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Effective polarizability of polarizable atoms near metal surfaces*
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The density-functional formalism of an inhornogeneous electron gas is appbed to compute the effective

polarizability of polarizable atoms and molecules adsorbed on metal surfaces. The metal is treated in the
"jellium" approximation and the adatom is approximated by a point dipole. The effects of screening of a small

uniform external field are also considered. This approach is found to yield effective polarizabilities compatible

with experiment and is expected to provide a useful qualitative description of the effective polarizability of
atoms and molecules adsorbed on metal surfaces.

I. INTRODUCTION

A new piece of information in surface physics,
the effective polarizability, has become available
experimentally within the last few years, '~ The
effective polarizability is the apparent polariza-
bility of an atom or molecule in the vicinity of a
surface. Its knowledge would help in the untangl-
ing of the behavior of atoms and molecules on sur-
faces. The effective polarizability is important
in theories of physical adsorption, chemisorption,
field emission, field ionization, and field desorp-
tion. Large enhancements of the effective polariza-
bility over the free atomic or molecular polariza-
bility have been observed for both xenon' and nitro-
gen adsorbed on metals.

Representing the adsorbed atom by a point dipole
near a perfect metal, one can compute the effective
polarizability from classical image theory. How-

ever, this model fails to account for the observed
enhancements of the effective polarizability over
the free atomic polarizability. Attempts to in-
clude finite screening effects in the metal within the
framework of the Thomas-Fermi approximation
by Antoniewicz4 and by Heinrichs' indicate that the
effective image plane of the metal is recessed be-
low the surface, reducing the image field at the
dipole position, and consequently predicts less of
an enhancement in the effective polarizability than
does classical image theory. It was felt, there-
fore, that additional theoretical work was needed
in this area.

In a real metal, the surface is not sharply de-
fined, but is diffuse over a width of about 2 A. For
an adsorbed atom lying within 5 A of the surface,
one would expect to see effects in the effective po-
larizability owing to the finite screening length of
the metal and to the diffuseness of the surface. At
closer distances where the metallic and atomic-
charge densities begin to overlap considerably,
the structure of the adsorbate would become im-
portant. In this paper we study the effects of the
diffuseness of the metal surface on the effective
polarizability, assuming the atom is located suf-

ficiently far from the surface to be approximated by
a point dipole. For the metal we use a planar-
uniform-background model in which the electrons
have been allowed to relax into the vacuum. A

linear-response formalism is used to compute the
response of the metal surface to the perturbing
point dipole. To illustrate our results, we present
the effective polarizabilities of the noble-gas atoms
adsorbed on metals over the range of metallic
electron densities. A1.so, we compare our results
with the available experimental evidence and find
qualitative agreement.

II. THEORY

A. Formulation of the problem

%e shall restrict ourselves to considering the
effective polarizability of a nonpolar atom or mole-
cule physically adsorbed on a. metallic surface.
The adatom-metal distance is assumed to be suf-
ficiently large that a linear-response solution is
appropriate. The atom, lying a distance, d, outside
the metal, is approximated by a point atom with
polarizability n, . The metal is treated in the
planar-uniform-background model, with the metal
occupying the negative z half space.

The presence of a small external electric field
Eo in the vicinity of the adatom will induce a small
atomic dipole moment p = eoEO. It is well known
from classical image theory that a point dipole
located a distance d from a metal surface will in-
duce a screening charge on the surface. This
screening charge will give rise to an additional
electric field E„at the position of the point dipole,
an additional field equivalent to the field produced
by an image dipole located at z = —d. If the point
dipole is oriented normal to the surface, F~ is,
in the classical case, given simply by E~= 2p/
(2d)' where p= I p i. Thus, the actual induced
atomic dipole moment of an atom near a metallic
surface is enhanced, since the effective field at
the atom is given by Eo+ F~, i.e. ,

u= no(&o+ &~) .
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The "effective polarizability, " e is defined as the
induced atomic dipole moment divided by the ex-
ternal electric field at the atom. This definition
and equation (2. 1) can be combined to eliminate
the external field to give, t( )

6G[n]
o r +

g
JL(o~ (2.6)

subject to the condition that the total number of
electrons remain constant. Introducing this con-
dition through a Lagrange multiplier p, o gives

no
Eo 1 —ao Eo/&

(2. 2) where Vo"(r) is the total electronic potential,

In a linear-response formalism, E„will depend
linearly on the atomic dipole moment p. Conse-
quently, E~/P is independent of both the external
field E„and the induced atomic dipole moment

p. The quantity of interest in determining the
effective polarizability will be the electric field
induced by a unit point dipole at the position of the
dipole.

For some applications, however, the external
field at the position of the atom is unknown. For
example, in a capacitance measurement, only the
electric field far from the metal surface E„may
be known. We define the "apparent polarizability"
as the induced atomic dipole moment divided by the
applied external electric field E„, i.e. ,

a ,=t/E„. (2. 2)

For atoms lying close to the metal surface, the
applied external field may be partially screened
by the metal. Let Eo(z) be the actual applied field
at z. We can represent Eo(z) by E„s(z), where
s(z) is a continuous function of z, varying from a,

value of 1 at z =+ ~ to 0 at z = —~. With this ex-
pression for Eo(z), the apparent polarizability is
found to be

a„,= as(d) =
1
a,s (d)

1 —eoE~ p
(2. 4)

B. Linear-response formalism

The theory used is based on the Hoenberg and
Kohn theorems, which demonstrate the existence
of a universal functional of the electron density
G[n], such that for any static external potential
V;"(r ), the correct electron charge density no(r )
can be found by minimizing the energy functional,

1 no(r ) no(r')E[n]= — V (r)noo(r)dr+—
2 lr —r'l

xdr dr+ G[n] (2. 5)

Thus, the apparent polarizability will be reduced by
a, factor of s(d) from the effective polarizability a.

To compute the effective and apparent polariz-
abilities of atoms adsorbed on metallic surfaces,
we need to know the electronic response of the
metal surface to a perturbing point dipole and to
a uniform external field. To accomplish this,
we employ a linear-response function similar to
that us ed by Ying, Smith, and Kohne in their theory
of hydrogen chemisorption.

)r-r j

(2- 7)

and p, o is the chemical potential. We use atomic
units throughout.

Let us assume that no(r ) corresponding to Vo"(r)
is known for some system, and introduce a small.
additional charge density pf"(r) giving rise to a
small perturbing potential,

Vf"(r ) will induce a small screening charge n, (r )
in the system. The energy functional in Eq. (2. 5)
can then be rewritten

r

E[no+ n, ] = —
l~

[Vo"(r)+ V~*(r)] [no(r)+ n, (r )]dr

[no(r ) + n, (r ) ] [n,(r') + n, (r ')]
2 ~ ir —r'

I

+ G(n, ]+ ~G[n, ],
where dG[n, ] is defined by

aG[n, ] = G[no+ n, J
—G[no] . (2. 10)

Minimizing the energy with respect to variations
in the charge density, subject to the condition that
the total number of electrons remain constant,
and linearizing with respect to ply one obtains the
following linearized Euler's equation for n, :

—[V;"(r)+ V, (r)]+
~ 5 „n,(r )dr = p, ,

6'G[n]
Dn r 5n r')

(2. 11)
where p, , is the change in the chemical potential
and

V, (r)= ', dr'
lr —r'l (2. 12)

&'V, (r ) =-4vn, (r ),
to obtain n~(r) and V~(r).

C. Application to metal surfaces

(2. 13)

To apply this formalism to the screening of ex-
ternal charges by metallic surfaces, we treat the
metal in the jellium approximation, with the metal
occupying the negative z half space. For no(z),
we use the self-consistent solution found by Lang

is the electrostatic potential of the induced screen-
ing charge. Equation (2. 11) must be solved self-
consistently with Poisson's equation,
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and Kohn, ' and concentrate our efforts on deter-
mining the first-order screening charge density
and potential, n, (r) and V, (r). For G[n], we use
the first two ternis of a more general gradient
expansion, 6'7

r
G[n] =

~

g2(r)dr+
~

g2(r)~Vn(r)~ dr+ ~ ~ ~

3 3'"
= —,2 (22 ) '

~i
n' (r) dr ——

4

4/3, , x I &n(r }Ix
[

n (r) dr+ — — dr,
8 „n(r) (2. 14}

where 1=9. Here, the correlation contribution to
g3(r) and the exchange and correlation contributions
to gz(r) have been omitted. The local correlation
contribution to go is small and its inclusion in Eq.
(2, 14) is found to have little effect on the results.
This form for G[n] is known to work well for bare
surface properties, such as work function and
charge density variation, and it also gives rea-
sonable results for hydrogen chemisorption. '
The validity of this approximation is discussed in
more detail in Ref. 6. To gain insight into how
well approximation (2. 14) works for the physisorp-
tion problem, it is of interest to compare results
obtained with Eq. (2. 14) for hydrogen chemisorp-
tion with a self-consistent calculation of the same
problem by I,ang and Williams, "who treated the
kinetic energy functional exactly. Lang and
Williams" noted that (a) the response of the metal
to a proton in the surface region is nonlinear; and

(b), the response found with approximation (2. 14)
grossly underestimates the screening charge near
the proton. We believe that neither of these ob-
jections is serious in the physisorption problem
being considered here. A point dipole perturba-
tion is a much weaker perturbation than that of a
point charge. Also, physisorption occurs at dis-
tances which are much larger than hydrogen

n~(r) =
2 2 e 'n3(Q, z),fQ n

27r

V,(r}=,2 „e"'V,(Q, z),
(2'tl')

(2. 15)

etc. , where r = (p, z}, p = (x, y, 0), Q = (Q, , Q, , 0),
and Q= IQ I. Substitution of Eq. (2. 14} for G[n]
into Eq. (2. 11), and Fourier transforming every-
thing using Eq. (2. 15), we obtain the following
equation for n, (q, z):

chemisorption. The induced charge in the vicinity
of the physisorbed atom is expected to be small,
in contrast to hydrogen chemisorption.

A problem which will concern us is the proper
choice for the coefficient A. of the gradient term in
Eq. (2. 14). This term represents the first quan-
tum correction to the Thomas-Fermi kinetic energy
[given by the first term in Eq. (2. 14)]. It has the
functional form originally proposed by von Weiz-
sacker with A = 1, and has been analyzed extensive-
ly by several authors. ' Jones and young' have
compared the response function obtained from the
truncated gradient expansion with variable coef-
ficient X to the Lindhard response function. They
found that choosing 1=1 yields the correct re-
sponse for perturbations whose wavelength of im-
portance is small with respect to the Fermi wave-
length, while A. =9 is appropriate for perturbations
whose wavelength is large with respect to the
Fermi wavelength. Thus, choosing A. =~, we
would expect the induced screening charge to be
relatively accurate at distances far from the point
dipole, and relatively inaccurate at distances near
to the dipole. Since the dipole is located outside
the metal where an induced charge is expected to
be small, we expect a choice of 1=9 tobe appropri-
ate for this problem. The choice of A. is discussed
further in the Appendix.

It is convenient to Fourier transform all vari-
ables in the plane parallel to the surface, i. e. , let

n0( }
(2 2)2/3 2/3(z) 2 1/3( ) + 0( } 0 ( } q2 n (q z) n0(z}

V (q )

[V;"(q, z) &,5(q)],4n0(z) (2. 16)

where the primes refer to differentiation by z.
The above must be solved self-consistently with
Poisson's equation,

for

V,"'(Q, z) = Vf"(Q, z)+ V, (Q, z) —0 as z —+ ~

(2. 1S)

QWO .
—Q V, (Q, z) —4mnq(q, z) =0

subject to the boundary conditions

n~(q, z)-0 as z-+~

(2. 17)
Equations (2. 16) and (2. 17) constitute a set of two
coupled second-order differential equations which
can be solved numerically for n, (Q, z) and V, (Q, z)
by a method proposed by Wachspress. '



E F FE CTIVE POLA 8 I ZAB IL IT Y OF POLABI ZAB LE ATOMS. . . 3279

= 2' sgn(z —z') e-"'-"( . (2. 19}

Substituting Eq. (2. 19) into Eq. (2. 17), and solv-
ing equations (2. 16}-(2.18) for V, (q, z), the
quantity E~/p may be obtained from

E~
" 9 Vi(q) z) (o.- d Q

(»)', .=o, .-u
'"

QdQ d q
s Vi(q z}

0 2v z p p 0, s=(=(

(2. 20)
where J'0 is Bessel function of zero order. Sub-
stitution of E, /p into Eq. (2. 2) will give the ef-
fective polarizability, e, for an atom with free
atomic polarizability ego.

The above formalism can also be used to com-
pute the response of a metal to a uniform field.
We assume, for convenience, that the metal is
grounded, fixing the chemical potential at po (p. ,
= 0). A uniform field E„applied normal to the
surface, induces a surface charge, n, (Q=O, z).
The external perturbing cha, rge is taken to be a
uniform sheet of charge lying in the plane z =z',
which is located far out into the vacuum, well
outside the region of interest. Equations (2. 16)
to (2. 18) then are modified to read:

—+ —(2w )no~ (z) ——— no (z)
d no(z) d 4 z ~, 4 3 '

dz n, (z) dz SX ' SX

no(z}
' no'(z }"

n ()(z) n, ( )z

(c)
+

"' v,'"(q=o, z)=o, (2. 21)

„,V,"'(q=O, z)-4', (Q=O, z)=O (2. 22)

subject to the boundary conditions

n, (Q=O, z)-0
V"'(Q = 0 z) —0

n~(q=o, z)=0

as z-D,
as z-0,
at z =zq,

(2. 23)

8
V,"'(q=O, z)= —E„atz=z, ,

where z~ is a point well outside the surface re-
gion. The screening of the external field is then
computed from

To apply this formalism to the computation of the
effective polarizability of an adatom near a metal
surface, we take no(z) from the calculation of Lang
and Kohn. " The exter nal perturbing potential is
that of a point dipole located at z' = d, with p
oriented normal to the surface. Thus,

)
" d Q (@.; f(z-z')

(q z =
(2 )z z

[ z
( )z]3/z

s(*)= ' = ——v,'"(()= 0, *)) z„. (2. 24)&o(z)

III. RESULTS

A. Induced field and effective polarizability

We have computed the response of a metal sur-
face to a perturbing point dipole over the range of
metallic densities from r, = 2 to 6. x, is the
Wigner-Seitz radius defined by r, = (-,'I)' ~' where
7r is the mean electron density in the interior of
the metal, Unfortunately, our results for E~, and
hence for the effective polarizability n are sensi-
tive to the choice for the coefficient A. of the gradi-
ent term in the kinetic energy [see Eq. (2. 14)].
Smith, Ying, and Kohn have noted that the posi-
tion of the image plane of the metal is also sensi-
tive to the choice for A.. These problems are re-
lated. Smith has shown that inclusion of the
gradient term in Eq. (2. 14) is necessary to obtain
reasonable work functions for metals. The gradi-
ent term essentially confines the screening charge
to the surface region of the metal. If electrons
were to flow out into the tail of the electron dis-
tribution, large gradients in the charge density
would be created in a region mhere the charge
density was small, giving a large positive con-
tribution to the energy. Thus, a larger coeffi-
cient, A., on this term would carry a larger energy
penalty for a given charge distribution. This
would prevent the induced charge from relaxing as
far out into the tail of the electron cha, rge dis-
tribution as well as smoothing out the induced
charge. The image plane, which is tied to the
center of mass of the induced charge, "should
then move in closer to the metal substrate for
larger A. values.

It is possible to determine an appropriate "range"
of X's which would indicate the uncertainties in this
problem. See the Appendix for details. We found
that for metallic densities, the range of A from

~ to 0. 22 is adequate for the entire range of metal-
lic densities. We used these values for X in com-
puting the response of the metal surface to a uni-
form external field.

In Fig. 1 we show the induced field at the dipole
position E~/p as a function of the point-dipole-
metal separation distance d, for (a) x, = 2, (b) r,
=4, and (c) x, =6. The upper (lower) bound on
each curve corresponds to l). =~ (= 0. 22), respec-
tively. The classical result, E,=f/4d)' is also
shown (dashed line) for comparison. Note that the
induced field F.„ is greater than the classical re-
sult for distances greater than 2 or 3 a. u. Thus,
it is possible for effective polarizabilities to be
greater than the classical predictions. At smaller
distances, the divergence in E~ as d goes to zero
has been removed. ~6 Finally the response of high-
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FIG. 1. Electric field induced by a point dipole at the
dipole position vs the point-dipol. e-metal separation dis-
tance d is shown for metallic densities with (a) r~=2, (b)

~, =4, and (c) r~=6. Classical result is indicated by the
dashed curve, Jellium boundary is at d =0. Width of the
curves is obtained from calculations with A= I (upper
bound) and A=0. 22 (lower bound). Xe

r = 6
0

I.O

E, (d)

E

- IO
I

0
I

10
I
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20
I

FIG. 2. Screening of a uniform external. field at a
metal surface. Results using ~ = -' are shown.

density metals (small r, ) is much greater than that
of low-density metals. The width of the curves
corresponds in a rough way to the uncertainty in the
choice of A..

The effective polarizability can be reduced con-
siderably if the applied external field is screened
out by the metal surface. Results for Eo/E„ for

9 are shown in Fig. 2. Increasing A. to 0. 22
mainly shifts the curves toward the metal sub-
strate by about one atomic unit. Note that the
external field is partially screened even at dis-
tances as large as 6 or 7 a. u. from the surface.
The effect of this screening on the effective po-
larizabilities is most easily seen on atoms with
small free atomic polarizabilities, as shown in
Fig. 3. Here, the effective polarizabilities for
the noble gases are shown for several metal sub-
strates. Atoms with large free atomic polariz-

0
He

I

2
I

4 6
d ( a.u.)

FIG. 3. Apparent effective polarizabilities computed
from Eq. (2. 4) for the noble gases. The free atomic po-
larizabil. ities for the noble gases are: G,'p (He) =0.21 A,
oo(Ne) =0.39 5, eo(Ar) =1.63 A, ao(Kr) =2.48 A~, and

oo(Xe) =4. 01 A . Results shown for ~=-'. Increasing
~ wil], shift the curves toward the metal surface as in-
dicated in the text.

abilities, like xenon, show enhancements in the
effective polarizabilities while atoms with small
polarizabilities show little or no enhancement.
Also enhancements in the effective polarizabilities
are larger for atoms adsorbed on higher-density
metals.

B. Application to xenon on palladium

Palmberg~ has determined from work function
vs coverage measurements that the effective po-
larizability of xenon atoms adsorbed on palladium
(100) is approximately twice the free-atom po-
larizability of xenon (vox'= 4. 01 A, nx„', = 8. 2 A ). '
To apply our theory to this problem, we approxi-
mate palladium with an ~, =2. 5 metal. " We as-
sume that the xenon adatom will lie at a distance
from the surface determined by its atomic radius,
3.9 a. u. This assumption is supported by work
of Webb and co-workers, ' who have determined
the spacing between a xenon monolayer and Ag(111)
substrate to be given accurately by the sum of the
atomic radii of xenon and silver atoms. Since the
position of the metal surface is not well defined
here, we take the minimum value of d to be about
4 a.u. From Fig. 4, the enhancement at this dis-
tance is 1.3 to 2. However, this minimum dis-



13 EFFECTIVE POLAHIZABILITY OF POLAHIZABLE ATOMS. . . 3281

O

Oo
2

Xe on r, = 2.5

4 6
d (O.u.)

FIG. 4. Apparent effective polarizability for xenon
adsorbed on rs =2. 5 metal. Upper bound computed with
A = ~, lower bound with P = 0.22. At d = 4 a. u. , the atomic
radius, the enhancement of the polarizability is 30% or
more.

tance is very close to the distance where ~OK, /p
approaches one, where the effective poiarizabiiity
becomes infinite. Because of this and uncertainties
in the xenon-metal distance, a quantitative value
for e cannot be obtained. Qualitatively, however,
one can see the large experimentally observed
enhancement.

C. Application to nitrogen adsorbed on gold

Lin and McCormick~ have determined the po-
larizability of nitrogen gas adsorbed on smooth
polycrystalline gold surfaces at 77 'K using a
capacitance measurement. They find n„ay, = 2.43
A3. Nitrogen, being a diatomic molecule, has a
polarizability tensor with the values of polariz-
ability along the principal axes of n,

~

= 2. 38 A

and a, 3=1.45 A3, '7 for the longitudinal and trans-
verse axes, respectively. It can be adsorbed on
the surface in either of two extreme positions:
(a) "lying end on" the surface, with the inter-
atomic axis perpendicular to the surface, or (b)
"lying flat" on the surface, with the interatomic
axis parallel to the surface. The observed ef-
fective polarizability would require an enhance-
ment of either a/a, = 1.68 if the molecule were
adsorbed "lying fiat, "or a/a„=1. 02 it the mole-
cule were adsorbed "lying end on. "

In this experiment, the polarizing field arises
from the electric field applied across the capaci-
tor plates. Thus, we should compare the ex-
perimental result with the apparent polarizability
of Eq. (2.4) which includes effects owing to the
screening of the external field by the surface
electrons.

The free-electron density of gold, g, = 5.9x 10"
cm ', gives an r, value of 3.01.30 We set r, = 3.0
to approximate the gold surface. Major and minor
radii of the nitrogen molecule are roughly 1.56
and 1.18 A, respectively. Thus we choose the
minimum value of d to be about 3.0 a.u. for the
molecule adsorbed "end on" and 2. 2 a.u. for the

molecule adsorbed "lying flat. " The results for
the effective polarizabilities for both orientations
are shown in Fig. 5. The theory indicates that a
molecule adsorbed "lying flat" should see no en-
hancement in its effective polarizability, while a
molecule adsorbed "on end" might see as much
as 20% enhancement. In order to agree with the
experimental result, our results would indicate
that the adsorbed molecules are adsorbed pre-
dominantely "standing on end. " This is contrary
to what one would expect from considerations of
the adsorption energy. If, however, the nitrogen
intramolecular distance becomes larger than in the
free molecule, then our results would tend to
agree with the observed effective polarizability and
the expected molecular position on the metal sur-
face.

N onr=3

exp

0
0 2

I I

4 6
d (a.u)

I

8 IO

FIG. 5. Apparent effective polarizability for nitrogen
adsorbed on gold. Experimental result (o ~t =2.43 A3)

is taken from Ref. 2. Effective polarizabilities for the
two possible orientations are shown, the upper curve
representing the molecular axis oriented perpendicular
to the surface (o.o„=2.38 ~ ), and the 1ower curve with
molecular axis oriented parallel to the surface (e»
= i.45 A').

IV. CONCLUSION

We have calculated the response of a realistic
charge distribution at a metal surface to an ex-
ternal point dipole. From this we are able to
calculate the effective polarizability of an atom
or molecule in the vicinity of this surface. We
find that the effective poiarizability depends strong-
ly on the location of the image plane of the surface
and on the free-electron density of the metal. For
comparison, taking the positive background bound-
ary of the metal as a classical surface and cal-
culating the classical effective polarizability, we
find that the results at intermediate distances ob-
tained in this paper are consistently larger than
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the clRsslcRl I'esults. The two I'esults merge Rt

large distances. The result that the effective
polarizability is larger at intermediate distances
than one mould obtain classically appeaxs to be
box"Qe out by experiment, However» we Rre UQ-

able to obtain quantitative prediction for the ef-
fective polarizability.

~e have Rlso consKlered the effect of screening
of an external fi.eld by the metal surface. This
~ends to reduce the apparent effective polarizabil-
ity of the adatom-metal complex. This reduction
can be great enough to prevent any enhancexnent
of the polarizability, and even cause it to decrease.

SeverR1 RreRs of improvements Rre lndxcated
for' future wox'k; the fox'IHRllsm itself with the UD-

certRlnty in ~ Rnd the treatment of the finite size
of the atom or molecule. Vfe believe, however,
that the qualitative behavior mill not be affected.

APPENMX

The major uncertainty in the present theory lies
in the use of the gradient expansion for the kinetic
encl gy»

The filet term in EQ, (Al) ts the Thomas Fermi
energy of a Uniform electron gas mith density n,
and the second term, known as the von Weizsacker
term, is valid for Slowly varying densities. There
has been some uncertainty in the size of the coef-
ficient of the gradient term above. The original
choice, and the only choice for A consistent with
the variational principle is X=1, ' However,
gradient expansion methods have been developed
which indicate that X=91 is a more appx'opriate
choice. 13 Jones and Young'~ have examined a
case where analytical expressions for the response
function could be deter mined for both the von
WeizsNcker Rppl oximation Rnd the rRndoIH-phase
approximation. They showed that if E is the
x'espoQse function of RQ extended System Gf Qon-
intex'acting fermions in a small static potential,

where 6g is the change in the density coxresponding
to the small perturbation 5V, then the Fourier
tx'Rns fOX'IH

(AS)

ln the voQ VfeizsNcker Rppx'oxlIHRtioQ, Rnd

(A4)

in the random-phase approximation. Thus, while
A =1 is the only choice consistent with the varia-
tional principle and is asymtopically correct for
large q (q» 2k~ or short-wavelength perturba-
tions), the choice of X=—', is asymtopically correct
for small q (q «2k+ or long-wavelength perturba-
tions).

Since me are interested in quantities mhich de-
pend GQ integl Rtions of the deQslty functioDRl over'
all configuration space, it has suggested that the
accuracy of the calculation mould depend on the
average q of the response. This is R linear-re-
spon8e theory» and R poiDt dipole cRQ be con-
structed from tmo point charges, separated by a
small distance. %e should be able to construct
RD aver Rge 'g bRsed on the respoQse of R IHetRl to
a point-charge perturbation. We have evaluated
Rn Rvex'Rge g bRsed GQ the 3vex'Rge g Gf the re-
sponse RQd the Rvex'Rge Fermi mRve vector of the
substrate in the region of the response as dis-
cussed in Appendix A of Ref, 6, An effective X

~,«, is then computed fx'om comparison of Fqs.
(AS) and (A4). From a calculation on an r, = 2
IHetRl SulfRce» me foUnd Rn Inltlal A, =g yielded R

X,«=0. 18, which is closer to 9 than it is to l.
Increasing X to O. 16 18 suff1cient to obtaID R jeff

O. ~6. For' metallic densltles raQg1ng from g+
=2 to 6, we found that an initial A. less than or
equal to O. 22 is sufficient to yield a ~,«approxi-
mately equal to the initial A.. This provided us
with R I'Rnge of A, 8 which would iDdicRte the Un-

certainties in this calculation.

~P, W. Palmberg, Surf, Sci. 25, 598 {1971).
D. McCormick and T. Lln {px'lvate coxnxnunlcatlon);

T, Lin, dissertation (The Univex'sity of Texas at Austin,
1975) (unpublished),

3J. B. Macdonald and C. A. Harlot, Jr. , J. Chem,
Phys. 44, 202 (1966).

4P. B. Antoniewicz, J. Chem. Phys. 56, 1711 (1972).
5J. Heinrichs, Phys. Bev. 8 8, 1346 (1973).

C» Ylng~ J» Bo Smith~ and W. Kohn, Phys, Bev~ B
11, 1483 (1975).

"P. Hohenberg and W. Kohn, Phys. Bev, 136, 8864
(1964).

N. D. Lang and W. Kohn, , Phys. Bev. 8 1, 4555 (1970).
J, B. Sxnith, Phys. Bev, 181, 522 (1969).

J. B. Smith, S. C. Ying, an5 W. Kohn, Phys. Bev.
Lett. 30, 610 (1973).

'N. D. Lan, g and A, B. Will, iams, Phys. Bev, Lett. 34,
531 (1975).
W. Jones and W. H. Young, J. Phys. C 4, 1322 (1971);
C. H. Hodges, Can. J. Phys. 51, 1428 (1973); D. A.
Kirzhnlts, Zh. Eksp. Teor. Flz. 32, 115 (1957) [Sov.
Phys. -JETP 5, 64 (1957)j; N. H. March, Adv. Phys.
6, 1-101 (1957).

' E. L. Wachspx'ess, in.«tkemaHeaE MeIhodg f0~ Digital
Computers, edited by A. Ralston and H. S. Wilf (Wiley,
New Yox'k, 1960), pp. 121-27.
N. D. Lang and W. Kohn. , Phys. Bev. 8 3, 1215 (1971);
and (private communication).



E F FE CTIVE POLAHI ZA 8 ILIT Y OF POLAHI ZABLE ATOMS. . . 3283

'"N. D. Lang and W. Kohn, Phys. Rev. B 7, 3541 (1973).
This is not true in the Thomas-Fermi approximations
discussed here. The step density model of Antoniewicz
(Ref. 4) indicates pc d for small. d while the dielectric
approximation of Heinrichs (Ref. 5) indicates that y~d
for small. d. In both cases, E„diverges as d goes to
zero.

' Landolt-Bornstein, Zahtenverte und Functionen, 1

(Springer-Verlag, Berlin, 1951), Part 3, p. 510.
An r, =2. 7 is obtained for Pd from a surface-plasmon
frequency of 7.3 eV; quoted by B. C. Vehse and E. T.
Arakawa )Phys. Rev. B 1, 517 (1970)j.
M. B. %'ebb, P. I. Cohen, and J. Unguris, Bull. . Am.
Phys. Soc. 20, 406 (1975),
C. Kittel, Introduction to Soli'' State Physics, 4th Ed.
(Wiley, New York, 1972), p. 248.


