
PH YSICAL REVIEW 8 VOLUME 13, NUMBER 8 15 A PRIL 1976

The spherical-solid model: An application to x-ray edges in Li, Na, and A

Carl-Olof Almbladh and Ulf von Barth
Department of Theoretical Physics, University of Lund, Lund, Sweden

(Received 14 July 1975)

In order to treat highly localized excitations in a solid a simple spherical model has been developed. The
Coulomb potential from the nucleus at the site of the excitation is treated exactly, while the potentials from

the surrounding sites are turned into pseudoion pontentials. Only the spherical average of these potentials is

retained and separate self-consistent calculations for the ground state and for the excited state are made.

These states are mistreated by the model but the difference accurately describes the large effects of
polarization involved. The positions of the x-ray edges are obtained with an accuracy of 0.5 eV for singly

ionized levels and 1 eV for doubly ionized levels. The phase shifts relevant to the Nozieres —De Dominicis

theory of x-ray absorption and emission edges and x-ray photoemission line shapes are also calculated. We

obtain a noticeable many-body enhancement of the L, , edge in Na while the many-body effect in Li and Al is

negligible. Our exponents agree with those extracted from recent x-ray photoemission experiments, but they do
not agree with those extracted from x-ray emission or absorption spectra. We argue that the exponents taken

from the photoemission experiment are more reliable but no definite conclusion concerning the validity of the

present many-body theory should be drawn until the experimental situation has become more clear.

I. INTRODUCTION

In this paper we develop a scheme called the
"spherical-solid model" (SSM} to treat the im-
purity problem in simpler metals. In general the
impurity problem is very difficult to handle, the
main reason being the fact that the translational
symmetry, so convenient in band-structure cal-
culations, is broken. The problem is especially
hard when the effect of the impurity extends far
out into the host crystal. This is the case if the
radius of the impurity atom is appreciably differ-
ent from the radius of the host atoms and one is
faced with the problem of lattice relaxation. Even
in the case of deep impurities in semiconductors
the impurity wave function can have a large am-
plitude on the nearest host atoms. ' In order to
get reasonable results for this problem one prob-
ably has to resort to cluster calculations. How-
ever, the class of problems we propose to treat
with our model has to be such that the wave func-
tions bound to the impurity vanish within a distance
less than the nearest-neighbor distance, and such
that the induced effect of the impurity rapidly dies
off outside the central Wigner-Seitz cell. The
physical content of the model can be described in
simple terms. We picture ourselves as sitting at
the center of the impurity atom and looking at the
surroundings. Assuming the electrons on the im-
purity atom to feel only the average field of the
remainder of the crystal, we rotate the whole
crystal around the center. The nuclear charges
of the host atoms are thus uniformly spread out
on spherical shells. The Coulomb potential from
these shells is, however, not strong enough to
bind the core electrons sufficiently tightly to the
shells. To overcome this difficulty we modify our

model by taking the spherical average of the po-
tential from the surrounding nuclei and their at-
tached core electrons. The whole system with
the exception of these core electrons is then al-
lowed to relax in this potential. Our model is thus
completely spherical. We think, however, that
there is a number of problems to which the SSM
should be a comparatively accurate approach.
The residual resistivity of dilute liquid-metal al-
loys and the Mott-type n-y transition in cerium
are probably good examples.

We have chosen to test the model in a calcula-
tion of threshold energies of x-ray absorption and
emission spectra from simple metals. The
threshold energy for, e.g. , x-ray absorption is
the energy of a transition from the ground state of
the system to the lowest possible state with one
core hole present. The core electron spectral
function A, (&u) gives the probability distribution
for excitation energies of the system with the core
hole. Thus A,(&u) vanishes below the threshold
energy, and consequently this energy (but not the
shape of the spectrum) can be obtained from a
knowledge of the core-electron self-energy. Us-
ing a simplified version of the dynamically
screened exchange approximation (the GW ap-
proximation} for the self-energy, Hedin succeeded
in reproducing the core levels of a number of sim-
pler metals with an accuracy of about 1.0-1.5 eV.
Considering the crude estimates made by Hedin
for the very large Hartree contribution and for the
chemical potential, the accuracy is indeed good.
Still better agreement with experiments is most
likely obtained by using a more realistic screening
function and a better Green's function with some
good Bloch functions of the crystal. To make such
a large effort worthwhile, our analysis shows that
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some estimate of the nonlinear effects must be
made, i. e. , some estimate of the next higher or-
der diagram in the expansion of the self-energy in
screened interaction has to be added to the linear
Rppr oxlm Rtlon ~

In the present work we have chosen to approxi-
mate the self-energy using the so-called~ 4SCF
method in which the threshold energy is taken as
the difference in total energies of two self-consis-
tent field (SCF) calculations, one for the ground
state of the system and one for a, state with a core
hole and an extra electron at the Fermi level. The
advantage of this method is that it contains a pos-
sibility to treat the relaxation energy of the va-
lence electrons in a nonlinear fashion. This rep-
resents a considerable improvement on the 0%
approximation since the nonlinear effects can
amount to 1 eV for singly ionized levels. For
doubly ionized levels the effect is four times larg-
er. Qn the other hand, the &SCF Inethod neglects
some dynamical effects included in the GW approxi-
mation which may be important for shallow core
levels.

In a Kohn-Sham &SCF calculation performed in

the present work another difficulty arises from
the fRct thRt thel e ls no theor'etlcRl 3ustlflcRtlon

for obtaining the total energy for the excited state
fr"om a self-consistent calculation with an empty
core state. In a.s much as the core hole can be
treated as an external potential, the method should

however be physically sound. In addition, the

&SCF method takes some core-valence exchange
into account.

Flynn and Lipari6 used an approximate form of

the 4SCF method and obtained reasonable results.
Their theory has, however, several deficiencies.
(a.) They resorted to pseudopotential theory to ob-
tain the difference in relaxation energies of the
electron ga, s with and without core hole. In the
case of lithium they state that small changes in

the pseudopotential parameters can cause changes
in the final result of the order of several eV. (b)
They used linear-response theory to obta, in the en-
ergy of the screening cloud associated with the
core-hole potential. The resulting error was
pa, rtly compensated for by using the bare core-hole
potential instead of a pseudopotential which would
have been more appropriate in the context of their
theory. (c) Their core states were allowed to re-
lax in the field of the electron-gas pseudo charge
density, which should be bad in the core region. (d)
They neglect exchange between core and valence elec-
trons. In Al this gives an error of O. 7 eV.

Using pseudopotential techniques Flynn and
Lipari took due account of lattice syrn. metry. For
our purposes an important conclusion of their
work is that the threshold energy is quite insen-
sitive to crystal symmetry.

Recently the relevance of many-body theory to
the shape of the soft-x-ray edges in simple metals
has been extensively debated. ' ' According to
Nozieres and De Dominicis" the shape of the edges
obeys a power law with an exponent that in a spher-
ical model is determined by the Fermi-level phase
shifts of the screened potential from the core hole.
Since we do spherical self-consistent calculations
both for the ground state and for the state with the
core hole present, we are in a unique position to
obtain the phase shifts relevant to the Noziere-De
Dominicis theory. The SSM takes due account of
ionic structure and hence there is no longer a
need for pseudopotential f itting sehernes. More-
over, no adjustable parameter enters in the de-
scription of screening. To judge from our results
for the threshold energies both the effect of non-
linearity, and the influence of the ionic core on the
screening of the core hole are accurately accounted
for by the SSM. Qur hope is hence that this work
will shed some light on the present controversy.

$I. THEORY

A. Model

%e start by writing down the equations relevant
for the Kohn-Sham theory ' ~ in its local density
forra

() f v( ')~( — ')d'~' u..(~( )))(;()
= &;9);(r),

&(') = Q lp (r) ~; (2)
g&by

Here v(~) = 1/x is the Coulomb interaction; N is
the tota, l number of electrons in the system. %e
use atomic units (energies in Hartree =27. 21 eV)
unless otherwise stated. i).„,(p) is the exchange
correlation contribution to the chemical potentia, l
of the homogeneous electron gas of density p. For
)L(.„,we use the pa, rametrization of Hedin and Lund-
qvlst Rs modified by Albman Rnd von BRl"th,

w(~) should be the potential from all nuclei:

w(r) = —Q-
Ir —l I

where Z is the atomic number and l are the vec-
tors of the direct lattice. For the reasons given
in the introduction the potential from the central
nucleus (1 = 0) is treated exactly while in the po-
tential from the surrounding sites we include the
potential from their respective core electrons.
Thus

zv(r) =-—+Q w,(r —1), (4)
1~0

where i@0(r) is —Z/y plus the potentia. l from the
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The spherical averaging is most easily accom-
plished in Fourier space. After some algebra we
obtain

u(r) = ——— p(, v(r —r') d rz' +IVor
1 M sinGx

+—Z u, (G) —u:,(r) .
~O 0~0 Gx

Here Qo is the volume of the unit cell, po is the
average valence electron density, po= Z„/Qo, G

is a vector of the reciprocal lattice, u(o(G) is the
Fourier transform of wo(r), and IVo is some finite
constant. Shifting the energy eigenvalues in Eq.
(1) by the constant So = IVo+ y.„,(Po), e; = (Z; —So,
Eq. (1) can be rewritten

[--,' V'+ V(r)+ V„(r)+ V„,(r}](p,.(r ) = e,zo;(r),

where

(7)

Z 1 ~ singr
V(r) = ——+—~w, (G) —w,(r),n, ~,(,

' cy

& (~(-f(~( ')-~, ( ( — '(&'r',

V,(r) = tz.,(p(r)) —u, (po) . (10)

The underlying assumption in this work is the in-
sensitivity of the electrons in the central cell to
finer details of the charge distribution on the sur-
rounding sites. Pursuing this idea. we finally ap-
proximate the potential uo(r) by a convenient
analytic expression having the correct behavior a,t
large distances (wo= —Z„/r) and simulating some
of the repulsive effect of core orthogonality. We
choose

w,(r) = —(Z„/r) erf(r/r, )

core electrons on one site. Accordingly, wo(r )
will behave a, s —Z„/r for large r, Z„being the
valency. Our next approximation is to retain only
the spherical average w(r) of the external poten-
tial u(r ),

dQ
zo(r) = —u)(r ) .

4m'

value for r, is characterized by having p(r)= p'(r)
well outside the radius r, . It turns out that there
exists a "correct" value for x„showing the ap-
proximation (11) to be reasonable, and that this
value can be obta. ined from an iterative procedure.
We want to stress that the approximate potential
wo(G) should not be confused with common model
pseudopotentials obtained by fitting to spectral
data for the ion. It is merely a convenient numeri-
cal too'. to avoid the Fourier transform of the true
potential wo(r).

It should be noted that the Eqs. (2) and (7)-(11)
were previously treated by Dagens, ' although de-
rived differently and used for other purposes. In
the work of Dagens the lattice part of the potential,
i. e. , the second terms in Eq. (8) and the core
electrons were not included in the self-consistency
loop, but a correction for the lattice was added on
afterwards as a perturbation. The x, values used
by Dagens were also quite different from ours.

The full problem in Eq. (1) has now been trans-
formed to a problem equivalent to a disturbance
V(r) in an originally homogeneous electron gas of
density po. Because of screening the tota. l poten-
tial V+ V„+ V„, will tend to zero faster than 1/r,
and hence the Fermi energy will be the same as
for free particles, i. e. ,

&z;=Sr —("o=z}'zz=(2zz'po)' '.P, 1'3

Equation (7} is integrated outwards to a radius 8
large enough to obtain an adequate description of
the physics of the central cell. However, we con-
sider the system to be infinite and the normaliza-
tion condition on the wave functions only enters
via an arbitrary choice of density-of-states func-
tion.

In Kohn-Sham theory the total energy of an
electron gas subject to the external potential V is
given by

Ev[P] = Ts [P]+ (P Po} zz(p —Po}2

~ ( v(q —r), ) f q~, (r(,

u, (G) = —Z„(4zz/G') exp(- —,'r', G') . (12)

The constant r, is determined by requiring the ap-
proximate wo(r) to have the same effect, with re-
gard to charge densities at large distances, as the
true potential wo(r). Suppose the Eqs. (2) and (7)-
(10) have been solved self-consistently for the
charge density p(r) using some value for r, . The
potential from the central nucleus and from the
core electrons on the central atom can then be re-
placed by the approximate wo(r), and we can solve
for a second valence density p'(r}. The "correct '*

where Ta [p] is the kinetic energy of a system of
noninteracting particles having the density p,
e„(p) is the exchange-correlation energy per par-
ticle of a homogeneous electron gas of density p,
and integrations are running over all space. Since
we are interested in differences between excited
and ground-state energies we can mea, sure ener-
gies relative to an fixed energy, and to avoid in-
finite quantities we choose Ev[po]. Thus with

&'vtp] &vl p]-&vapo],
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1
& v [P] = Ts [Pl —Ts [Po]+ 2 Jl (P - Po) ~(P - Po)

accuracy (Table IV) showing that outside the radius
R the effect of the core hole(s} is negligible.

B. Atomic corrections

where E„,= s (po} Ts [p] Ts I.po] is easily ob-
tained directly from Eq. (7) giving

Ts [p] Ts [po] —g e&+ eszs(sr)

Z„(&)ds — p(V+ V„+ V„),

where
(18}

(17)

s, are the bound-state energies and 8,(s) are the
phase shifts defined to be zero for infinite energy
[8,(e)-0, s-~]. According to Eqs. (8) and (11)
V(r) behaves as (Z„—Z)/r for large r. Thus, if
N, is the number of occupied bound states, the
Friedel sum rule states that

Z —Z„=Z„(sr) —Zr(0}+N, . (18)

TABLE I. Nonlocality corrections for free-ion core
energies. Here av indicates the average over the rele-
vant configuration or term. Experimental numbers from
Ref. 17.

Transition Experiment ASCF —KS Correction

Na ' 2p' av —Na '
2P

Al' 2f'av —Al' 2P"

Na'' 2/'av —Na ' 2/'av

Al' 2p av-Al ' 2p'av

i%a
' 2P av —2p" ' Pa„

Al"" 2t "av—2y' 'P„
Li' js —Li ' jr~

Al ' js —Al"' js~

Li'' js"—Li ' js

47. 4

120. 1

73. 5

156.2

1, 8

2. 4

75 6

2086

122. 5

48. 5

121.2

74. 5

157, 2

78, 2

2089

116.3

—1.0

—1.0

—1.8

2

—2. 6

—:3

Note that for filled shells of bound states N, = Zs(0).
The second term Vs(r), of the right-hand side of
Eq. (8} can be thought of as generated by a charge
distribution —& Vs(r)/4v. The total amount of
charge Qs(r) inside a radius r of this charge dis-
tribution, is a very slowly decreasing function of
r. Since we interrupt the outward integration at
some large but finite radius R, Qs(R) is a measure
of to what accuracy the Friedel sum rule can be
obtained [Qs(R}-0. 1]. However, the errors can-
cel when we take differences in total energies of
the ground and excited states. Indeed the differ-
ence phase shifts obey the Friedel sum with a high

The nSCF Kohn-Sham (KS) theory should give
an exact answer for the energy required to strip
one electron from a free ion provided the "exact"
exchange-correlation potential is used. Owing to
the large inhomogeneties in an ion the local density
approximation used by us for this potential in-
troduces an error of the order of 1 eV. Our mod-
el is rather designed to give a good description of
the less inhomogeneous and electron-gas-like po-
larization effects involved in the excitation pro-
cess. To allow for an accurate comparison to ex-
perimental results we will, however, add an atomic
nonlocality correction to our MCF results.

The correction for an Lz 3 threshold is obtained
as the difference between a spherical &SCF-Kohn-
Sham calculation for the atomic transition
1s 2s32ps 1s 2s 2p' and the configurational
average of the experimental energies E(p, So
-p', P, &s} and E(p', So-p', Ps&s) for the same
transition in the relevant free ion. ' We should
thus compare our final results to the configura-
tional average of the experimental L2 and L3
thresholds in the metal. The calculated and the
experimental results for the atomic transitions
and the corresponding corrections can be studied
in Table I.

For a K threshold the correction is obtained in
the same way (ls - ls) but of course without con-
figurational averaging since only one atomic state
is involved. Owing to the poor description of one-
and two-electron systems offered by the paramag-
netic Kohn-Sham theory the correction is much
larger in this case. Adding the correction to the
solid-state calculation we implicitly assume it to
be independent of the surroundings, an approxi-
mation that might be too crude for such a large
correction. This is most likely the reason why
the result for singly ionized Li is slightly worse
than those for Na and Al. Note that for the K edge
in Al we only correct for the nonlocality effects in
the K shell. The relaxation of the L shell is taken
care of by our &SCF calculation. This explains
the 8-ev discrepancy (Table II) between theory and
experiment for the K edge in Al, because the
Kohn-Sham local density theory is probably not
accurate enough to account for this large atomic
relaxation effect.

For the emission edge of doubly ionized core
levels the situation is complicated by the fact that
an atomic p configuration produces six different
atomic levels: Pg P1 Pp Dg and Sp The
spread in the 'P levels is a consequence of spin-
orbit interaction and is only 0. 2 eV in Na and 0. 5
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TABLE lI. X-ray threshold energies IeV). E& is the energy of the main band
threshold and E& is energy of the satellite threshold. The DISCI"-KS energies
contain atomic corrections from Table I and the experimental energies are spin
averages.

E) -E( Et E) -E)
15.1

LiK

E~-E,
29. 1

AI, K

E(

Experiment 30.4 72. 9' 15, 7 54. 8 28, 8 1560

Kunz, Ref. 35.
"Neddermeyer et al. , Ref. 24.
'Hanson et al. , Ref. 25.

Bedo et a/. , Ref. 41.
~geddermeyer, Ref. 42.

eV in Al. In any case the splittings are not re-
solved experimentally and in analogy with the p'
configuration we consider the 'P levels as one lev-
el ha, ving the energy of their average ('P,„). How-
ever, the splittings caused by the Coulomb inter-
action between the terms P, 'D, and 'S are large'
(S.S and 4. 4 eV in Na and 5. 0 and 5. 8 eV in Al)
and must be taken into account before a compari-
son with experiments is made. Our 4SCF calcu-
lation gives the energy for the transition between
two configurational averages (p'„-p'„). Experi-
mentally the threshold energy for emission from
doubly ionized 2P core states is the energy of the
transition 2P, P~„-2p, P~„, since this transition
is not forbidden by symmetry, since P,„ is the
lowest of the terms P, 'D, and '9 and since the
emission at threshold should start from the fully
relaxed "ground state" with two core holes pres-
ent.

This assignment of the double ionization satel-
lite is supported by experimental data on the K@3
and KP"' satellites in the Al, Mg, and Na x-ray
spectra. The data allow an independent way of de-
termining the I.Q2p, P) energy in the metals.
According to Horak' the Kn, satellite corresponds
to the transition K1.2 z(ls" 2p', 'P) —I.I (2p', 'P),
while the edge of the KP satellite corresponds
to the transition KLz, (ls' 2p', P) —Lz, (2p erv).
If the high-energy satellite in the L spectrum cor-
responds to the 3P term the energy Ez of the satel-
lite edge should equal the energy difference &E~
between the Ka, satellite and the edge of the KP"
satellite. Using Tyren's data on the Ka.s satel-
lites and Karlsson and Siegbahn's ' data on the
KP "satellites we obtain &E~ = 88. 4, 63. 1, and
41.4 eV in Al, Mg and Na, respectively. These
numbers are in strikingly good agreement with
the experimental numbers E~ = 88. 6, 63. 5, and
41.7 eV taken from Neddermeyer and %iech
(Al) and Hanson and Arakawa '

(Mg and Na).
The assignment is further supported by recent

KI.L, Auger experiments on Mg and ~ Na. These
experiments claim to give the energy E~» rela-

tive to the Fermi energy of the transition K(ls' 2p')-LI,(2P, 'D). Thus subtracting the energy Erzz,
from the energy Ez~ of the Kn x-ray line taken
from the same references, we obtain the energy
of the transition Ll, (2p, 'D)-I2 3(2p ezv). By
further subtracting the P-'D atomic term splitting
which amounts to 4. 4 eV in Mg and 3. 8 eV in Na, '
the energy of the transition I.L(2p, P)-Lz s(2p'&zv)
is found to be 63.6 eV in Mg and 43. 3 eV in Na.
These energies are in fairly close agreement with
the experimental E~ energies. The 1.6-eV dis-
crepancy in Na is probably due to experimental
errors but is anyway less than the atomic term
splitting.

Thus our &SCF results have to be corrected both
for the difference between the experimental and
Kohn-Sham configurationa. l averages for the tran-
sition p -P, and for the difference between the
experimental 2p, P,„and 2p„energies (see Table
I). In the case of the doubly ionized K hole in Li
only the first correction is applicable since only
one atomic level is involved.

III. RESULTS

A. Threshold energies

Our calculated x-ray threshold energies and the
threshold energies of the corresponding satellites
due to double ionization are compared to experi-
mental results in Table II. The agreement is in-
deed gratifying and verifies our basic assumption
of the insensitivity of the threshold energies with
regard to crystal symmetry. The slightly lower
accuracies obtained for the K edges in Li and Al
were discussed in Sec. II. The satellite peak in
sodium is off by 1 eV as compared to the data by
Hanson et gE. The experimental situation seems
however to be somewhat uncertain in this case,
e. g. , Skinner obtains 11.9 eV which is much
closer to our result. The discrepancy can partly
be explained by insufficient numerical accuracy.
%ith two 2P holes present in Na the self-consis-
tent potential is so strong, due to a relatively
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large r, (r, =4), that the Kohn-Sham "ground state"
contains a doubly occupied bound valence state
(Ss ). The one-electron energy of this state is
very small (0. 045 Ry) causing the bound-state
wave function to be spread out. The radial inte-
gration thus has to be carried far out, and break-
ing it off too soon tends to give a total energy that
is too high. The error due to this effect is how-
ever certainly smaller than 0. 5 eV. In all other
cases we estimate the over-all numerical error
in the threshold energies to be less than 0. 3 eV.
There are essentially five numerical parameters
on which our results can depend. These are the
maximum radius R outside which the effect of the
core hole(s) was considered to be negligible, the
parameter x, in the potential wo(r), the maximum
I quantum number (I ~), the number of energy
mesh points (N, ) in the continuum and the number
of mesh points (N} for the radia, l integration. We
increased E,„, N, , and N until the thx eshold en-
ergies were converged within 0.05 eV. For, e.g. ,
Al this occurred at l~„=13, N, =20, and %=231.
In order for the approximation, of replacing the
core potential on the neighboring sites by model
potentials with a parameter r„ to be reasonable,
the threshold energies E, should be insensitive
to the choice of z,. To check this, we evaluated
dE, /dr, in the case of Al and obtained 0. 6 eV/a. u.
Since the self-consistent determination of r„de-
scribed in Sec. II A, has an accuracy better than

0. 2 a. u. , the error in E, from the model po-
tential procedure is less than 0. 1 eV. The de-
pendence of E, on R is, however, more severe.
Far out from the center the external potential
V(r} has a slow sinusoidal type variation and
the valence electron density [p"(r)] closely fol-
lows this variation. The largest change in E,
with R should therefore occur for two R values ly-
ing at two consecutive nodes of p"(r) —po. In Al,
where the effect should be most pronounced owing
to its high valency and small r„ the change was
0. 5 eV with a largest R of 15 a.u. Taking the av-
erage of the two extrema will reduce the estimated
error to 0. 25 eV. We also used R=15 a.u. in Li
and Na. For r, we used 1.83, 2. 30, and 1.51
a. u. in Li, Na, and Al, respectively.

We end this section with a short note on the
bound valence state in Na. The Kohn-Sham one-
particle wave functions and energies are compu-
tational quantities without direct physical signifi-
cance. Thus within the present theory the bound
state has no relevance for excitation spectra. It
merely contributes to the electron density and the
total energy. However, the local density one-body
exchange-correlation potential is rather similar
to a local density approximation for the self-en-
ergy operator describing quasiparticles. Hence
there is a possibility of having localized s-like

quasiparticle states showing up as peaks just be-
low the satellite band. At least we expect an en-
hancement of the low-energy side of the satellite
band due to an s resonance. The experiments by
Hanson et al, seem to support this conjecture.

B. Nonlinear effects

OCC

p = g n, 1q,. 1', (20}

we consider the nonphysical but nevertheless
mathematically convenient procedure to solve the
self-consistent equations (V)-(10}and (20) using
nonintegral values for the occupation number n, of
the core state under consideration. The energy
E„[Eq. (14)] will then be a function of n, and it is
readily shown that

(21)

where e, is the Kohn-Sham one electron energy
relative to the bottom of the valence band. In the
4SCF method the core quasiparticle energy E, at
threshold is taken as

E,= E„(n,) —E„(n,—1),
or from Eq. (21)

(22)

(22)

where n, is the ground-state occupation number
(n, =6 for an Ia ~, edge). Since e, is the expecta-
tion va.lue with respect to the core function I c& of
the left-hand side of Eq. (7), E, contains the con-
tribution f "„&, V~(n) dn from the polarization poten-
tial, and we have

nc
'Zp= V~(n) dn .

nc

By definition V~(n, ) = 0, and since we have per-
formed self-consistent calculations both for the
ground state (n =n,) and for states containing one
and two core holes (n = n, —1 and n = n, —2), we
know V~(n, —1) and V~(n, —2) from Eq. (19). We

are thus able to do a quadratic interpolation for V~:

(24}

V,(n) =(n-n, )[-'.(n-n, +1)V,(n, —2)

The largest valence-electron contribution 'Z~
to the core-electron self-energy, ' is due to the
polarization potential V~, defined as the difference
between the core function expectation value of the
Hartree potential from the valence electrons t/'"„,

with (*) and without (0) core hole(s)

V. = &c
I
Va

I c&, —&c
I Va

I c&0 ~

The &SCF method offers an accurate way of esti-
mating the nonlinear effects in 'Z~. Rewriting (2)
as
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—(n —n, + 2) V~(n, —1)] . (25)

'Z,")= V,(n, 1) -,' V,(n, -2)-. - (25)

This expression is equivalent to the one used by
Hedin provided VP is taken from electron-gas
data. However, using the full expression (25) for
V~ in Eq. (24) we obtain an additional contribution
g( ) to

'Zp '= —' Vp(n, —2) ——,
' V (n, —1),

'Z ='Z +'Z
P P P

(27)

(28)

For the doubly ionized levels the polarization con-
tribution to the self-energy ( Z~) is easily ob-
tained by replacing n, with n, —1 in the limits of
Eq. (24) and subtracting V~(n, —1). The different
ZP's are given in Table III showing the strong non-
linear effects that appear especially for the doubly
ionized levels.

C. Edge singularities

Using a spherical model Nozieres and De
Dominicis ' (ND) showed that the shape of x-ray
emission or absorption spectrum was given by

(29)

To test the accuracy of this interpolation we used
the same interpolation for the eigenvalue e,(n) as
a function of the core-state occupation number.
Equation (23) then provides an independent way of
obtaining the energy E, which can be compared
with using Eq. (22). An agreement within 0 5'
was found in all cases showing third-order effects
to be negligible. The close agreement also demon-
strates the high over-all numerical accuracy
achieved in our calculations.

Keeping only linear terms in Eq. (25),

V ~ (n) = (n —n, ) [2 V~(n, —2) —2 V~(n, —1)],
we obtain the linear part 'Z& ' of the polarization
contribution to the self-energy from Eq. (24)

"3j"symbol, P, and P» are the core and valence
radial wave functions behaving like x'&' and r"
for small x, and the P»'s are normalized accord-
ing to

o, = —5, -—z Z (2l + 1)5, ,
2 2 2

77 7T
g 0

(32)

where 5, are the Fermi-level phase shifts of the
self-consistently screened potential 8". In the
Appendix we have made a minor modification of
the ND theory to show that, in our case, the rele-
vant phase shifts to be used in Eq. (32) are the
difference between the Fermi-level phase shifts
for our self-consistent potentials with and without
core hole. It has been demonstrated by Hopfield
that the details of the edge is connected to the
transfer of charge of different angular momentum

symmetry involved in the screening of the core
hole. This charge transfer is described by the
difference in the phase shifts and not by the phase
shifts of the difference potential. Note that the
latter phase shifts do not obey the sum rule while
the difference phase shifts do, as do the phase
shifts of a screened potential. We also note that
the nonphysical difference potential most certainly
possesses a bound state. '

Our results for the difference phase shifts

r P»(r)P, „(r)dr= 5(k —k') .
0

Consider an interacting electron gas subject to an
external spherical potential W(r) (the potential
from a core hole). The screened version of this
potential is W'(r). Nozieres and De Dominicis
showed that the shape of the x-ray absorption
spectrum close to the threshold could be obtained
by considering a noninteracting gas into which sud-
denly the potential W'(r) is introduced. They also
showed that the exponents o. , in Eq. (29) are given
by

M„(k) = P,(r)Pk, (r)r dr .
0

(31)

The factor after 2l+ 1 is the square of the Wigner

close to the threshold energy ~~. Here ~0 is
some cutoff frequency of the order of cz and A, (m)
are the ordinary one-body golden-rule transition
amplitudes which in a spherical model are given
by

2

A, ( )=$(2)~ 1)( ' M„(k,lk, B( — ), (30)

where k, = [2(u —(k)r+ cz)]', l, is the l quantum
number of the relevant core hole, B(&u) is 6(u)
for absorption and 6(- m)6(u+ (.z) for emission,
6((k)) being the unit step function, and

nl a BZ "' sZ")
p

Li 1s 1s 6 48 0 93
Na 1s 2p 5. 55 0. 46
Na 2s 2p 5. 23 0. 38
Na 2p 2p 5 23 0 39
Al 1s 2p 8. 90 0. 52
Al 2s 2p 8. 12 0. 42
Al 2p 2p 8. 18 0.44

15.75
12.48
11.60
11.64
19.35
17.50
17.68

4y(& )
&p

6.48
5.55
5. 23
5.23
8. 90
8. 12
8. 18

3.74
1.84
1.52
1.57
2. 06
1.67
1.75

TABLE III. Linear and nonlinear parts, Zp'' and ZP"',
of the polarization contribution to the self-energy of
core levels (nl), in the ground state ('Z), and in the
"ground state" with a core hole (h) present ("Z), for Li,
Na, and Al. Vp is the difference in valence Hartree po-
tentials for the core levels (nl) with and without core
hole. "5' = P g =4 g~ . Energies in eV.
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TABLE IV. Difference phase shifts relevant to the Nozieres —De Dominicis model. n& is
the edge exponent

n, =(2/~)a6, —(2/&') P (21+1) (Z6, )'
l=p

M+1 is the number of / values used in the calculation, and Fy is the difference in the
Friedel sum

F„=-(2/~) P (2l+1) Z6, .
The d/& ratio refers to the Fermi level of the indicated final state.

A~p A~( A&g o p 4/s ratio

Li ls —ls
Li lsP -ls'
Na 2p 2'
Na 2p —2p
Al, ls —ls
Al 2p'-2p'
Al 2p 2p

0. 67 0.33
0. 37 0.46
0. 90 0.23
0. 53 0.37
0. 32 0.47
0. 30 0.43
0. 19 0, 46

—0. 02
—0. 04

0. 00
—0. 01
—0. 01

0. 01
0. 00

0. 27
0. 08
0. 38
0. 20
0. 05
0. 06

—0.01

0, 05
0. 13

—0. 05
0. 10
0. 14
0. 14
0. 16

—0. 17
—0. 18
—0.20
—0. 15
—0. 16
—0. 12
—0. 13

1.0004
1.0004
0. 9999
0. 9993
l. 00003
1.000 01
1.000 05

7
7
7
7

13
13
13

0.11
0.11

0. 52
0. 87

65,(&z) and the corresponding exponents o., are
shomn in Table IV. Judging from the variation of
the phase shifts with the numerical parameters
and with the "environmental" parameter x, dis-
cussed in Sec. IIIA we believe that the absolute
accuracy of the exponents n, to be 0.03. Because
of the "3j"symbol in Eq. (30) only valence elec-
trons of p symmetry mill contribute to the shape
of the edge in the case of an s hole, e.g. , the K
edge in Li. For the I.z 3 edges in Na and Al both
s and d valence electrons contribute, and we give
their relative contributions to the amplitudes
A, (&or) in Table IV. It is seen that the d contribu-
tion in Al is five times smaller than that expected
by Mahan.

In Li we obtain e, =0. 05 for the relevant expo-
nent. Taking different broadening effects into ac-
count the resulting enhancement should not be ex-
perimentally observable. Thus the effect of final-
state interactions of the ND type are negligible in
Li and does not explain the broad structure found

experimentally. However, the electron-energy-
loss experiments by Gibbons et al. ' give rise to
serious doubts concerning the validity of the pres-
ent version of the ND theory. These experiments
involve a Coulomb matrix element and since the
momentum transfer can be varied the va, lence
electrons of s symmetry will also contribute to
the shape of the edge. Since we obtain @0=0.27
the ND theory predicts a sharpening of the Li K
edge with increasing momentum transfer, while
the experiment by Gibbons et al. show' no change
of the edge. Gibbons et al. actually claim that
their experiment is not compatible with the ND

theory unless the phase shift for the s wave is
less than 0. 5 (50(0.5). We obtain 5o=0. 67 but
we note that the limit 0. 5 given by Gibbon et al.
is sensitive to the rather unknown cutoff frequency

coo and the likewise unknow'n ratio of the contribu-
tions from s and p waves.

We want to stress our belief that since the ND

theory is based on a spherical model the only rele-
vant phase shifts to be put in the formula (29) are
the phase shifts 45, of Table IV. If these lead to
contradictions with experimental results, it is
rather the present form of the ND theory that has
to be revised like the crude choice of potential
and the spherical approximation. Since the ND

theory concerns quasiparticle states, one might
argue that we should have used the self-energy
operator instead of the Kohn-Sham potential to get
out differences in Fermi-level phase shifts. At
the Fermi level, however, the difference between
the two potentials is small enough not to affect our
basic conclusion.

In Na we obtain no = 0.38, thus predicting a
noticeable enhancement which is also found experi-
mentally. In Al me obtain no- 0. 06 which means
a. negligible ND effect. It is generally believed
that there is an enhancement in Al but it is also
known that there is a peak at the Fermi level in
the density of states. This peak is easily con-
fused with a many-body eff ect. Neddermeyer
fitted his experimental K and I.z 3 spectra for Al
to the formula. (29) and obta. ined o., =0.02+0. 07
and no=0. 16+0.06 compa, red to e, =0. 14 and no
= 0. 06 in Table IV. Dow and Sonntag fitted the
Lz 3 absorption data on Na, Mg, and Al by Kunz'
ef af. to a broadened form of Eq. (29) and obtained
an empirical rule obeyed by the no exponents, no
= 0.068m, . The rule implies no = 0. 14, 0.22, and
0. 27 for Al, Li, and Na compared to our no = 0.06,
0. 27, and 0. 38 for the same materials. Our
agreement with experimental results is relatively
poor thus suggesting that either the Mahan 6 edge
shape [Eq. (29)] or the ND formula [Eq. (32)]-for
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A, ((u) ~[((u —(ur)3+ y ] '

for ~ close to co~. Here

(33)

(34)

and y represents the inverse lifetime of the core
hole. Thus by fitting the form (33) to the experi-
mental XPS core spectra one can extract cy and get
an independent check on the quantitative validity
of the ND theory. We believe this to be a more
reliable test of the ND theory for the following
three reasons: (i) Contrary to the XPS case, the
extraction of exponents from an x-ray emission
or absorption experiment is strongly influenced by
band-structure effects also at threshold. (ii)
Mahan has clearly demonstrated that many-body
effects affect the whole x-ray spectrum and that a
strict power law, shown by ND to be asymptotically
valid at threshold, only applies very close to the
edge. Therefore a power-law fitting to the experi-
mental x-ray spectra might be dubious. To our
knowledge no attempt has been made to fit the
spectra with the formula recently put forward by
Mahan' and which he claims to be valid also away
from the edge (when Mahan compared his formula
to the experimental results the exponents were
not treated as fitting parameters). (iii) New cal-
culations in Lund of the core-hole spectral func-
tion shows that the power law (33) is applicable

TABLE V. Singularity exponents for x-ray emission
or absorption (&0, &&) and for x-ray photoemission (&).

LiK
NaL~ )
Al L2 3

0. 27
0. 38
0. 06

0. 05
—0. 05

0. 14

0. 16
0. 20
0. 13

0. 19
0. 12

0. 18

0. 16

This work.
Citrin and Wertheim, Ref. 39,

'Ley et al. , Ref. 40.

the exponents has to be abandoned in accordance
with Dow's ' conclusions. It should be kept in
mind that strong matrix element effects and un-
known broadening effects make it difficult to ex-
tract exponents from experimental spectra. The
strongest experimental support for a ND-type
many-body effect is found in Na, and in this case
the theory predicts a noticeable effect. Thus, in
order to resolve the present controversy an en-
ergy-loss experiment performed on Na would be
most helpful.

Final-state interactions of the ND type are also
responsible for the asymmetry of x-ray photo-
emission (XPS) core lines. According to Nozieres
and De Dominicis" the core-hole spectral function
A, (&u) is proportional to

also quite far away from the maximum of the core
peak.

Recently Citrin and Wertheim made a careful
extraction of the exponents (n) from their XPS
spectra on Na, Mg, and Al and in Table V we com-
pare their exponents with our calculated cy's. The
agreement is gratifying and strongly supports the
ND theory. Table V also shows exponents ex-
tracted by Ley ef. al. from their XPS data on Li,
Mg, and Al. For Mg Ley et al. obtain the same
value as Citrin and Wertheim but the correspond-
ing numbers for Al differ markedly. We prefer
the result by Citrin since this result is obtained
by fitting the whole peak with the formula (33) in-
stead of just using the asymmetry at half maximum
as is done by Ley ef al. According to Citrin et nl.
it is actually the tail of the peak that determines
a which seems reasonable to judge from the re-
sults by Minnhagen.

It is generally believed that the potentials from
screened core holes in different shells, are very
similar as far as deep core holes are concerned.
Our calculation of the K threshold in Al was pri-
marily performed to test this assumption. As can
be seen from the phase shifts in Table IV the po-
tential from the 1s hole is indeed very similar to
the potential from 2p hole.

D. Ground state and matrix elements

In the previous sections we have demonstrated
that core excitations in simpler metals are very
well described by the SSM. These excitations in-
volve the difference between ground and excited
states or between excited states. However, it
turns out that ground-state properties are poorly
described by the SSM. This was to be expected
from the way it was constructed, and the model
was not intended to do a good job on the ground
state except in the vicinity of the central nucleus.
In the SSM the valence charge density on the dif-
ferent nuclei will tend to the homogeneous density

po, with increasing distance from the central nu-
cleus, whereas the electron density should be the
same on all nuclei and two orders of magnitude
larger than po. In a band calculation the periodic
boundary condition will automatically guarantee
charge neutrality within each unit cell. In the SSM
no such mechanism exists and it turned out that
there was too little charge within the Wigner-
Seitz sphere in Li and Na, but a correct amount
in Al. In Table VI we show the x, value, the Wig-
ner-Seitz radius x„s, the radius ro of a sphere
containing the number of valence electron ap-
propriate to the unit cell, and the number Q„& of
electrons contained within x» for the SSM ground
states of Li, Na, and Al ~

It is interesting to investigate how well different
structures in the density of states of a, band cal-



TABLE VI. r, values, signer-Seitz radius via, and
the radius ro containing the number of electrons appro-
priate to the unit cell. Q+& is the number of electrons
within ~~ and Z„ is the valency. Atomic units.

Li

+0

Al

culation are reproduced by the SSM. Ow'ing to
periodicity the local density of states, defined as
an average over the unit cell of the spectral func-
tion, is the same a.s the global density of states
of a band calculation. Since the SSM is equivalent
to a local disturbance in an electron gas the globa, l
density of states is always a square-root law in
the SSM. It is rather the local density of states
that should be compared to that of a band calcula-
tion. Since there is an arbitrariness in the defi-
nition of the local density of states we have decided
to look directly at the one-electron theory of x-ray
emission. In the SSM this is given by Ao(&u)

+A&(u) for a 2p core hole. The A, (u)'s are de-
fined in Eq. (30) with c replaced by 2P.

We have plotted the quantity Ao+Az in Fig. 1
both for the ground state and for the state with a
hole in the 2p shell. The ground-state curve can
be compared with the corresponding curve by
Smrcka, obtained from a full band calculation.
The energy scale of the SSM curve has to be mul-
tiplied by a factor of 2 in order for this curve to
have any resemblance with the Smrcka result.
The change in the SSM curve when we go from the

ground state to the state with one 2P core hole is
essentially a further 30/0 compression of the en-
ergy scale. The curve by Smrcka is obtained in
the ground state without core hole while the emis-
sion starts from the state with the core hole pres-
ent, and should be described accordingly. How-
ever, the close agreement between Smrcka's re-
sult and the experimental spectrum indicates that
the effect of final state interactions is small in
contrast to the SSM result.

On the other hand the satellite bands from doubly
ionized core levels show strong deviations from
the shape of the main band. The oscillator
strength of s character is shifted to lower energies
in the satellites as predicted by the SSM. Our
present version of the SSM is thus only able to
give gross trends for ground-state properties and
further investigations are needed.

1V. SUMMARY

We have developed a "spherical solid" model
(SSM) to treat very localized excitations in metals.
We have tested the model in a calculation of the
position of x-ray edges and their associated satel-
lites due to double ionization in I i, Na, and Al.
The agreement with experimental energies was of
the order of 0. 5 eV for singly ionized levels, and
1 eV for doubly ionized levels. For the K edge in
Al our result was 3 eV off but it was argued that
the discrepancy could easily be removed by an im-
proved treatment of atomic relaxation effects.
Our model indicates that strong s resonances
should enhance the low energy side of the satellite
bands. This seems to be in accord with experi-
mental findings (Sec. IIIA).

We have discussed the SSM from the standpoint

3

+

3

F/G. 1. Hesults for
soft-x-ray emission in-
tensities calculated in the
spherical solid model
in the ground state (G3},
and with a 2p hole in
aluminum.

0.0 1.0 ~(Ry)
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of self-energy approximations and reached the
conclusion that in Na and Al 0. 5 eV is an upper
bound to the accuracy that can be achieved for a,

singly ionized core level in the linear so-called
GW approximation, ' while in Li the appropriate
upper bound is as large as 1 eV. Nonlinear ef-
fects are thus important already for singly ionized
levels and for multiply ionized levels they are ab-
solutely essential (Sec. III B).

The SSM enables us to calculate the phase shifts
describing the scattering of a Fermi-level elec-
tron off a core-hole potential. In a spherical
model Nozieres and De Dominicis" (ND) obtained
expressions relating these phase shifts to the
shapes of the x-ray absorption and emission edges
and to the x-ray photoemission (XPS) line shapes.
The shapes of the edges obtained with our phase
shifts are sufficiently different from the experi-
mental results ' to question the validity of the
present form of the ND theory. This is true in
particular for the case of Li where the result from
energy-loss experiments " seem incompatible
with the use of SSM phase shifts in the ND theory.
On the other hand the ND theory is strongly sup-
ported by the fact that our XPS line shapes agree
extraordinarily well with recent photoemission ex-
periments on Na and Al. We argue that strong
and unknown effects of broadening, matrix elements,
and band structure make it difficult to extract
phase shifts from the x-ray absorption and emis-
sion spectra. The phase shifts extracted from the
XPS experiments should thus be more reliable
(Sec. IIIC}. We dare not, however, draw any
definite conclusion concerning the validity of the
ND theory until the experimental situation has be-
come more clear.

The SSM gives a rather poor description of
ground-state properties. For example, the SSM
one-particle description of soft x-ray emission
does not agree with the result from a band-struc-
ture calculation. The reason is that in the SSM
the charge on the nuclei surrounding the central
atom is spread out on spherical shells and the
back scattering from these shells has only a weak
resemblance to the scattering in a real lattice.
However, the scattering off the central atom is
probably very similar to the scattering off a single
atom in a real crystal and accordingly the SSM
should be applicable in cases with weak multiple
scattering (Sec. III D).

The principle we have used for constructing our
ab initio spherically averaged potential, is not the
only conceivable one, and it may be possible to
make a more optimal choice that results in better
SSM predictions for the one-particle spectral
shapes. We feel on the other hand that the results
obtained here are very encouraging from further
SSM investigations.

In this appendix we establish the connection be-
tween the ND model and the SSM phase shifts.
Consider two model Hamiltonians of the ND type '

1 ~ k kCk+ ~ kk)CkCk (Al}

HP = ~6k CkCk+ ~ Vkki CkCki
&~~ t

k
(A2)

describing the low-lying particle-hole excitations
in a metal in its ground state (H, ) and when one
particular core-level is empty (Ha).

The electron operators (c,I refer to the plane
wave representation a,nd Ek is a free-electron
energy. In the spirit of the ND theory ' we con-
sider the scattering potentials to be spherically
symmetric, and furthermore we neglect f.he dif-
ference between the self-energy and the Kohn-
Sham ground- state potentia. l. With these a.pproxi-
mations the scattering potentials V, and Vp are re-
duced to the self-consistent potentials obtained by
the SSM. The original ND model was characterized
by ha.ving V"' —= 0. However, if (P„( )) are the
eigenfunctions of H, and (aj are the corresponding
electron annihilation operators, we can write

H] = ~~n&n&n & (AS)

n nn'
(A4)

a,nd the model described by the Hamiltonians Hy

and H~ are in fact equivalent to the original ND

model (for simplicity we only consider s waves}.
A solution for the x-ray edge shape within the

ND model has so far only been obtained for separ-
able potentials

V„„,= V, U(e„)U(e„.), (A5)

and the phase-shift parameter 5(e), which enters
in the ND expression for the edge exponent, is
given by

mVOU (E)v(e)
1 —V() y(e)

(AS)

$(d)= J dd (d )U (d ) (A V)

where v(e) is the density of (s) states and P de-
notes the principal part of the integral.

The SSM gives the phase shifts 5"' and 5' ' of
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the potentials V'" and V' '. Thus, in order to
use the difference 5' ' —5' ' in the ND formula for
the edge exponent [Eq. (32}]we must show that

g(~) g(&) (Aa}

This relation does only make sense when the po-
tential V„„. in Eq. (A4) is separable, and the ap-
plication of the ND expression [Eq. (32)] to more
general potentials, although widely used, is only
an extrapolation of unproven validity.

In order to prove the relation (AB) we express
the eigenfunctions [p( )] of Hz in terms of {(t)„' )]

(A9)

(»' —«) A(«, «')

Requiring this transformation to diagonalize Hz

and going over to continuous variables e and &' we
obtain a separable integral equation for A(«, «'},
due to the separability of the potential V„„.[Eq.

Here y(«) is given by Eq. (A7), and D(«) is deter-
mined by the unitarity of the transformation
A(«, «'), i. e. ,

t 2(«, «"}A(«', «")v(«") d«" = I)(« —«') .
(A12)

Using the identity

P P P P P

+ v'5(« —«') 5(« —«"), (A13}

and the Eqs. (All) and (A12), we obtain the final
expression for the transformation A(«, «'}

A(a, a') =
( nnn(a' )5(» —a')1

P «

sinf)(«) U'(«') 1

v U(«) «' —«

The large r asymptotic behavior of the continuum
function dtdn( )(r) can now be expressed in terms of

|)")(«), 6(«}, k = v' «,

= U U(a ) IA(a, a")U(a") (a")da" (A10) (t),")(r}-cost)(«) sin [kr+ t)")(«)]+sine(«)—
'tl'

The solution of this integral equation is readily
found to be

A («, «')

U(a)U(a') (a) U,
)1 —V, y(«)

The asymptotic limit of the last term in Eq. (A15)
is simply sinf)(«) cos[kr+ 5")(«)], ~ and conse-
quently the asymptotic form of P( )(r) is P( )(r)
- sin[kr+ I)")(«)+ f)(«)] which proves Eq. (A8).
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