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Phenomenological equations for the electrical conductivity of microscopically inhomogeneous materials are
proposed. These equations combine ideas from the eA'ective-medium theory and from percolation theory and,
for some interesting cases, improve on the effective-medium theory in the vicinity of the percolation threshold.
The equations are compared, without adjustable parameters, to three different experimental situations and

agree with data remarkably well.

I. INTRODUCTION

We propose phenomenological equations for the
electrical conductivity of microscopically inhomo-
geneous materials, The equations remain valid
if the material is drawn into mire, and for some
interesting cases improve on the effective-medium-
theory' ' (EMT) result near the percolation thresh-
old. The equations were initially constructed to
reconcile data on a. dramn superconducting com-
posite wire (made by Tsuei's process4) with both
the EMT and with percolation~ theory; hence our
phenomenological ideas are an amalgamation of
the results of these theories. The EMT, which
works poorly for drawn wire, defines a homogene-
ous effective medium to replace the real hetero-
geneous mixture by demanding that a suitable av-
erage of the effects of inclusions in the effective
medium must be zero. For the case mhere one
constituent material is insulating the EMT pre-
dicts that a critical concentration of conducting
materia, l is necessary for bulk conduction. Per-
colation theory also predicts a critical volume
fraction, but the two theories predict different
values; the difference is enormous for drawn
wires, in which the inclusions are highly elongated
in the drawing direction. Our phenomenological
equations are constructed to satisfy the percola-
tion result for the threshold while resembling the
EMT result far from the critical region. This
approach generates tmo simple equations that fit
data from three diverse experiments without any
adjustable parameters, so we present it here as
a guide to both experimenters and theorists con-
cerned with disordered systems.

II. EFFECTIVE-MEDIUM THEORY FOR ALIGNED

PROLATE SPHEROI DS

The effective-medium theory for electrical
conduction in disordered materials attempts to
define self-consistently a homogeneous effective
medium that replaces the r ea1 heterogeneous medi-
um surrounding a particular inhomogeneity. The
problem is simplified (but still physically inter-

esting) if we confine our attention to real hetero-
geneous media composed of only two materials.
We have then a mixture of two real media, materi-
al 1 with bulk resistivity p, a,nd material 2 with
resistivity pz„and an imaginary effective medium
whose bulk resistivity p is to be calculated.

The condition me used to set the value of p is
generated as follows (i) Let the homogeneous
effective medium surround an inclusion of either
real material. (ii) Calculate the total current
floming through the midplane of the inclusion and
subtract off the total current that would have
flomed there if the inclusion mere replaced by
the effective medium. (iii) We demand that the
average value of this excess current be zero,
where the average is taken over the different pos-
sible compositions and orientations of the inclu-
sions. p is adjusted until this condition is met.

We have already simplified the problem by al-
lowing only two possible compositions for the in-
clusions, and ordinarily the problem is further
simplified by assuming the inclusions a.re all
spherically shaped, eliminating the orientational
average. We will be slightly less simple, and
assume that the inclusions are prolate spheroids
mith their symmetry axes aligned in the direction
of the applied field. This removes the isotropic
degeneracy of the problem but does not introduce
an orientational average. It is also physically
relevant for inhomogeneous material drawn into
mire, as in Tsuei's process.

The calculation then proceeds as folloms. The
total current /, flowing through an inclusion is

1 ~ u,

mhere 5 is the semiminor axis of the ellipsoid;
u,. is p /p, , i =1,2; E is the applied electric field;
X is the depolarization factor for the ellipsoid.
The value of X is given by

X = 3 ~ln
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where g is defined as the eccentricity of ellip-
soid. Note that for a. sphere, the eccentricity is
zero, b is the radius, and X= —,. If we let u, =1
(the inclusion has the same resistivity as the effec-
tive medium) the current would be (1/p )vb2E, so
that the excess current is

Now let the concentration of material 1 be C, and
that of material 2 be Ca. Then the average value
of the excess current is

tion of conducting material is reached, and that
the critical value is exactly the depolarizing fac-
tor for the particula, r shape inclusion. For spheri-
cal inclusions, where X=—,', this threshold comes
at a not unreasonable value. If the material is
drawn into wire, however, so that the depolariz-
zing factor for the inclusions approaches zero
without a change in topology, the EMT predicts
the unlikely result that the threshold approaches
zero. A similarly unphysical result occurs if,
instead of letting o, go to zero, we let p~ go to
zero. From (5) we have

(M) = C, M, + C, M,

where ~p

py 0, X&Ca~ 1.

1-C/X, O~C, ~X
(8)

The condition that this average be zero 1.eads to
a quadratic equation for p whose solution is the
effective- medium-theory result;

2p =pg 1-—+pg 1 ——

p, 1-—'
+p& 1-—' -4p&p& 1-—

2Q 1 =Q'y —1 +0

0, —~ —1 +op —~ -1 +4 —-1 ggaa

(6)
Equations (5) and (6) emphasize two limits in the
behavior of p or o . If the conductivity of one
constituent goes to zero the system is best de-
scribed by the conductivity form (6). If the re-
sistivity of one constituent goes to zero, then we
are served better by (5). This distinction will be
useful to us later.

Equations (5) and (6) fit data in situations where
the conductivity ratio &y, /&rz is close to unity,
but when this ratio becomes very large or very
small a serious deficiency develops for the EMT.
If, for example, we let o& go to zero in (6) (we
adopt the convention that material 2 is always the
material with the higher conductivity) we have

1 Cq

(1/K-1) K ) '

Qa
0, 0& C, &X.

Hence the EMT predicts that the composite will
act Uke an insulator until a critical volume frac-

(5)

Equation (5) may be put into an equiva. lent form by
changing from resistivity to conductivity as the
parameter describing the constituents of the sys-
tem. If o, = 1/p, , where i = 1,2, m, then

Equation (8) is the EMT description of resistivity
in a composite of normal and superconducting
materials. Again, there is a critical volume frac-
tion of superconducting material required for bulk
superconducting behavior, and this concentration
threshold is none other than the depolarizing fac-
tor of the inclusions. This false prediction of
close coupling of the critical volume fraction to
the shape of the inclusions is a serious problem
for the EMT, and one must go outside the EMT
to resolve the dilemma.

III. PERCOLATION THEORY

The problem of correctly assigning this criti-
cal volume fraction can be addressed from a point
of view entirely different from that of the EMT;
this independent body of science is percolation
theory, ' A self-contained discussion of per-
colation theory is beyond the scope of this paper,
but we wish to point out various of the concepts
involved, especially the idea of the percolation
probability. This quantity may be defined for our
purposes with the aid of a regular cubic network
of equivalued resistors. Let a voltage be imposed
across this network so that a current flows in the
resistors along a cubic axis. Now begin remov-
ing resistors at random from the network leaving
open circuits in place of each removed resistor.
The percolation probability is defined as the proba-
bility that a given node is connected by resistors
to infinitely many other nodes (in an infinite net-
work). As more and more resistors are removed
the percolation probability grows smaller, and
when it finally vanishes, conduction ceases.
Clearly this problem is related to the problem
considered by the EMT, and the critical volume
fraction corresponds to the situation where the
percolation probability changes from some finite
value to zero.

It has been shown for resistor lattices that
there is a finite density of remaining resistors at
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which the percolation probability indeed becomes
zero. This critical density has been subjected
to a number of analytical and numerical studies
for various sorts of regular lattices in both two
and three dimensions. '6 The results of these
studies are not of direct relevance to us because
they apply only to these regular lattices where
individual resistors have been randomly removed.
However, Scher and Zallene pointed out that one
could construct from the critical resistor density
a critical volume fraction of conducting material
that is nearly independent of the particular lattice
used, and which depends primarily on the dimen-
sionality of the lattice. The critical volume frac-
tion that they suggested should apply to any three-
dimensional heterogeneous continuum' is approxi-
mately (15+ 2)%, This should be contrasted to the
value of 33% predicted by the EMT for spherical
inclusions. Furthermore, we expect, in contra-
diction of the EMT, that this critical volume frac-
tion is largely independent of the shape of the in-
clusions, so long as they are randomly arranged
and there is rough topographical symmetry' '

between the two phases.
The concept of an invariant critical volume

fraction for given dimensionality has been criti-
cized by Pike and Seager, "among others. How-
ever, their objections seem to apply primarily to
powder mixture composites (where there is indeed
experimental evidence against an invariant critical
volume fraction). Here we consider composites
in the continuum limit, and there is a measure of
experimental evidencev'3 in that limit to support
Scher and Zallen's contention. Hence, we tenta-
tively accept the critical volume fraction of - 15f

as correct for biphase continuous media.
The EMT fails to predict this percolation thresh-

old correctly because there is nothing in it to take
account of large clusters of like inclusions-its
only independent parameter is the shape of the in-
clusions, and changing their shape by drawing the
material into wire reveals the shortcoming of this
single parameter. To do the calculation correctly
in the spirit of the EMT one would have to include
terms that average the excess current through
pairs of inclusions, and triplets and so on. Such
a calculation' is very difficult and has not yet
borne fruit. ~ On the other hand we already have
independent knowledge of the critical volume frac-
tion from percolation theory, and by phenome-
nologically combining these two theories we can
produce simple equations that describe diverse
data.

IV. TSUEI'S SUPERCONDUCTING COMPOSITES AND

OUR PHENOMENOLOGICAL EQUATIONS

The phenomenological amalgamation of the EMT
and of percolation theory was necessitated by our
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FIG. l. Resistive transition of t;he Vp%-superconduc-
tive wire made by Tsuei's process. The resistance of
the sample relative to its normal-state resistance is
plotted as a function of temperature. Curves a through e
are measurements made with different current levels,
ranging in decades from 6&&10 A for curve a to 0.6 A
for curve e. The long plateau below T~ (- 15 K) at high
currents indicates that; the filaments are essentially iso-
lated from one another.

own experiments on samples of a disordered su-
perconducting composite wire made by Tsuei's
process. This process results in a multifila-
mentary composite of Nb, Sn filaments in a copper
matrix where the filaments form a disordered ar-
ray within the copper, and each filament is the
order of 1 cm long and 1 p. m in diameter. The
depolarizing factor for this wire may be calcu-
lated from Eq. (2) by using the relation between
the eccentricity g and the area reduction ratio R
of the drawn wire: 1-e = 1/R'. For typical wire
with a reduction ratio of 600, X=-10 ', Of course,
this calculation involves a physical approximation
since the filaments are not in the shape of perfect
prolate spheroids. Our measurements have in-
cluded low-field magnetization tests, high-field
critical current tests, and resistance measured
as a function of temperature. We have had avail-
able for tests wires with two different composi-
tions: one about V. 5/o superconductor by volume,
and the other about 15%. Each kind of measure-
ment shows a qualitative difference between the
two kinds of wire, but for the purposes of this
paper we shall concentrate on the resistance re-
sults, These results are displayed in Figs. 1 and
2. The long plateau in the data from the 7. 5/o

sample on the higher current curves is consistent
with the I esistance levels estimated by Davidson,
Beasley, and Tinkham' (DBT). Their estimation
assumed that the filaments were typically isolated
from each other by normal copper; hence this as-
sumption would appear to be justified in this sam-
ple. The 15% sample, however, shows no such
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where C~ =0.15 and is the percolation threshold,
but we make the convenient approximation that
C~ =8. Having accounted for near-neighbor con-
nectivity in this brute-force manner, we may now

choose the denominator so that the elongated shape
of the inclusions is accounted for:

(denominator) = (1+Cz/X).

Hence, we propose for the resistivity,

=0 «C, &1.
IP
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FIG. 2. Resistive transition of the 15%-superconduc-
tive wire made by Tsuei's process. The resistance of
the sample relative to its normal-state resistance is
plotted as a function of temperature, as in Fig. 1. Curves
a through d are measurements made with different cur-
rent levels, ranging from 6&&10 4 A for curve a to 0.6 A

for curve d. The geometry of this wire and the 7y fo

wire are about the same, both being about 0.5 mm in
diameter, and with reduction ratios in the range of 200
to 300. The relatively sharp transition indicates that the
filaments are in some sense continuous.

plateau at the same current levels, so that one
would conclude that the filaments are not so iso-
lated, and either form genuine connections or else
very good proximity-effect junctions. These mea-
surements, then, are consistent with the theory
of percolation in a continuum but not with the EMT
(i.e. , the EMT predicts a threshold at about -1F'%
by volume of superconductor since the demagne-
tizing factor for these well drawn out filaments is
-10 '). We have assumed here that the Tsuei
wire system is well approximated by a continuum
because the Cu and Nb, Sn should be in excellent
electrical contact over their entire interfacial
area.

Thus we are faced with reconciling these facts:
The percolation threshold should be about 15%,
and below this threshold the estimates of DBT
are approximately right. A function that meets
the test of these conditions may readily be con-
structed, however, in the spirit of Pad6approxi-
mations. " That is, we shall try to construct a
function as the ratio of two polynomials that satis-
fies the basic facts known about the Tsuei wire
system.

Since the first requirement is that the resis-
tivity of the composite must be zero for concen-
trations above the percolation threshold, we choose
the numerator of our Pade approximant to be the
simplest function which has a zero at that point:

(numerator) = p, (1 —C,/C,*)

For C~ & X«1 this function is dominated by the
denominator, and therefore agrees to first order
with the EMT; but close to the threshold, clus-
tering takes over and the numerator provides a
manifest zero at the right place. Further, stiQ
in the limit of a small depolarizing factor, (9)
has the form

in(4R )

2

which is very close to DBT's estimate, and also
suggestive of some results from Callaghan and
Toth. ' Equation (9) is therefore consistent with
our measurements, although the details of that
equation are not confirmed by the two data points
supplied by Figs. 1 and 2, However, there are
already published experiments with more detailed
results. 7'~ This simple theory works well for
them too, even though the appropriate value of
X is —', and not 10 ', so that there is no longer
first-order agreement with the EMT.

Before we can make a comparison with these
experiments, we must generalize our approach to
cover both ends of the C2 scale. Equation (9) ap-
plies only to a normal-superconductor (NS) com-
posite, so we must now work out the analogous
case for a metal-insulator composite, where the
conductivity (rather than the resistivity) of one
constituent goes to zero. For this case we refer
to the simple EMT result, (7). In contrast to
the NS case, we expect (7) to be valid nea, r C~ = 1
rather than for C~ =0. Evidently, to make a first-
order expansion we would be better off to write
(7) in terms of C, (= 1 —C2), which is small in the
region of validity:

0&Ci&1-X
aq 1-X ' (10)

Notice that (10) has the same form as (8). We
now generalize this EMT result with our Pade ap-
proach. The threshold should occur when the high-
ly conducting material forms a connected network
at a volume fraction of about 6 so that Cz = &eor

C&
——P. Hence the analog to (9) is
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(1la)o 1- Cg

1+ C,/(1 —X)

Rewriting (lla) in terms of Cz for convenience in
comparison, we have

I.O

g 1-X 6C2- 1 6'Cl- 1.
oa 5 2-X- Ca

' (lib)

Fina&y, we also rewrite (9) in terms of conduc-
tivity:

~o 1+ Cm/X 0 ~ Ca&6
o) 1-6C3 '

These equations, (lib) and (12), are the fun-
damental equations of our phenomenological ap-
proach, and they are in a sense complementary.
That is, although they both assume that the con-
ductivity of material 1 is quite small compared to
material 2, (lib) should be valid for Cz= 1, while

(12) will be valid near Ca:-0. The two equations
diverge in opposite directions at the percolation
threshold, but, as we shall see, they remain val-
id until very near the critical region provided
&r,/ca «1. We note that there is first-order agree-
ment with the EMT in (lla) only if X= 1, and in
(12) only if X= 0. It would be simple to add a
linear term to the denominator of (1la) or the
numerator of (12) that would guarantee first-order
agreement with the EMT for aD X in both equa-
tions, but the over-all fit to the data in the follow-
ing is best if (ll) and (12) are used as written
above. That is, we shaD see empixically that
(11) and (12) work well for all values of Cz ex-
cept in the immediate vicinity of C2 =6 . The EMT
with X= —,

' works well only for Ca neax 1, and it
is apparently a mistake to demand first-order
agreement with the EMT on both sides of the
threshold.

V. COMPARISON TO EXPERIMENT

A table-top experiment performed by Fitz-
patrick, Malt, and Spaepen'~ (FMS) is an example
of the case where 0, may be taken to be effec-
tively zero and X= 3. Random close-packed lat-
tices of insulating and metallic spheres were put
together in glass beakers with aluminum foil elec-
trodes and the conductivity as a function of rela-
tive densities of the two kinds of spheres was
studied. Since one conductivity may be taken as
zero we expect (ll) to apply. To compare the re-
sults we switch to the notation of FMS, and plot
the conductivity as a function of the number frac-
tion of insulating spheres. That is, if q is the
insulating number of fraction, then C„ the insu-
lating volume fraction, is C& =0.65q+0. 35, where
the filling factor of the lattice is taken to be
0.65. ' Hence we may use (lla) with C, put in
terms of q, and X=-,', and plot the results direct-

0 O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8
INSULATING NUMBER FRACTION, q

FIG. 3. Conductivity as a function of the fraction of
insulating spheres in an experiment by FMS (Ref. &2).
To apply our equations we take, .the interstitial spaces as
part of the insulating volume fraction. The results of the
EMT are also plotted. Note that the data and both theories
have been normalized not at zero volume fraction of in-
sulating spheres, which is unattainable in this system,
but at zero number fraction.

ly over the data of FMS. This is presented in
Fig. 3. The high-conductivity data appear too
high in comparison to our equations, but this is
consistent with the experimental errors reported
by FMS. The low-conductivity data and the thresh-
old fit quite well, and over-all we feel that these
experimental data are consistent with our for-
mulas.

A more detailed set of mathematical and ex-
perimental data are compiled in a paper by Vfeb-
man, Jortner, and Cohen (WJC). They compare
conductivity data' from a Li-NH3 system to data
derived from computer simulations. The simu-
lations involved calculating the effective conduc-
tivity of a cubic resistor network in which each
resistor may have one of only two values, and in
which the resistor values are correlated over a
length largex than the distance separating the
nodes but are random on a scale larger than the
correlation length. Hence their simulation is
just the sort of inhomogeneous system considered
in this paper, with X= 3, and they demonstrate
convincingly that the metal-ammonia system is
described very well by theix model network. We
shaQ therefore compare our phenomenological
equations both to %JC's numerical simulati. ons
and to the Li-NH3 data which they present in their
paper. In Fig. 4, Eqs. (lla) and (12) with X= —,

'
are compared to the metal-ammonia date and to
the EMT result. The phenomenological fit is re-
markably good with no adjustable parameters ex-
cept the conductivity values at either extreme of
the C~ scale. Of course, at the percolation thresh-
old the phenomenological theory diverges, but
the fit to the data is good except within ~Ca = ~0.03
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