bulk value by the
time the cluster size is about 10-15 A in size.

One may draw some immediate conclusions
from Table III. The UHF results for binding ener-
gy per atom are a great underestimation, whereas
the geometric trends seem reasonably accurate.
This binding-energy error for Li is expected to be
due to the ignoring of configuration interaction in

the UHF calculation, and the good geometric in-
formation is also normal to UHF- or RHF-type
calculations. %e note the trend of the binding
energy per atom to increase monotonically toward
the solid-state value for the UHF case, but not for
the Xn case. This effect may be due to the fact
that the Xn spin orbitals are symmetry adapted
but the UHF orbitals are not. Thus, in the Xn
nine-atom cluster, the state computed is a state
which is degenerate. By the Jahn- Teller theorem
the stable state must be nondegenerate. '5 There-
fore the nine-atom cluster must distort to remove
the degeneracy, and the Xn nine-atom cluster can-

TABLE III. Values of several experimental quantities are given for Li, Li~, and Li metal and also for eight,
nine, -13-atom clusters. The UHF values are from the current calculation. The XG. results are from Ref. 6 and the
experimental data are from Ref. 14. In these tables energies are in eV, lengths in a. u. (1 a.u. = 0.53 A), ~& is the
Fermi energy, &~ is the work function or ionization energy, nn is the nearest-neighbor distance, and E& the binding
energy per atom. In the case of &~, the values are from transition. -state calculations for the XG. system, with the
Xn eigenvalues given in parentheses as a means of comparison.

L12

Lis

Ll)3(icos)

Li metal

Expt. UHF

2. 67

Xn

2. 28

» ~ »

(3.7)

Expt. UHF Xn

5.34 5.4
(2.6)

4.71 5.2

(3.2)

4. 36 4. 8
(3.8}

3.41 3.9
(2.7)

Expt. UHF Xo

5.04 5.60 5.08

5.66 5.25

»»» 6 ]0

Expt. UHF Xn

0, 52 0.03 0.4Q

0.11 Q. 78

1.50

This value is an RHF bulk-crystal value obtained by Monkherst. Appropriate correlation corrections reduce
this by some 4 or 5 eV,

"These values are obtained using the Xn eigenvalues which normally seem to provide adequate information for
state densities although the more rigorous transition-state values are needed to provide accurate absolute bind-
ing energies.
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not be in the lowest energy state. We also note a
similar comment applies to the 13-atom cubocta-
hedral Xn cluster, which must also Jahn- Teller
distort, , whereas the 13-atom orthorhombic cluster
ground state is nondegenerate and accept;able.
This implies that the X& conclusions regarding
the relative binding of eight- and nine-atom clus-
ters are not necessarily correct, and also that the
favoring of orthorhombic over a distorted-cubic-
type symmetry for the 13-atom cluster clearly
needs further study. The UHF case, owing to the
absence of symmetry-adapted orbitals, does not
have a degenerate ground state for the nine-atom
cluster, although our orbital densities indicate a,

distorted cubic structure to D» symmetry is pre-
ferred. We find the nine-atom cluster better
bound than the eight-atom in terms of binding per
atom.

The other relevant parameters are the values
for the work function and the width of the valence
band (Fermi energy). In the UHF case one sees
in Table III that all these quantities progress
monotonically from the atomic value toward the
bulk value with increasing cluster size.

The question of the trend of the work function is
significant, we believe, if one is going to use
cluster models for studies of catalysis. The work
function is determined by two quantities. The

first is the band energy for the infinite crystal,
assuming the surface at infinity has no dipole mo-
ment associated with it, plus the contribution to
the surface-dipole layer. We believe that both
UHF plus correlation corrections (the correction
for the Li Fermi surface is very small compared
to other effects here") and Xo.'produce realistic
bands for Li. Therefore we conclude that the UHF
method produces a surface dipole moment of cor-
rect sign and likely the correct; magnitude. We
think, if one is to understand binding of molecules
to surfaces, it is important to first obtain a sur-
face with a reasonable surface-dipole layer. In
this regard we believe the UHF method has great
promise for such studies. With regard to binding
energies, we note that the good values for the XG
may be fortuitous since the Xa method is not vari-
ational, and that an exact Xo, solution to Hz over-
estimates the binding energy by a factor of 2. '~
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