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Experimental Dingle-temperature anisotropies and impurity-induced Fermi-surface changes in nonmagnetic

dilute alloys have been shown elsewhere to determine the Friedel phase shifts that characterize impurity

scattering. In the present paper the Friedel phase shifts for various dilute alloys in noble-metal hosts are

analyzed to yield the complex renormalization coefficients that describe the way in which backscattering
modifies the wave-function amplitude on the impurity site, and the phase shifts that characterize potential

scattering of conduction electrons at the Fermi level by the impurity. Our approach is based on an exact
treatment of backscattering in a lattice of muffin-tin potentials. The influence of possible lattice distortion

associated with alloying on the determination of the impurity-state parameters is discussed. Impurity-state

parameters are obtained for dilute noble-metal alloys which give information about the scattering potentials

and, in some cases, charge shifts associated with alloying can be inferred. Various approximate treatments of
backscattering are developed, which generally work well except in the vicinity of scattering resonances of the

host or impurity atom.

I. INTRODUCTION

Of the various experimental techniques which
have been developed to explore metallic properties
that depend on the impurity-induced scattering of
conduction electrons in dilute alloys, those that
are most fully developed at the present time are
de Haas-van Alphen measurements of the anisot-
ropy of that component of the Dingle temperature
which is proportional to the concentration of im-
purities, and of concentration-dependent changes
in de Haas-van Alphen frequency. Such measure-
ments promise to yield detailed information about
the T matrix which describes the scattering of con-
duction electrons between states on the Fermi sur-
face. Inversion techniques have been developed to
combine Dingle-temperature data for many inter-
secting orbits to determine the relaxation time at
each point on the Fermi surface, and steps have
been taken towards relating the data, to the anisot-
ropy of scattering of conduction electrons. The
corresponding experimental studies of Fermi-wave-
vector anisotropies in dilute alloys are also pos-
sible, ' and it appears that these can be interpreted
in a similar fashion. ' In other experiments the
electronic charge density in the vicinity of the im-
purity atoms has been determined from high-reso-
lution studies of host Knight shifts, t2 and studies
of concentration-dependent spin relaxation for
heavy-metal impurities promiseto provide a mea-
sure of spin-orbit interaction on the impurity
s l.te.

The T matrix at each point on the Fermi sur-

face depends on the host-metal wave function at
that point. The host wave functions can be deter-
mined by phase-shift analysis of experimental
cross sectional areas of the Fermi surface car-
ried out, for example, by the band-structure meth-
od of Korringa, Kohn, and Rostoker (KKR). If
the symmetry character of the host wave functions
varies (from predominantly s-iike to p-like or d-
like) over the Fermi surface, the impurity-in-
duced anisotropies measured by the de Haas-van
Alphen experiments on dilute alloys can be inter-
preted to yield a set of scattering parameters. It
is convenient to choose as scattering parameters
the set of Friedel phase shifts ~ that characterizes
scattering by a single substitutional impurity in an
ideal lattice of muffin-tin potentials, because
these have the property of being essentially inde-
pendent of the muffin-tin zero. A practical com-
plication is that the Friedel phase shifts deter-
mined from analysis of experimental data will also
contain a contribution from any lattice distortion
caused by the impurity, which is not the same for
the two types of experiments.

In a recent paper Coleridge, Holzwarth, and

Lee, have carried out a nonrelativistic analysis
of Dingle-temperature data for several nonmag-
netic dilute alloys in noble-metal hosts, in order
to determine the Friedel phase shifts associated
with impurity scattering. The Friedel phase shifts
depend on the scattering potential of the impurity
and on back scattering by the host lattice. The
purpose of the present paper is to explore the
separation of the Friedel phase shifts into impuri-
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ty-scattering and host back scattering terms. %e
shall show that it is inconsistent to analyze impur-
ity-scattering data while neglecting back scattering.
%e shall adopt tmo distinct treatments of back scat-
tering. The first is based on a recent calculation

by Holzwarth of the scattered wave in the vicinity

of a single impurity atom in a lattice of muffin-tin

potentials. '6 This calculation leads to a treatment

of back scattering which is exact in the muffin-tin
proximation. An alternative approach which in-

volves less computation mill be described, based
on a series of approximations similar to the "mini-
mum scattering approximation" described briefly
elsewhere. These simple approximations to back
scattering are expected to work best in nearly-
free-electron hosts; in the noble metals it is ad-
vantageous to carry out the exact calculation.

The outline of this paper is as follows. In Sec.
II we review the treatment of host-lattice effects in

impurity scattering. In See. ID we outline the
method used for the exact nonrelativistic calculations
of the back scattering coefficients and discuss the
various approximations that can be made for these
coeff icients.

II. HOST-LATTICE EFFECTS IN IMPURITY SCATTERING

Assuming incoherent scattering by an atomic
fraction e of impurities, the inverse relaxation time
a,ssociation with a Bloch state of wave vector k on
the Fermi surface is given by the Fermi-surface
integral

2m@ 0 t Tp„ I de
7(k) a. (2v)' nvf

mhere 0 is the volume of the unit cell and V-„ is
the velocity of the state k . The transition matrix
must also satisfy the optical theorem, which ex-
presses the physical constraint of conservation of
flux in the scattering process

0 I T-„-„. I de 1m'~
(2w) b VI v

So the inverse rela, xation time at a. point on the
Fermi surface is simply. related to the imaginary
part of the diagonal element of T at that point'7

I/r(k) = —(2c/ff) ImTff .
In the simplest model of the scattering of conduc-
tion electrons by impurity atoms, the host metal is
treated in the free-electron approximation. It fol.-
lows then that Im TH and I/v(k) are isotropic, so
the model cannot account for the experimentally ob-
served amsotropies of v(k) and it is of course im-
possible to determine the scattering phase shifts.

Morgan~ generalized the T-matrix formulation
to describe scattering between Bloch states in a
lattice of muffin-tin potentials. He pointed out that
the pr imary outgoing spherical wave produced by im-

purity scattering, which canbe expanded in the form

b(~b((leap)Y)~'(8, Q),

is to some extent back scattered by the host lattice.
To describe this effect he introduced a. back scat-
tering matrix T. .. . in terms of mhich the back
scattered mave can be written

b, + T,„, j,. (~p)Y, „(8,P) . (5)
l'fff

{In these formulas j, and h, are spherical Bessel
and Hankel functions and F, are spherical har-
monics. ) The effect of back scattering is to renor-
malize the Bloch wave amplitude inside the impurity
cell. Morgan arrived at a genera. lized transition
matrix, whose elements take the form

T-(Z)=- pa+ (k Z)s (k Z)

x s in&q, exp(fb q, ),
where 4q, =-q', —q", denotes the phase-shift differ-
ence betmeen the impurity and host atom at the
Fermi energy of the host metal, and where the
Bloch coefficients a, (k) can be calculated from the
zero eigenvector of the KKR secular matrix for the
host lattice.

Blaker and Harris simplified the muffin-tin
treatm|. nt of impurity scattering by expanding the
partial waves in a series of cubic harmonies. For
a cubic environment they showed that the renormal-
ization factors, (1+g Tb/g) in Morgan's notation,
are complex, energy-dependent coefficients that
a,re, however, independent of the mave vector k.
The renormalization factors can therefore be writ-
ten as Rz(E), where I. is an abbreviated notation
for the distinct representations of the cubic point
group (L= I, I"). The —importance of Blaker and
Harris's result is that experimental scattering
anisotropies, such as anisotropic Dingle tempera-
ture data, can be analyzed to yield the value of the

scattering parameter

1m[a~(E~) sinai, exp(i&q, )]

associated with each partial mave. Nonrelativistic
parametrizations of experimental Dingle tempera-
ture anisotropies for noble-metal alloys have been
carried out by Coleridge, ' by Harris and Mulimani,
and by Brown and Myers, 3 including all partial
waves up to i=2, but in these calculations only the
scattering parameters were deduced; it was not
possible to deduce the scattering phase shifts be-
cause the back scattering coefficients 8~ mere un-
known.

Holzmarth'~ showed that in general a single sub-
stitutional impurity in a muffin-tin lattice causes
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mixing between the various partial waves. In cubic
lattices having one atom per primitive unit cell,
such as the alkali and noble metals, the general
form of the T matrix that describes scattering
from a Bloch state kto k is

TH (E) =-
2 Q a(r„(k, E)a(.r„(k E)

PlK rr r~

x&r„.(E) sin&q, exp(id', ),
where I' denotes an irreducible representation of
the cubic group, and y denotes a particular mem-
ber of that representation. The matrix +».(E),
termed the renormalization matrix, describes the
effects of back scattering of the primary spherical
scattered wave by the host lattice. However, the
renormalization matrix ft» (E) has no elements be-
tween different representations of the cubic group so
off-diagonal elements occur only between values of l
having one or more representations in common.
Those irreducible representations of the cubic group
which correspond to small values of l are given in
Table I. %e note that an important simplification
arises in a nonrelativistic analysis for/~2, for each
representation of the cubic group is then associated
with a different angular momentum state (see Ta-
ble I), and the renormalization matrix is diagonal:

r
~rr =~a, &rr ~

In this case the renormalized impurity amplitude is
proportional to the corresponding Bloch wave am-
plitude, the constants of proportionality being the
four complex renormalization coefficients Rz(E).
Holzwarth's expression for the T matrix then re-
duces to the form given by Blaker and Harris

Tg (E) =2 Q ag„(k', E)a~„(k, E)
2tps K

& Bz(E)

sindhi,

exp(g q, ) .
Alternatively, back scattering can be described by
Morgan s back scattering matrix, which in cubic
harmonic notation can be written T». (E), and which
is related to &r». (E) by the equation

i' 'nr„. ={[I-iT' sing', exp(iqI)] '

x[1—iT sin'q)exp(Apj)j)((

When the ren. ormalization matrix is diagonal the
back scattering matrix is also diagonal so we can
define back scattering coefficients T~ by

r
~rr =~~&rr ~ (12)

(14)

which depend on the Bloch coefficients of the host
wave functions, and a set of scattering parameters

Sz =—ftz sin&'g( exp(i&'t) ()

which depend onthe impurity potential and on back
scattering by the host lattice. In terms of the par-
tial scattering coefficients, the scattering rate at
a point on the Fermi surface can. be expressed in
the form

1 2e~ I
~

=—~ (1m')t-„.

The relationship between the renormalization co-
efficients and the back scattering coefficients then
becomes

1 —i' sing,"exp(iq", )
1 —g'Tz sinful exp(iq'j)

The 8~ depart from the unity to the extent that the
wave function on the impurity site is modified by
back scattering by the host lattice. In the limit
where the host is free-electron-like &~ =1, so
T~ =0, and the back scattered wave vanishes.

In the present paper, concerning the analysis of
impurity scattering in noble-metal hosts, we shall
consistently neglect scattering into f and higher
partial waves, so the simplifications expressed by
Eqs. (9) and (12) apply. Then the scattering rate
at a point k on the Fermi surface is given by Eq.
{3), where ImTI;(Ez) is to be calculated from Eg.
(10). It is convenient to define a set of partial
scattering coeff icients

TABLE I. Irreducible representations of the cubic
group associated with spherical harmonics of low angu-
l.ar momentum l.

The scattering parameters ImSz{E~) characterize
the impurity scattering of conduction electrons on
the Fermi surface. They take into account both
the scattering phase shifts of the impurity atoms
and the back scattering effects due to the host lat-
tice. It is convenient to write the renormalization
coefficients in the form

a, = ~n, ~
exp(ie, ),

so that Eq. (14) becomes

Sz —
I ~z I

sin&g, exp(if'),
where effective ("Friedel") phase shifts have been
defined by
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The Friedel phase shifts are so named because they
satisfy a sum rule of the form introduced by Frie-
del for the free-electron gas:

(20)

where n(I.) is the degeneracy of the representation
I. and 4Z is the valence difference between host
and impurity atoms. By use of the optical theo-
rem, Eq. (2), the scattering parameters Sz can be
expressed in terms of the Friedel phase shifts.
The result is

I~S~ = sinPz exp(f&f&~),

where the real positive constant I~ is a Fermi sur-
face average of the partial scattering coefficients
def ined by

0 t„de'( )=&(I.) 8' aV,
' '

An equivalent analysis involving the real part of

S~ has been discussed by Coleridge. ' In the limit
~here the impurity concentration is sufficiently low

that the Fermi energy is unaltered by alloying,
the real parts of the scattering parameters give the
change in Fermi-surface dimensions. Correspond-
ing to Eq. (19)for the relaxation time, the impurity-
induced change in the @ vector at the Fermi surface
is given by

g (Res, )f

Thus impurity-induced changes in the Fermi-
surface dimensions and the relaxation times can be
interpreted to yield complementary information
about impurity scattering. In practice the partial
scattering coefficients t„- and the constants I~ are
determined from the results of phase-shift analysis
of the experimental Fermi-surface anisotropies
of the host metals, ' and the appropriate scattering
parameters, Im(S~) or Re(S~), are then adjusted to
fit the experimental data. ' The magnitudes of
the Friedel phase shifts are determined from the
scattering parameters and the constants I~ using
Eq. (21). Analyzing the Dingie temperature ex-
periments, the otherwise undetermined signs of the
Friedel phase shifts are chosen so that the calcu-
lated residual resistivities agree with experiment.
In several earlier papers, and in parts of the pres-
ent paper, the distinction between the two d-like
representations I » and I'» is ignored. The con-
ditions under which this approximation is satisfac-
tory are discussed below.

We would emphasize that it is inconsistent to
analyze de Haas-van Alphen frequency and Dingle-
temperature data to determine impurity phase

shifts without allowing for back scattering. This
can be demonstrated by combining Eqs. (18) and
(21) to eliminate Sz. The result is

singz = Ir
~
Qz

~

sinA'll( pg

In the absence of back scattering P~ =Ay, and

i az( =1. This is consistent with Eq. (24) only if

I~ =1 for all I.. However, a partial wave analysis
depends on the anisotropy of the partial scattering
coefficients tf Th.is means that the integrals I~
defined by Eq. (22) generally depart significantly
from unity (even if one of the I~'s is fortuitously
equal to unity this will not normally be true of the
other Iz's). Hence back scattering is negligible
only in the limit of a free-electron host, and in that
limit the impurity scattering is isotropic.

III. NONREI. ATIVISTIC TREATMENT OF BACK
SCATTERING

4. Exact calculation of coefficients

Exact expressions for the nonrelativistic back
scattering coefficients for impurity scattering in

cubic host lattices, treating the host and impurity
atoms in, the muffin-tin approximation, have recent-
ly been obtained by Holzwarth. '8 The scattered
wave in the vicinity of a substitutional impurity in
an otherwise perfect lattice of muffin-tin potentials
was calculated by an extension of the Green's-func-
tion method of band-structure calculation, following
an approach developed by Dupree. 2O

The scattered wave in the vicinity of the impurity
can be expressed in terms of a. complex matrix
yz~ (E), whose elements are those of the Brillouin-
zone integral

lid„r, „(E)= (2,3 d A[M (k, E)]z„~ „. (25)
7T)

of the inverse of the KKR secular matrix

M~„z.„.(k, E) = coty", 5~~ 5„„+x Az„~ „(k, E) . (26)

The integrand is singular on the surface of constant
energy E(k) =-E, and so the integral can be ex-
pressed as a sum of surface and volume terms.
The y matrix takes the form

n a+ y s1ng) sin'g)~

dyne„(k, E)s, „.(k, E)
I ~;E(k) I

where 6' denotes a principal part integral, and
where the surface integral is taken over the sur-
face of constant energy E(k) =E Since the prin.ci-
pal part integral is over the entire Brillouin zone,
only those linear combinations of matrix elements
contribute to the result which transform according
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Imp, =I, sin'q,", (29)

where f~ was defined by Eq. (25). Our numerical
evaluation for the y coefficients will be described
in detail below. Expressed in terms of the X coeffi-
cients, the back scattering coefficients take the form

Tz, (E~) = ib~(Ez) ' [sing", exp(iq", )] 'f, (30}

while the renormalization coefficients are found
from Eqs. (13) and (30) to be

( )
exp(- IA'g() sin 7)(

sing", sinqI —sinbrI, X~(Ez)
(31)

and it is readily verified that the optical theorem
is sa,tisf ied.

The evaluation of the g coefficients for noble-
metal lattices was carried out numerically. It is
evident from Eqs. (26) and (27) that the effect of
the host potential enters the expression for the y
coefficients only in terms of phase shifts evaluated
at the Fermi energy of the host lattice. The phase
shifts were obtained, as in Ref. 15, by analysis of
experimental Fermi-surface anisotropies. This is
preferable to first-principles calculation because
no crystal potential for the noble metals has yet
been constructed which reproduces the Fermi-
surface anisotropies to the accuracy with which
they are known from experiment.

The Fermi surfaces of the noble metals lie with-
in the first Brillouin zone, and have necks in the
eight (111)directions. The integrals over an ir-
reducible &'~th sector of the Brillouin zone were
evaluated, and the Brillouin-zone integrals were
obtained by carrying out the appropriate rotations. 8

The volume and surface integrals were performed
using a spherical coordinate system having its po-
lar axis along the (ill ) direction, except within
a region enclosing the neck, defined by a circular
frustrum with base in the (ill) plane. In both re-
gions, the singular contributions to the Brillouin-
zone integral were treated primarily in the radial
integration. The principal-part contributions to the
radial integral were evaluated by making a Taylor-
series expansion of the integrand about the Fermi
radius. In the neck region, an additional singular

to the full point-group symmetry of the lattice.
There are therefore no elements of the matrix
linking different irreducible representations of the
cubic group, or linking different members of a
given representation. It is convenient to introduce
the abbreviated notation

Xry2' '(E) =X&i'(E)&rr'&

%ith the assumption that for I& 3 the phase-shift
differences are negligible, the matrix X» (E) as-
sumes diagonal form with elements X2(E). In this
case, Eq. (30) leads to the following useful identity:

Knowing the y coefficients at the Fermi energy,
it is not difficult to fit the experimental Dingle-tem-
perature anisotropies. The scattering parameters,
defined by

ImS~ = 1m[8~ (E~) siMq, exp(24', )],
can be written, using Eq. (31), in the form

ImS =sin Imp~
L 7f (t R )2 (I )2

where &r is defined by

$, =(coty", —cotr)I) ' .

(33)

The d-wave contribution to the relaxation time can
be written

I/r2(k) = (2c/II) (tI~~2ImSr + I[22' ImS„,}, (35)

where ImSr and ImS~, can be expressed in terms
of the single parameter $z, which is determined by
fitting the experimental data. %hereas the s-wave
and p-wave fitting parameters ImSO and ImSj enter
the expression for the inverse relaxation time as
linear coefficients, the d-wave parameter $~ does
not, so a suitable minimization procedure must be
developed to make a least-squares fit to the ex-
perimental data while maintaining the distinction
between the two d-like representations. The scat-
tering parameters for various dilute alloys in no-
ble-metal hosts presented in Table III were obtained
by fitting the experimental Dingle-temperature

contribution occurs in the axial integral where the
circular frustrum intersects the Fermi surface.
The corresponding principal-part contribution was
evaluated by removing the singularity from the
axial integral and adding the appropriate a,nalytic
correction to the final result. All nonsingular in-
tegrals were evaluated by Gaussian quadrature.
The Fermi radius was iterated until the zero eigen-
value of the secular matrix satisfied ( X(k, &~) (

& 10 '. Approximately 120 points were used to
evaluate the surface contribution to the integral,
and approximately 2800 for the volume contribution.
Consequently, the Brillouin integral results are
expected to be accurate to better than 0. 1$~. The
numerical results for the nonrelativistic y, and T
coefficients at the chosen Fermi energies of noble-
metal lattices are presented in Table II. I asseter
and Soven have evaluated Brillouin- zone integrals
equivalent to X~(E) for Cu in connection with a cal-
culation of the impurity-induced change in the den-
sity of states. In that work the surface integrals
were performed explicitly and the volume contri-
butions were determined from the Kramers-Kronig
relations, but their results are not expressed in a
form which permits direct comparison with the
present work.

B. Analysis of data
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TABLE II. Nonrelativistic band-structure andback scattering parameters for the noble metals.

Host

copper
ao = 6. 8087 a. u.

Ep=0. 55 Ry

silver
a0=7. 6897 a. u.
EF-0.41 Ry

gold
ao=7. 6821 a. u.

Ez=0. 41 Ry

gold
ao = 7.6821 a. u.

EF=0.53 Ry

or,
1 I'i5
2 I'~2

2 I'».
or,
1 I', s
2 I', 2

2 I'~5

or,

2 I'„
2 I'»,
or,
1 I'i5
2 I"„
2 I"2s

O. 0755
0. 1298

—0. 1186
—0. 1186

0. 2097
0. 1188

—0. 1019
—0. 1019

0. 5395
0. 1854

—0. 1518
—0. 1518

0.2496
0. 0632

—0.2426
—0. 2426

Il
O. 5591
0. 8310
1.0732
1.1171
0. 6173
0. 8449
1.0618
1.1798
0. 6623
0. 5097
1.2528
1.7723

0. 6829
0. 5273
0. 8994
1.2752

ReXg

0. 0761
0. 1241

—0. 1323
—0. 1286

0. 2150
0. 1139

—0. 1124
—0. 1098

0. 6772
0. 1695

—0. 1933
—0. 1850

0, 2917
0. 0622

—0. 3149
—0. 3040

ImL

0. 0032
0. 0139
0. 0150
0. 0156
0. 0267
0. 0119
0. 0110
0. 0122
0. 1748
0. 0173
0. 0287
0. 0405

0. 0417
0, 0021
0. 0519
0. 0736

ReTg
—0.4508
—0. 1075
—0.1530
—0. 0686
—0. 4301
—0. 0954
—0. 1381

0. 0004
—0. 6426
—0.4031
—0.2498

0. 1296
—0. 5197
—0, 4578
—0.4905
—0, 2477

ImTI
—0. 0918

0.2959
0. 9319
0. 7312

—0.1183
0. 3059
0. 9645
0.7825

—0.2855
0. 5083
1.4748
1.3796

—0. 5633
0.2572
0. 9492
0. 9335

t. —t. ia + t. asr r
k k k

(36)
S'=~2($„+Sr, ) .

Then the d-wave contribution to Eq. (16) takes the
form

I/v~(k) = (2c/8') (t jlmS'+ t„-Im$ ) . (37)

Neglecting the distinction between the two d repre-
sentations is equivalent to assuming

anisotropies in this way.
In Ref. 15, experimental Dingle-temperature

anisotropies were analyzed to yield a set of three
scattering parameters, neglecting the distinction
between the two d-like representations I » and I'as,
and we should investigate the accuracy of this approxi-
mation. Let us write the d- wave contribution to the in-
verse relaxation time in terms of the quantities

The values in Table III show that this condition is
satisfied rather well for copper and silver, and
even in gold the maximum correction to the ex-
pression for the Dingle temperature is only of or-
der 3%. The error which occurs if the difference
between the two representations is neglected when
calculating ReS~ from the Fermi-surface changes
is an order of magnitude smaller.

It is straightforward to interpret ImS~ (or equiv-
alently the Friedel phase shifts) to give impurity
state parameters. We note from Eq. (33) that there
are two values of $, consistent with a given experi-
mental value of ImS~. This ambiguity is related
to the fact that the signs of the Friedel phase shifts
cannot be determined from scattering anisotropies.
By evaluating the displaced charge in the vicinity
of the impurity atom ' it has been shown that the
Friedel phase shifts are given by

t „'ImS'»t-k ImS (36)
tang~ = ImXi/ ($ i

—
R eXi) ~ (40)

Typically t-„ is of order 20%%u& of t-„, so it can be
seen that the condition is satisf ied to within a few per-
cent, i.e. , comparable with experimental errors, if

Im(Sr + S„,) ))0. 21m(Srq~ —S„,) . (39)

Thus, when the sign of Q~ can be determined from
other considerations (see Ref. 15), the values of

$, can also be uniquely determined.
When analyzing impurity-induced changes in the

TABLE III. Summary of scattering parameters derived
explained in Ref. 15. Fits to the Dingle-temperature data
and signs have been determined as described in the text.

ImS, i ImS( ImSr
&2

™r
2

o. o(2) o. oo45(so) o. o62(so) o. o6s(so)
0. 02(50) O. 54(15) O. 042(50) O. 044(50)
0. 07(15) 0. 013(10) O. 016(10) O. 016(10)

0. 0(2) —0. 061(35)
O. 09(50) O. 73(15)
0. 20(15) —o. 10(5&

I (o

—o. 26(6)
O. 21 (25)

—0. 13(8)

r2s

—O. 27(6)
o. 22(25)

—o. is(8)

—0. 96
2. 14

—O. 48

from Dingle-temperature data. The errors are derived as
have been constrained to give the correct residual resistivity,

Ag(Au) O. 057(3)
Ao (sn) 0, 08(7)

o. 0092 (2) o. 0055(10)
o. 60(2) o. 04(1)

o. 0057(10)
o. 04(1)

o. 19(1)
o. 23(2o)

o. 088(2)
0. 80(2)

—o. o76(6)
O. 20(15)

—0. 082(6)
O. 22 (15)

o. 04
2. 35

A u (A f&')
' 0. 10 (6)

Au(Cu)' O. 06(4)
Au(Ga)' i. 10(8)

~Reference 2.

o. 009(7) o. 0013(6)
o. 011(7) o. 006(5)
O. 312 (70) O. 011(6)

"Reference 3.

o. 0019(6)
o. oo8(5)
o. oi6(6)

—0. 26(7) —0„067(25)
—o. 20(6) o. 075(20)

O. 98(6) O. 41(5)

'Reference 4.

o. 04(6)
o. 084(30)
o. i2(3)

0, 06(6)
o. 12(3)
O. 18(3)

~Reference 33.

—O. 13
O. 35
1.90
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TAQI, E pf. Summary of scattering parameters derived from impurity-induced Fermi-surface changes.

C u(A1)'
cu(Ni)

Ag(Au)b

AU(Ag)

0. 37(25)
—o. 46(4o)

0. 216 (60)
—o. 33(1o)

0. 489(30)
—0. 063(40)

0. 037(5)
—O. O8(1)

BeSI-,

0. 24(4)
—O. 22(6)

—0. 044(8)
0, 043(10)

H eSfh,

0. 26(4)
—o. 2o(6)

—O. O43(8)
o. o44(1o)

0, 22(20)
—0.27(20)

0. 135 (40)
—o. 22(v)

0. 481 (30)
—o. o53(4o}

o. o32(4)
—o. o4v(8)

2

0.27(4)
-0.24(7)

—o. o4v(1o)
0. 054 (10)

2~i

0. 30(4}
—o. 24(v)

—0. 051 (10)
o. ovv(1o)

1.99
—1.04

—0. 01
0. 09

~Reference 10. bBeference 32.

Fermi r adius to yield Re81.an exactly parallel analy-
sis is possible. Corresponding to Eq. (33) we find

2 a &i —Her~
p ('

)$) —Rey~ + Imp~

so again for E& 2 the data can be analyzed to yield
the three parameters $,. The results of such
analyses are summarized in Table IV. Note that
the signs of the Friedel phase shifts are determined
by the Fermi-surface changes, so in this case
there is no ambiguity in $, .

An explicit expression for the impurity phase
shifts in terms of the Friedel phase shifts can be
obtained by combining Eqs. (33) and (40):

cotqI = coty", (Re)—(~+cot/~ Imp~) ' . (42)

The magnitude of the renormalization coefficient
I az, i is then conveniently given by sing~/Iz sin47),
(Eq. 24), and its phase by

~~ = &~ —~~~ ~ (43)

Thus the impurity scattering phase shifts q'„and
the complex renormalization coefficients 8~, eval-
uated at the Fermi energy of the host metal, can
be determined unambiguously provided that the
magnitudes and signs of the Friedel phase shifts are
known. Results for the impurity phase shifts will
be presented in Sec. IVC.

The preceding analysis is based on a muffin-tin
approximation for the host and impurity potentials.
If there are significant nonspherical components
of the potentials that are confined within the muffin-
tin spheres, this analysis can be extended by allow-
ing the phase shifts to depend on the point-group
representation. For partial waves E& 2 and cubic
point symmetry this means taking two independent
d-wave phase shifts. However, corrections due to
nonspherical components of the potential outside
the muffin-tin sphere cannot be handled by simple
extension of the present analysis.

C. Approximation for back scat'. ering

parts of the Brillouin-zone integral g, Eq. (27).
The imaginary part of y~ (or Iz) is an integral over
the Fermi surface and is easily evaluated. On the
other hand, the real part of y involves a principal-
parts integral throughout the volume of the Brillouin
zone. The following approximations enable one to
estimate T~ without having to evaluate the volume
Brillouin-zone integrals. In the following discus-
sion we will assume the scattering for f and higher
partial waves can be neglected, in which case the
diagonal representation for Q~ and T~ is valid.

Combining Eqs. (13), (15), and (21), we find that
in order to satisfy the optical theorem T~ must lie
on a circle in the complex T plane, whose center
18 X+ jY where

X= [(2I~ sin'ri", )
' —1j, (44)

Y = —cot'g) (4&)

and whose radius is
R =X+1 . (46)

For a free-electron host I~ = 1, q&
= 0, and the

circle reduces to a straight line through the origin
(T~ =0). For a real metal the circle has a. large
radius, as shown in Fig. j. in the case of copper.
Comparison with the free- electron limit suggested
the "minimum scattering" criterion for estimating
the back scattering. This is the assumption' that
the back scattering coefficients lie on the circle at
the point closest to the origin. Back scattering co-
efficients for copper estimated from the minimum
scattering criterion are shown in. Fig. 2. Also
shown are the exact values of T~ taken from Table
II. It will be seen that the criterion predicts re-
sults of the correct magnitude. The values of ter l

TABI.E V, Impurity phase shifts (radians) calculated
from impurity potentials constructed as described in the
text. They correspond to the Fermi-energy parameter
E&= 0. 55 Hy, which has been. assumed in the analysis
of copper-based al.loys. Also listed is the assumed elec-
tronic configuration of the impurity atom.

Although, as outlined above, it is possible to
evaluate the back scattering exactly within the muf-
fin-tin approximation, it is of interest to consider
various approximate treatments. %e know from
the discussion above that it is invalid to neglect
back scattering completely. The back scattering
matrix T, depends upon both the real and imaginary

Conf ig.

Cu(Ni) 3d~4s
Cu(Zn) 4s2

Cu(aa) 4s'4p'
Cu(Ge) 4s2 4P2

Cu(Al) 3s23p~

—0.198
0. 569
0. 965
l. 209
0.817

—0. 033
0. 397
0. 868
l. 388
0.894

"t2

—0.299
0.009
0. 033
0. 052
0.073
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Because the muff in-tin potential that describes
scattering by a given atomic species is expected to
depend only weakly on its environment, it seems
reasonable to compare the scattering phase shifts
for noble-metal impurities in noble-metal hosts
with the differences between the phase shifts of the
pure metals, provided that both sets of phase shifts
correspond to the same value of E and that both

metals have similar lattice constants. Phase-
shift analyses have been carried out for the pure
metals copper, silvex', gold, and tin, and prelimi-
nary workinunder way for aluminum. The results
of these analyses will be used in interpreting the
alloy data for Cu(Au), Ag(Au), Ag(Sn), Au(Cu),
Au(Ag), and Cu(Al).

As a guide to the interpretation of the experimen-
tal data for other alloys, we have constructed im-
purity potentials for a series of substitutional im-
purities in a copper lattice. Impurity potentials for
Ni, Zn, Ga, and Ge in copper were obtained by
superposition of atomic potentials derived from the
self-consistent analytic wave functions due to Bagus,
Gilbert, and Roothaan, neglecting any possible
impurity-induced distortion of the lattice. Ex-
change was treated in the Slater fx'ee-electron ap-
proximation. As a check on the procedure it was
verified that the "copper in copper" potential yielded
phase shifts in satisfactory agreement with experi-
ment. In order to allow for redistribution of charge
associated with the screening of the impurity, which
cannot be described by the superposition of neutral
atom potentials, a small. constant shift was added
to the potential within the impurity sphere. The
shift was adjusted to bring the Friedel sum of the
Friedel phase shifts calculated from Egs. (34) and

(42), into agreement with the valence difference ac-
cording to E|l. (22). The impurity phase shifts calcu-
lated in this way for Cu(Ni), Cu(Zn), Cu(Qa), Cu(Qe),
andCu(AI) are presented in Table V. It is emphasized
that these results are based on an approximate po-
tential and can do no more than assist in the inter-
pretation of trends within the experimental data.

B. Lattice distortion on alloyinl

In nearly all cases of alloying there is a change
of lattice constant associated with the different
atomic sizes of host and impurity atoms. Although
the atomic displacements are localized around the
impurity site, falling off as 1/r, Eshelby ' has
shown that, for a large number of defects scattered
uniformly throughout a specimen, there is a uni-
form expansion with the average lattice constant
equal to that measured by x rays. In addition there
is a short-range distortion round the impurity site
which will cause scattering of the Bloch electrons.
Blatt and Harrison argue that this localized dis-
tortion removes to infinity a fraction of the charge
around the impurity, so the effective valence differ-

ence between the impurity and the host must be
modified by an amount proportional to the lattice
distortion.

The uniform distortion modifies the interpretation
of Fermi-surface changes because it causes a uni-
form contraction of the Brillouin zone and a shift
of the Fex'mi energy. The uniform change in lattice
constant is allowed for by scaling the raw experi-
mental Fermi-suxface areas to correspond to a
lattice constant of the alloy equal to that of the pure
host (i. e. , effectively applying pressure to the al-
loy). The analysis of the data then proceeds as
described above.

The uniform distortion does not affect the scat-
tering data (e. g. , applying pressure to a metal does
not cause extra scattering). However, the Dingle
temperatures presumably include scattex'ing due to
the localized distortion around the impurity site,
and there seems to be no reliable way to correct
for this. The Friedel phase shifts, and other quanti-
ties deduced from thexn, therefore will differ by an
amount proportional to the lattice distortion, depend-
ing onwhether they arededuced from Fermi surface
measurements or from the scattering measurements.

%e believe that the phase shifts derived from
impurity-induced Fermi-surface changes are likely
to be the more accurate in that they include a cor-
rection for the uniform expansion, and because the
anisotropy of the Fermi surface is relatively unaf-
fected by the localized distortion. The localized
distortion can be considered as (i) producing a
modified 4g„ i. e. , producing extra scattering,
and (ii) modifying the back scattering. The modi-
fied back scattering factor ~~ can be written

~~ =

Ilail

exp[&(4+&c)I (47)

where t C~ I —
I C~ ) and P~ is the extra phase shift

in the back scattering added by the lattice distor-
tion. The measured scattering parameters 9~ are
then given by

s~ = lit~
i
sinn', exp[i(nn, + 9~+ 81,)j

or approximately

S~ ~I~' sing~ exp[i(P~+f)~)j .

(48)

(40)

-=I ' sin P'""I L (50)

may, however, deviate from the correct values ft)1. by
an amount of order pl which is comparable to ft)1, .

In all alloy systems considered here Q~ is rela-
tively small (& —,

' v), and P~ will presumably be of
comparable size. It is then a fair approximation
to write cos(Q~+ p~) =1 and fII)~ can be deduced fxom
Re$~ with a fair degree of accuracy. The Friedel
phase shifts Q~

"' derived from the scattering pa-
rameters by writting

Im Sg = II, 8 luge 8in (fr + PL )
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In. this system both Fermi-surface and scattering
results are available for both dilute alloys. %'e

compare below the measured values of ~q, with the
values &g', ' derived from phase-shift parametriza-
tions of the pure metals. The quoted errors are
the random errors in the fit estimated according to
the procedure in Ref. 10, and in this case all re-
su1ts are obtained with E~ =0.41 By.

Ag(Au) f

0 0.279(20)
1 0. 107(S)
2 —0. 066(5)

F8

0.205(60)
o. os8(5)

—0. 042(10)

0. 330
0. 067

—0.050

Au(Ag) 0 —0. 555(150) —0.450(150)
1 —0. 125(50) —0. 088(15)
2 o. os5(4o) o. ow(lo)

—0. 330
—0. 067
+0.050

The agreement is generally quite acceptable, al-
though the Fermi-surface results are systematically
smaller in magnitude than. the scattering results.
Although the lattice distortion is very small

This conclusion is supported by the experimental
evidence that Friedel sums determined from Beg~
agree rather well with the valence difference be-
tween host and impurity, whereas those determined
from scattering data frequently disagree markedly
(by up to 50%}. Furthermore, the disagreement
appears to correlate strongly with the existence of
large lattice distortions, the discrepancy being
small for Cu(Ni) and Au(Ga) where the distortion
is small. Whether or not this argument proves
to be correct, it should be emphasized that the
phase shifts deduced from Fermi-surface changes
are essentially different from those determined in.

scattering experiments.

C. Detailed comparisons

l. Ag-Au system

(- —0. 01%/at. % for both alloys), the correction to
the Fermi-surface results is comparable to the
measured changes because the scattering potential
is weak. It is therefore not unreasonable to at-
tribute the discrepancy to lattice distortion. Al-
ternatively, the diserepaney might be associated
with systematic errors in determining the concen-
trations in the two experiments. It is gratifying to
note that the pure metal phase shifts generally give
a rather good estimate of the Fermi-surface
changes on alloying.

There has been some discussion of the problem
of charge flow in this system. The Mossbauer iso-
mer shifts" suggest a flow of s-like charge onto
the gold sites, and photoelectron spectroscopy re-
sults have been interpreted to mean that the

charge flow is compensated by a reverse flow of d
charge. In contrast, Levin and Ehrenreich, 3

comparing a coherent-potential-approximation
model ca,lculation with optical experiments, find
best agreement when there is a f1ow of 8-like
charge from go1.d atoms to silver atoms. Ta.ken at
face value our results agree with the former sug-
gestion. The signs of the 8 and d phase shifts sug-
gest an excess of g charge on the Au atoms and an
excess of d charge on the Ag atoms.

2. Cu-Au system

In this system only scattering results are at
present available. Beca,use the lattice constants
of the two metals are markedly different (-11'%%u),

we might expect the phase shifts to include large
lattice distortion effects. In comparing the scat-
tering phase shifts with those deduced from pure
metal parametrizations, we should again use the
same values of E~ for impurity and host. The gold
calculations were carried out at 0.41 and 0. 53 Ry
and a small correction was applied to correspond
to E~ =0. 55 Ry. Again the quoted errors do not al-
low for possible systematic errors.

Cu(Au) O. 55 Ry r r)',
"" O. SS(25) —O. »(6) —0.»(&)

—0.09

Au(Cu) 0. 55 Ry Lrl', "" —0. S8(11) 0. 14(4) 0.11(S)

—0. 13 0.09

Au(Cu) 0.41 Ry n, r)',"" —0.40(11) 0.154(4) 0. 08(2)

4q~)~' —0.23

The two sets of phase shifts are similar in magni-
tude, and their signs suggest a charge flow in the
sense as Ag-Au, i. e. , flow of s charge onto the Au
atoms compensated by a reverse flow of d charge.
The gold results show that the scattering phase shifts

are relatively independent of the choice of EF.
3. Ag(5n)

This is another alloy in which there are in the
literature both experimental data and phase-shift
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analyses of the two constituents. The scattering
data show decisively the predominance of p-wave
scattering. In the phase-shift analysis of the Fer-
mi-surface data for white tin, Devillers and de
Vroomen express their results as logarithmic
derivatives of the radial wave function at the muf-
fin-tin radius. This can readily be expressed in
terms of phase shifts at the value of Fermi-energy
parameter used in the stiver alloy analysis, F.„
= 0.41. Comparing the sets of phase shifts:

~~scatt

0. 33(30)
1.06(3)
0.23(20)

0.71
0. (I9

0.09

In this system, Fermi-surface results are avail-
able, and there is also a preliminary phase-shift
parametrization of pure aluminum. ~ Lattice dis-
tortion is present but not gross (0.079,'/at. 0). We
compare the various phase shifts togetherwith those
calculated theoretically according to the prescrip-
tion given in Sec. IVA. All results are at E~
=0. 55 Ry.

In this system we expect the results will be af-
fected by lattice distortion (0.05%/at. %%u~) . In fact,
the discrepancy is in the opposite sense to those
noted above. The general dominance of the p-wave
term is certainly reproduced, but because the coor-
dination in white tin is much lower than that of a
substitutional site in silver, comparison between
the two sets of phase shifts can be little more than
qualitative. Taken at their face value, however,
they suggest the charge density is enhanced at the
center of the impurity cell in the alloy over that in
the pure metal.

data are available and lattice distortion is small
(- 0. 03%%u/at. %%u}. Wecomparebelo w themeasured
phase shifts with values calculated in Sec. IVA.

g~scat t

0. 0(3)
—0. 07(4)
—0.20(5}

—0. 50(4)
—0. 06(4)
—0. 18(5)

~~ca1c

—0.2'7

—0. 097
—0.1@

In this case there is rather good agreement be-
tween both the sets of measured phase shifts and

the calculated values and all results show a large
d phase shift characteristic of the nickel d reso-
nance or virtual bound state. There is apparently
a small residual lattice distortion effect reflected
mainly in the s phase shift. The generally good
agreement gives some confidence that, in the ab-
sence of lattice distortion, the calculated impurity
potentials approximate the correct impurity poten-
tials.

6. Cu(Ge)

~~scat t
1

0. 17(100)
0. 98(19)
0. 24(30}

1.15
1.26
0. 17

Given the large uncertainties in the s and d
phase shifts, the agreement is acceptable. Again,
the results suggest a reduction of the s phase shift
and an enhancement of the d phase shift which is in
the same sense as the Cu(Ni) and which may reflect
lattice distortion effects.

In this alloy the lattice distortion is large (0. I%%uo/

at. %%u~)andonlyscatteringresultsareavailable.
These are dominated by the p phase shift, and there
are large uncertainties in the s and d phase shifts.
%e compare the results with the calculated values.

0. 36(3)
0. 64(4)
0. 36(5)

0.49
0.41
0. 17

0. 753
0.768
0. 190

In this case the agreement is rather poor. It
may be that the anomalously large d phase shift
determined from the Fermi-surface results is asso-
ciated with experimental errors. If this is so, re-
ducing the d phase shift should be reflected in an
increased s phase shift, bringing better agreement
with the calculated values. The values derived
from the host parametrizations, although showing
the correct trend, are also in disagreement with
the experimental results.

5. Cu(Ni)

In this system both Fermi-surface and scattering

7. Au(Ga)

This system is characterized by a vexy small
lattice distortion (0.015%%uo/at. %%u~ )bu t, unlike the
Au(Ag) system, there is a large potential differ-
ence. Only Dingle-temperature results for two or-
bits are available. A simple analysis based on
the data of Ref. 33, and the residual resistivity
(2. 15 pQ cm/at. %%uc ), yields the followingresults
for E~ =0.41 Ry:

scat t

0. 63(4)
0. 88(11)
0.12(3)

Unfortunately, no theoretical estimates are available
for comparison. This simple analysis appears to
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be consistent with a more complete analysis based
on Dingle-temperature data for 6 orbits, which i.s
to be published. It is gratifying to note that, un-
like alloys where the lattice distortion is large, the
Friedel sum is rather close to the valence differ-
ence of 2.

V. CONCLUSIONS

In dilute alloys, Friedel phase shifts can be de-
termined experimentally either from '.he anisotropy
of the changes in de Haas-van Alphen frequency on
alloying, or from the anisotropy of Dingle temper-
atures. %e have shown how these experimental
phase shifts can be separated into a contribution
from the impurity potential and a contribution from
back scattering by the host lattice. The latter can
be calculated exactly, within the muffin-tin approxi-
mation, but this requires a Brillouin-zone
integration. It is glgggys inconsistent to neglect
back scattering completely when analyzing the
anisotropy of experimental data. However, we
have found several approximations to back scatter-
ing which prove satisfactory in special cases,
notably far from scattering resonances.

%hen back scattering is included, experimental
estimates can be obtained for the phase shifts tbat
characterize the impurity in the host. These phase

shifts are expected to include a contribution from.
any lattice distortion present, but this contribution
depends on the type of measurement.

Experimentally, such differences are found when
Fermi surface and scattering data are compared.
In systems where latti. ce distortion is small, the
phase shifts P and P'~', are generally in agree-
ment, and the scattering results yieM the correct
value of the Friedel sum. %hen lattice distortion
is appreciable Q~ may no longer equal PIC"', but
the Fermi-surface results appear always to give
the correct Friedel sum.

The experimental phase shifts in copper alloys
are in generally satisfactory agreement with those
calculated from a potential generated by a super-
position of atomic wave functions. In the homo-
valent noble-metal alloys it is found that even when
the lattice distort~on is large, as it is in Cu-Au,
the differences between the phase shifts derived
from analyses of Fermi-surface distortions of the
pure metals provide a fair approximation to the
scattering phase shifts.
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