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Effect of velocity-dependent screening on the form factors for transport properties
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An investigation is made on the eA'ect of velocity-dependent screening and the effect of rescattering oA' of a
single ion on the Fermi-surface form factors. Application is made to the resistivity of liquid Na, K, Mg, and
Al. Good results are obtained with these form factors. The eA'ect of velocity dependence on thermoelectric
power is also investigated and is shown to be very small. .

I. INTRODUCTION

In calculations' ' of transport properties con-
siderable effort has been made to include many-
body effects on the scattering function (or so-called
form factor} more and more accurately. Little
attention has been paid to the following two aspects.
First, the form factor is constructed from an
equation which does not rigorously represent qua-
siparticle states. Thus, a form factor so derived
cannot represent the scattering rigorously. Sec-
ondly, the scatterers are assumed to be very weak
so that the Born approximation can be invoked,
thereby neglecting rescattering effects. This work
is an attempt to focus on these two aspects by dis-
cussing new ways for dealing with them consis-
tantly.

This work is divided into a comparison of veloc-
ity-dependent and velocity-independent form fac-
tors. The first corresponds to the true scattering
of quasiparticles while the latter is an approxima-
tion. We find that the velocity-dependent form
factors do not depend as strongly on exchange and
correlation eff ects as the velocity-independent
form factors used extensively in the past.

In Secs. II A and II 8 we propose a way to in-
clude rescattering, off a single ion to all orders
in both the velocity-independent and velocity-de-
pendent form factors. This essentially follows the
work of Dagens, Hasolt, and Taylor. ' In Sec.
IIC we generate an approximate form for the ve-
locity-dependent form factors. In Sec. III A we

apply the above to calculating the electrical resis-
tivity of liquid Na, K, Mg, and Al. Finally, some
of the effects of the velocity-dependent form fac-
tors on the thermoelectric power are discussed
in Sec. III B. In particular, we find that the ad-
ditional term coming directly from the velocity
dependence cannot account for the relatively poor
agreement between theory and experiment in the
thermoelectric power.

This work is an attempt to suggest that new
emphasis be put on constructing scattering func-
tions from a more fundamental theory.

II. SCATTERING FUNCTION

A. Velocity-independent scattering function

where

W(r) = V,„,(r) + V„(r) + V„(r) .
Here Vgr) is the electrostatic potential of the
electron gas and V„(r) its exchange and correla-
tion contribution. The induced density n(r) is
given by,

n(r) = Q q;*(r)p;(r) .
P

For a small V„,(r), whe~e linear response is
applicable, the self-consistent solution of Eqs.
(1)-(3) gives in Fourier space,

—v„,(q)rl(q) —v.„(q)rr(q)
1+(4ee'/q')II(q) &(q}

(3)

(4a)

w(-) V.* (q) V., (q)
1+[4we /q —G(q)] Ilo(q) e(q)

(4b)
where Ilo(q) is the screening function of the non-
interacting electron gas (i.e. , the Lindhard
screening function), ii($) that of the interacting
electron gas, and

G(q) =1/II, (q) - 1/rt (q) . (5)

Finally, the transition probability T; -„of a qua-
siparticle state of momentum p to a state of mo-
mentum p' is proportional to IW(q) I~, where q is

We consider a single ion with a potential V,„,(r)
embedded in a jellium. In a local theory the qua-
siparticle states P; are described by the equation
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the momentum transfer q =p'-p.
For Na, K, Mg, and Al it was recently shown

by Rasolt and Taylor and by Dagens, Rasolt, and
Taylor' (DRT} that nonlinear effects of V„,(r) are
not negligible. We incorporate them following
DRT by constructing an effective potential V,«(r),
that reproduces in linear response the full charge-
density induced by V,„,(r) corresponding to the
numerical solution of Eqs. (1)-(3) (see also Ref.
7). Such a V «(r) used in the well-known Ziman
formula is an improvement over V„,(r) in that it
includes rescattering off a single ion to all or-
ders. It should be emphasized that in transcend-
ing the Born approximation we have ignored mul-
ticenter scattering. That this is justified is
strongly suggested by the results of DRT. Final-
ly, if we write the radial wave function in the
form of the variable phase shift 5(r) (see
Calogero'), then it is apparent that functions with
the proper phase shifts will generate the correct
density. The reverse is not true, i.e. , the cor-
rect n(r) does not ensure the proper phase shifts.
However, since the adjustment from V,„,(r) to

V,„(r) is small (see DRT), we feel that V,«(r) (ap-
plied to linear order) generates the true phase
shifts fairly accurately and thus reproduces the
full cross section (or equivalently satisfies the op-
tical theorem) to good accuracy.

teracting electron gas and Ez= h pea/2m).
As we did for the velocity-independent scatter-

ing function we next wish to incorporate in a sim-
ple way some of the nonlinearity associated with

V,„,(r). In Fig. 1(b) we present schematically
some rescattering processes which enter the form
factor 8'. The dashed lines ending at the cross
represent the rescattering off V,„,(r) (the so-
called t matrix). We note that its full structure is
extremely complex (some of the terms are shown
in Fig. 9 of Ref. 14). In fact, the structure of
Fig. 1(b) only corresponds to a subset of the full
t matrix. We next note that the portion enclosed
in the rectangle of Fig. 1(b) is the full density.
Therefore, in constructing an effective interac-
tion V„,(r) [the wiggly line in Fig. 1(c)], we again
demand that it generate the full density. That is,
V„,(r) is identical to the one constructed for the
velocity-independent form factor. The form fac-

B. Velocity-dependent scattering function

Most calculations of the transition probability
T;;. assume Eq. (1) to be a, fundamental starting
point. See, e. g. , Greenfield and Wiser and
Williams and Appapillai. ' Consequently, great
effort is made to improve upon the contribution of
the many-body effects in W(q), i. e. , e(q), through
more sophisticated calculations of G(q). Little
attention is paid to the fact that Eq. (1) does not
represent quasiparticle states ' ' and hence can-
not give the transition probability rigorously. For
a weak V„,(r) the quasiparticles are scattered off
the velocity-dependent potential given schematical-
ly in Fig. 1(a) by the dashed line ending at the
cross. From a rigorous analysis of the response
oi an electron gas (to an external field) in the
presence of V,„,(r), it has been shown 4 that the
approporiate form factor is given by

W(p, q, E) = Z(E) A(p, q, E) V,„,(q)/e(q), (6)

where A(p, q, E) is the irreducible vertex function,
Z(E) is the quasiparticle renormalization constant,
and E is the qua. siparticle energy [E=E(P}]. (For
simplicity we will hereafter omit the arguments
of W, Z, and A. ) We note in pa.ssing that if we
define W'= (I/Ao}W (where Do is the volume per
ion), then for electrons on the Fermi surface (FS)
p = p& and E = E(p&); the limit as q-0 of W' is
—',-(m/m*)E& (m~ is the effective mass of the in-

(b)

(c)

FIG. 1. Scattering function (or form factor) for the
case of single and multiple scattering. Here x --- is the
external potential, ~ is the Fermion propagator, ~ . - is
the bare Coulomb interaction, and the shaded ellipsoid
is the polarizability.
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tor in Eq. (6) is now obtained by replacing V,„,(q)
by V,«(q).

C. Vertex function A

The main drawback of Eq. (6) and the reason it
has been approximated by Eq. (4b) is the difficulty
of evaluating A, which has not yet been calculated
for general energy and momenta. The approxi-
mate form for A suggested in this work is based
on a PS-model calculation by. Rasolt and Vosko. 3' 3

ln these works the mass operator Z(r, r', E) was
approximated by

Z(r, r', E)= V(r) 6(r —r')

+M„[r —r'; E- V(r)+ &(n(r)); n(r)]

where

M( -r';Z a)=f
( )

M(p Z»)p
(8)

and M„(p, E, no) is the usual self-energy operator
in momentum-energy space for a homogeneous
electron gas with density no. Also in Eq. (7)

V(r) = V,„,(r)+ V„(r),

() (n(r)) = p„(n(r))+ V(r} —p, ,

p, „is the chemical potential for a uniform gas of
density n, and p. is the chemical potential.

From Eq. (f}, an expansion to linear order in

V,„,(r) and proper identification gives the follow-
ing approximation for A:

II(p) BM,(p, Z, ,) PM (p, Z, ,))
ll(0) &E Bp„

f, =-z+(m/mM)(z/z, ) . (14b}

Mg and Al we used the hard-sphere structure fac-
tors (see Ashcroft and Lekner ) with a packing
fraction of q = 0. 45 assumed at the melting point.

For V„,(r) we chose a local non-energy-depen-
dent form,

V„,(r}= —Ze /r —e(RM —x) (A —Ze'/r), (12)

where 8 is the unit step function, A is the well
depth, and R~isthewell radius. For Na, A=O. 32
Ry, R& = 1.94 a.u. ; for K, A = 0.42 Ry, 8„=2. 98
a. u. ; for Mg, A. =1.235 Ry, R& ——1.72 a. u. ; and
for Al, A = 2. 22 Ry, R„=1.40 a. u. These coef-
ficients are the ones that give good full charge
densities, especially for the cases of Na and K.
(See DRT for these densities. )

We have used five different G(q) functions in
this paper to study the effect of the two scattering
functions (velocity dependent and velocity indepen-
dent). These five functions are plotted in Fig. 2
and will henceforth be denoted as follows: HS re-
fers to Hubbard and Sham, ~ SP refers to Shaw and
pynn, ~2 TW refers to Toigo and Woodruff, ~ GT
refers to Qeldart and Taylor, 4 and VS refers to
Vashishta and Singwi.

The velocity-independent form of the potential
of Eq. (13) is obtained from Eq. (4b) while the ve-
locity-dependent form is obtained from Eq. (8).
Incorporating Eq. (11) into Eq. (6) yields

fV= [V,„,(q) /E(q} ] [Z+ b,II{q)/II(0)], (14a)

where

Restricting electrons to the FS gives

A= 1-[ff(q) /fl(0)](1- Z-'m f~/m*Z, ) . (11}

We note that Eqs. (10) and (11) satisfy the q -0
and q - limits. Furthermore, as observed by
Hedin and Lundqvist, for intermediate q (I ql- 2. 28p& and r, = 4 a.u. ) Eq. (11) is in good agree-
ment with the calculation of Watabe and Yasuhara. " —2.0

C9

III. CALCULATIONS

A. Resistivity of' Na, K, MI, and Al

The resistivity of liquid metals can be obtained
from the Ziman formula,

a ZZ
8&(m*)'n,
4eh Pg o

where a(q) is the structure factor of the liquid
metal and 8" is the screened form factor for FS
scattering discussed in Sec. II. For Na and K we
have used the accurate x-ray structure factors of
Greenfield, Wellendorf, and Wiser~ (GWW). For

I.O

I

2.0
0 i I } I l

0 0.5 I,O [.5 2.5
q~()p—

FIG. 2. G(q) functions (in atomic units, ~ =5'=e =1)
used in this work. The notation is as follows: VS is
Vashishta and Singwi (Ref. 25), GT is Geldart and Taylor
(Ref. 24), TW is Toigo and Woodruff (Ref. 23), SP is
Shaw and Pynn (Ref. 22), and HS is Hubbard and Sham
(Ref. 2&).
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TABLE I. Resistivity results (in. ply cm) for the velocity-independent and
velocity-dependent form factors for liquid Na, K, Mg, and Al. The veloc-
ity-dependent results are in parentheses. The screening functions used are
the same as those referred to in Fig. 2.

Screening
functions

Hartree
HS

SP

VS

Experiment

6.05
7.15

(7.14)
8. 30

(9.V9)
10.01
(8.91)
11.28
(9.78)
9.81

(1O. 39)
9.6"'

7.95
9.40

(9.3V)

10.92
(12.9O)

13.21
(ll. 73)
14.91

(12.91)
12.94

(13.Vl)
13.4'

7.68
9.03

(S.so)
10.89

(13.41)
13.38

(11.76)
15.56

(13,34)
13,41

(14.35)
13 1""

9.84
ll. 58
(11.27)
13.98

(1V.26)
17.23

(15.13)
20. 09

(17.2O)

lvs 27
(1S.5O)8"

10.33
12.02
(11.97)
13.05

(13.92)
15, 14
(13.37)
16.54

(14.11)
14.45

(14.51)
27. 4

Al
660 'C

ll. 87
13.83

(14, 39)
14.71

(15.64)
16.59
(15.13)
17.67

(15.69)
15.82

(16.ov)
24. 2'

N. E. Cusack, Rep. Prog. Phys. 26, 361 (1963).
J. Hennephof (private communication).

As we mentioned in Sec. IIB, the compressibility
sum xule is an integral part of the formulation of
the velocity dependence. How'ever', only one of tile
G(q) functions that we have used satisfied this ex-
actly, viz , the .GT function. Therefore, in order
to use the other G(q) functions in this theory, we
have used the ratios of K/Ko obtained from their
G(q =0) values. This automatically ensures that
W'- ——', E&(m/m~) as q - 0. We have restricted
ourselves to m*= nc because of the uncertainties
in calculating the quasiparticle mass and because
the I* only deviates slightly from m. (See
Rice, Hedin, 7 and Lundqvist. )

Figure 3 contains plots of the form factors of
Na and Al for the Hartree, velocity-independent,
and velocity-dependent cases. It is interesting to
note that both the velocity-independent and veloc-
ity-dependent form factors show the same trends:
they are larger than the Hartree and are close to
one another though their structure originates from
different formulations. The same trends w'ere

found for K and Mg.
Table I contains the results for the resistivity

for velocity-independent and velocity-dependent
scattering functions. We note that both are in
much better agreement with experiment than the
Haxtree and the foxmer is generally larger.
Thus, we conclude that exchange and correlation
effects are smaller fox velocity-dependent form
factors. For Na and K, the GT results with veloc-
ity dependence included are in very good agree-
ment with experiment. This very good agreement
of the Na and K results is partly a reflection of the
quality of the QWW experimental structure fac-
tors, in particular the temperature dependence.
For Mg and Al we were not able to find structure

~ -04—
o4tn

-0.6—

i

0.5
i

i.0
9/1 F

i

l.5

FIG. 3. Form factors for Al at 660'C and Na at 100'C
using the GT screening function. (a) Hartree result for
Al. (b) Velocity-dependent result for Al. (c) Velocity-
independent result for Al. {d) Haxtree result for Na.
(e) Velocity-dependent result for Na. {f) Velocity-inde-
pendent result fox Na.

factors of the quality of GWW, therefore, we used
the hard-sphere model. ~9 %'e have also used bare
form factox s for Na and K that did not include the
rescattering effects and found that the velocity-
dependent results were then much below experi-
ment.

Finally, we emphasize here that besides attempt-
ing to produce good agreement between theory and
experiment, we wish to more clearly discern the
effect of the velocity-dependent screening formula-
tion. Since great efforts have been put into con-
structing better G(q) functions, this work suggests
greater empha, sis be put into constructing better
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vertex functions [Eq. (10)].
B. Thermoeh:ctrie poorer

The thermoelectric power Q is given by

q = [(m~/m)v'k, ' r/2 eZ,](2—2s --,' r), 0.3

and

2~& d W'aq q dq
4p

a q q dq . &7
0

O. l

0

z=Re 2P
f d

(
v.„,(q)—(AZ) '*' »"a(q)q'dq/

dp , , e(q)

2'
~

W'~'a(q)q'dq . (18)
0

Our approximation for A given by Eq. (10) allows
us to estimate this contribution. With Z '= 1
—BM„(p, E, no)/BE and after some algebra and re-
arrangement of terms [it is convenient to change
differentiation with respect to p„ in Eq. (10) to
that of p] we get

d (- )
m am+ 1 K II(q)

~ dp ~p~ m* ar m+ Ko II{0)

+Z2 & — M„„+ M~ „, &9

As we pointed out in Sec. G and as is apparent
from Eqs. (15) and (17), the energy dependence of
V,„,(r) is crucial for calculating Q. It is, there-
fore, not possible to get meaningful results for Q
using our energy independent V,«(r). There is,
however, a contribution not dependent upon the
energy dependence of V„,(r) which is of interest
(see below).

Careful calculations by Devlin and van der Lugt
using the Shaw nonlocal energy-dependent-model
potential show that for the improved many-body
contribution [G(q}] the value of p improves while
that of Q gets worse, This is perturbing since,
as we saw, many-body contributions included in
two different schemes showed similar trends from
the Hartree results (see Fig. 3). In this section
we wish to investigate the importance of the ener-
gy dependence in ZA on Q. This contribution is
absent in the velocity-independent structure fac-
tor and could be the source for the above discrep-
ancy,

From Eqs. (6) and (ll} it is apparent that this
additional contribution is given by

-O. l

-0.4—
0 I 2 4 5

S

FIG. 4. M~,~ and Mz, ~ plotted as a function of w~ tsee
Eqs. (25) and (27) in the text).

where
82

M„„= a M&,(k, (u, n())
~QP

CO=Oe 25
a=0.5

{20)

M), „——— M„(k, ((&, no) (21)

M„(k, &u, no)= z
' d3q

27t' 2'
1 —6[(k+ q)' ——,']

&u+ (o' —(k+ q)' —if)

e[(k+ q}a ——,']
(„-,-);,, ))',(q, '), (23)

cd=0, 25
}f=0o5

all energies have been changed to units of If (2p&) /
2m and momenta to 2pf. %e again set m*= m.
Hence we get

2pf —AZ = Z 1- M„„+M~„
(22)

Our task is then to evaluate the last two terms of
Eq. {22), and we do this in the random-phase ap-
proximation (RPA). In the RPA, M„(k, ((), no) is
given by
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where I'0(q, e') is the usual pair effective inter-
action. After differentiation with respect to u and
k and careful rotation to the imaginary axis we get
for M„„

(24)

QX dQ

q'+ (nr /4w)q(q u)

2(1 —q)'
(1 —q)'+ u' [(1—q) '+ u']'

1 2(1+ q)2

ii ~ q)' ''
f(& s)*~ '1*) '

—(nrP idq 1

2w 0 q' [e(q, o)]'
For M~ „we get

(25)

2Q'J' dg 1 st' i 201; d
w o q e(q, 0) w e(1, 0) w'

o () q'+( rn, /4 )wq(q, u)

i2 —q' 2 —q' 2(1 —q}'(2 —q) 2(1+ q)'(l + q)
(1 —q)'+u' (1+q)'+u' [(1—q)'+u']' [(1+q)'+u']'

-d n=(4/9. )' '. ..;=(2/4...)'~'. ..=8'/ ".
In Eqs. (25)-(27),

e(q, 0) = 1+ ' ~ —+ ln, (28)
nr, 1 1 1 —q 1+q

q 2 4q 1 —q

u +1 —q u +(q+1)
2q u'+ (q —1)'

-2u tan-' ~ + tan-'-i 1+q)
Q Q

(29)
[Note the q's in Eqs. (22)-(29) should not be con-
fused with the previous momentum transfer q ]
After suitable transformations the integral in Eqs.
(25} and (27} are evaluated numerically for a range
of z,. The results are plotted in Fig. 4. The
imaginary part M„„ is neglected since it makes
no contribution to r [see Eqs. (17) and (18)].

As can be seen, the terms M„' „and M„„ in-

dividually make for a sizable contribution, but of
opposite sign. As in the case of calculating m*
(where large cancellation occurs between sM/sv
and SM/Sk; see Rice ') they largely cancel out.
The effect of the energy dependence of A on the
thermoelectric power [i.e. , r of Eq. (18}]is cal-
culated using Eqs. (17) and (22), Fig. 4, and the
values of Z and K/Ko given by Hedin and Hedin
and Lundqvist. ' The GT results for Na, K, Mg,
and Al are s =0, 0076, 0. 0030, 0.0196, and
0.0156, respectively, and are seen to be very
small. The other G(q) functions yielded the same
trend. %e conclude that the aforementioned dis-
crepancy in the thermoelectric-power calculations
does not originate in the energy dependence of the
vertex function, but in the lack of accuracy of the
original pseudopotential.
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