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Paracrystalline microdomains in monatomic liquids. II. Three-dimensional structure of
microdomains in liquid lead
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The radial density function of liquid lead observed at 350, 450, and 550 C can be synthesized by a three-

dimensional convolution polynomial. In constrast to other averaging methods ours enables one to obtain direct

information about the three-dimensional structure of the paracrystalline microdomains. These microdomains

can be quantitatively described by a face-centered arrangement of bimodal coordination statistics. Their

centers of gravity are at the same distance from the reference atom as when belo~ thc melting point. The

weight of the coordination statistics gives the coordination number. Vfe find that this diminishes at the melting

point from 12 to K = 11.6 + 0.2. We can explain this decrease by Schottky and Frenkel defects. In addition

to this decrease we observed that the volume of Auctuation of the coordination statistics is six times larger.

From these two observations and from a consideration of the shape of the coordination statistics one obtains

some information concerning the diffusion of the vacancies and the one- and two-dimensional collective

motions of thc atoms to interstitial sites. Furthermore, the statistics were found to be bimodal. One

component corresponds to intraparticle distances which are smaller than in the solid state. The other

component corresponds to interparticle distances, which can be attributed to semidislocations and other

distortions as, for example, grain boundaries. » the conventional theories of liquids only spherically symmetric

(one-dimensional) functions are applied to average the microdomains. Here we point out that such one-

dimensionally defined "direct correlation functions" and pair potentials hide the real nature of the short-range

order.

I. INTRODUCTION

It was the idea of Ornstein and Zernike that in
a monatomic liquid each atom should be a Priori
surrounded in a similar manner. From this they
developed the concept of thb "direct correlation
function" c(r) defined by the equation

+( )= ( )+v,f ( )&(i' — )&' '', (1)

with h(r) =g(r) —1. po is the mean number density
of the centers of the atoms and g(r) is their radial
density distribution, which gives the probability
of finding an atom at a distance r from an arbi-
trarily chosen atom in the melt, divided by po.

Under the assumption that both h(r) and c(r) are
spherically symmetric the evaluation of the Fou-
rier transform of Eq. (1) gives the one-dimen-
sional function c(r) from measured intensity val-
ues. 3 4 The fact that these authors of Refs. 2-4
get direct correlation functions, which oscillate
only for liquid metals and not for liquid noble
gases, is interpreted by them as a result of os-
cillating pair potentials. e believe, however,
thRt such osclllRtlons may hRve no physlcRl signif-
icance and result from the arbitrary introduction
of spherical symmetry.

%e will show in this work that this spherical
symmetry is not present in the short-range atom-
ic arrangement in liquid lead Rnd furthermore,
that the structure of molten lead can be described
as a distorted fec lattice and that the probability
that nearest neighbors be found on fcc-lattice
points is still about five times larger, as should

be expected from a spherically symmetric dis-
tribution.

This can easily be understood if one takes into
account that the funchon g(r) defined in Eq. (1) is
nothing more than the convolution square of the
instantaneous density distribution p(r) of the cen-
ters of the atoms, 5'6

~ (:( ) fn( )~( =-)~''"', p, '(q( )). =

All of the microdomains of p(r') with distorted
lattice arrays are superimposed in Eq. (2) onto
a convolution function g(r), which is spherically
symmetric only to within the experimental errors.

There have been many attempts to describe the
structure of simple liquids as distorted solid-
state lattices' or as aggregations of mieropara-
crystallites, which are lattices with liquidlike
distortions. ' ' In the case of metals with a
close-packed solid-state lattice such attempts re-
sulted in synthetic density distributions with a
distance ratio of second to first maximum of 1.73
= &3. The measured value for molten metals,
however, is always greater than 1.8 and in liquid

lead it is 1.9. These discrepancies caused many
authors to think that the liquid structure is very
different from the solid one, as for example, the
random packing proposed by Bernal. However,
such models unfortunately give a mean density po
for liquid metals that is much too small.

It will be shown that the model of a paracrystal-
line distorted fce lattice gives correct results for
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the radial distribution function if the calculations
are performed three dimensionally.

II. PARACRYSTALLINE DISTORTIONS IN fee LATTICES

The concept of the paracrystal is based upon
the assumption that for each atom in the melt there
is the same probability of finding a certain sur-
rounding. So far this resembles the ideas of
Zernike and Ornstein, ' where h(r) is built up by
the so-called direct coxrelation function, which in
all published examples is spherically symmetric.
The concept of paracrystallinity requires a con-
volution polynomial, which describes a three-di-
mensional distorted lattice which is clearly not
spherically symmetric. The coordination vectors
correspond to the so-called coordination statistics
and describe the probability of finding a nearest
neighbor. In the case of molten lead one finds
that this lattice can be understood and is related to a
face-centered cube. Attempts to use a bcc lattice
failed. '~0 At this moment we cannot exclude hcp
lattices with stacking faults. '

As far as possible the uncertainty in expressing
our result for a fcc lattice is defined by six sta-
tistical parameters and their standard devia-
tions. ) (The accuracy of these parameters can-
not yet be given. However, we are attempting to
devise a computer program to assess the reli-
ability of the solution. ) When starting from a fcc
lattice we need only describe a ~48 part of the
space. Figure 1 shows such a part together with
the coordination statistics of four nearest neigh-
bors. Assuming the lattice constant has length 2,
in the ideal fee lattice the atoms have to lie on

positions U, V, W, where

U+ V+ W = 2» (U, V, W, n; 0, 1, 2, 3, . . .), (3)

and we obtain for the special l8 part of Fig. 1 the
conditions

The coordination numbers K of equivalent atoms
[permutations of (UVW) which give these equiva-
lent positions] are

K=48, for U& V& R'&0,

K=24, for U& V, and IV=0 or U=V and%'40,

K=12, for U= V and 8"=0,

K= 8, for U=W,

6, for V=O.

H(g), H(o)g H(3), and H(3) ln Flg. 1 symbolize the
coordination statistics of the atoms at the posi-
tions 011, 101, 110, and 110, while the center
of the cubic cell lies at 000. They all have the
same shape H(r) for reasons of symmetry, but are
turned into the different directions [Oll], [101],

liood
FIG. 1. Four first-neighbor coordination statistics,

which expand ~8 of the paracrystalline convolution-dis-
torted fcc lattice.

[110], and [110]and are normalized to unity,

Let us consider what the distance statistics of
the non-nearest neighbors H(2, 1, 1) look like.
Since we have assumed that the coordination sta-
tistics of the nearest neighbors shall be the same
for all atoms for reasons of statistical symmetry,
the 211 atom must have the same statistics with
respect to the 110 atom as the 101 atom has with
respect to the 000 atom, namely H(3). The 110
atom has the statistic H(3) with respect to the 000
atom. Thus when looking from the atom at the
origin, the 211 atom must have the statistic

H(2, 1, 1)=H(2)*H(q)

3
H(2) y H(3) x —y Cf

H(z)* H(3) is called the convolution product of H(~)
and H,». It follows a Priori from the definition
of the same distance statistic for all atoms that
the number of convolutions of H(&), H@» H(3), and

H(» in order to get the statistic at UVR' is given
by the minimum total number of steps required
to go from 000 to UVN' in the direction of nearest
neighbors. If P„are the folding powers of the H(„)
for the statistic at UVW, the final equation is

H(U& V& W) = 5(r) + H( + &)+ H(&) & H(2) + ' & H(2&
rh

x~H + ~ ~ ~H * ~ ~ +H(3) (3) (3) ~ ( f)

where 5(r) is the Dirac function and H(„& (H(, &) ap-
pears P„(PB) times. The calculated H(U, V, W)
now must 'be multiplied with the coordination num-
ber of E(l. (5); all statistics must then be summed.
These are a special type of convolution polynomi-
als z,(r) which are defined by the theory of para-
crystals, "

zt(r) = Q K~r&(&H(U, V, W).
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FIG. 3. RDF similar to Fig. 2 at 450'C.
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TABLE I. Statistical parameters of the structure of
lead below and above the melting point.

0 A

FIG. 5. Six parametric bimodal coordination statis-
tics of Eqs. (10) and (11), schematically.

T (c)
~, (A)

&, (A)
z~ (A)

8 (%)

bI (A.)
I-"I (A)

a~ (A)

no (~")

325

3.54
3.54
0
0
0.29
0. 29
0. 29

12
0. 0321

350

3.30
3.55
0.50

~ 50
0. 23
0. 82
0. 51
0.51

11.6
0.031

450

3.29
3.55
0. 53

-50
0. 26
0, 88
0. 56
Q. 56

11.5
0. 0306

3.29
3, 55
0. 56

-50
0.28
0. 93
0, 58
0. 58

11.3
0.0301

If a is, according to Fig. 5, the width of a three-
axial Gaussian distribution at position 110 in the
[110]direction (x,), b is the width in the [110]
direction (x2), and c is the width in the [001]direc-
tion (x,}, the statistic is given by

H(r+r) = [(2v)' 'abc] '

x exp —~ [(x,/a)2 y (xa/b)2 + (x~/c) ] .
(15)

The width 6 in the direction [U VW] is

h2 = (I/2R) [(a~ + b ) ( U ~ + V ) + 2(a —b ) UV

+2cW], R=U+V+W
by analogy with the fundamental calculations of
Vogel, ' who used three-dimensional calculations
to describe the paracrystalline distortions in solid
Mn, Fea „04. The trial-and-error fitting of the
parameters leads to the results that Hn(r) [the sec-
ond part of the fundamental statistic in Eg. (10)]

(oo}I

can be spherical symmetrical, while H, (r) (the
first part of the statistic) has to be a three-axial
Gaussian. One finds that a good approximation is

I II ~II ~II ~I ~I

The parameters which give the best fit to the
experimental curves are shown in Table I (see
Sec. II). ro=r, + pb, r is the position of the center
of gravity of the fundamental statistic, 4r=r«
—r„and po is the mean number density and K is
the coordination number of nearest neighbors. K'
can be calculated from ro and po by assuming that
point defects are statistically distributed in the
liquid [see E|I. (10)]:

~~K= p, r 0/v2, po=aL/A, (18)

c(gcm '} is the macroscopic density, L is the
I ohschmit-Avogadro number, and A(g) is the
atomic weight. The corresponding values for
solid lead at 325 'C are taken from Kaplow et al.
The quality of the fit can be seen from Figs. 2-4.
The positions of the first and second maxima and
their profile are correctly described. The over-
all coincidence between the synthesized and the
experimental radial distribution curve at 350'C is
satisfying. The small differences at higher tem-
peratures are due to the Gaussian approximation
of the statistics. Figures 6 and 7 show bvo original
cuts of the fundamental statistic H(r) of liquid lead
at 350'C. One can see contour lines of the fre-

0

quency distribution starting at p =0.05 A and in-
0

creasing in steps of 0. 05 A 3 up to a maximum
value of 0. 45 A 3.

IV. DISCUSSION

cut through H (r }((}}0}- piarte}

o

[oo}i

FIG. 6. Coordination statistic in the (110) plane.
Each contour line corresponds to 0.05 atoms A+. The
maximum value is therefore 0.45 A+.

The first striking result of this work is that the
mean distance xo between nearest neighbors does
not change at the melting point but stays constant
up to 550'C. The volume leap is produced by an
abrupt decrease of the coordination number from
12 to 11.6+0. 2 (Table I). In the melt K' decreases
a.t the rate of about 0. 1 per 100'C.
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FIG. 9. Radial distribution. function of Pb at 325'C
(below the melting point) (after Kaplow et al. , Hef. 7).

FIG. 7, As in Fig, 6, but in the (001) plane,

From this we deduce that at the melting point a
rapid generation of point defects takes place.
These vacancies can be Schottky defects, which
produce a remarkable free volume. An expansion
of the lattice constant does not take place.

The coordination statistic H splits according to
Erl. (14) into two parts of the melting point, each
with the weight P—= 0.5= (1 —P) and mean values x

0 I
and r, +A„where &x=0. 5 A (Table I). This can
be interpreted by assuming that the melt consists
of clusters (particles or microparacrystallites)
which are separated by At' (the difference between
interparticle and intraparticle distances). Since
H, and H«have the same weight, such a particle
should consist on the average, of —13 atoms, as
schematically shown in Fig. 8. One can easily
see that in such a microparacrystal the ratio of
interparticle and intraparticle distances is about 1.

The partial statishcs (H, ) with the smaller mean
distance rz-3. 30 A (Table I) can be explained by
many Frenkel defects, which are produced to-
gether with Schottky defects. " The interstitial
atoms which result may be the reason why +&~ +0

[Erl. (14)]. Thus for a certain number of atoms

002

000

200
FIG. 8. Reference atom at 001 and the coordination

statistic 0 of its neighbor 111 (schematically). The four
black atoms hinder the diffusion of vacancies.

the coordination number is larger than 12 and the
number of vacancies is larger than [(12—11.6)j
12]&& 100 = 3.3 + 1.6%.

From the radial distribution function at 325 'C
(Fig. 9) one obtains a peak at so=3. 54 A with the

width a, =0. 29 A (Table I) and a height 4riropo
&& k(t"0) = 3.3V A . Assuming that the peak of 325 'C
is globular (a, = 5, = c,) one has to divide 4rit'Opog(ro)

by 2m'', and by the coordination number 12 to ob-
tain the three-dimensional peak value 2. 75 A 3 of
the coordination statistic. This is only six times
larger than in the melt at 350 C (0. 45 A ~) (Figs.
6 and 7). The neighboring atoms in the crystal
are gathered in a globular volume with a diameter
of 2&, = 0, 58 A and spread out at the melting point
to a volume which is only six times larger. This
picture is quite different from that of conventional
theories which discuss according to Etl. (11) a
spherically symmetric first-neighbor statistic at
350'C. The atoms are spread out to a 32-times-
larger volume at the melting point, because pog
has a peak value of only 0. 085 A 3, which comes
from the first maximum of 4rrropoh(ro) A (Fig.
2) by dividing through by 4rrro and adding the value
of po from Table I (g = tr+ 1).

In the real three-dimensional structure the

atomic density p(r) is not distributed uniformly in

all directions. It is concentrated into the 12 next-
neighbor coordination statistics, which have six-
times-larger maxima than the over-all smeared
spherically symmetric radial distribution function.

The shape of the coordination statistic H(r)
strongly suggests that atoms creep to interstitial
places. If these lie adjacent to the reference
atom then the shape of H, suggests that this dis-
placement takes place mainly in the tangential
direction and predominantly in the face-diagonal
direction (5, &c, ; see Table I).

The statistics H«suggests that about 50% of
the distances belong to atoms in grain boundaries
or half-dislocation lines of kink blocks. The
width of H« is &«and within experimental error
is the same in all directions and larger than a,.
Thus to a first approximation H, describes the
intraparticle distances and H» describes the inter-
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particle nearest-neighbor distances (as explained
above).

The diffusion of single vacancies and interstitial
atoms within the microdomains is indicated by the
bimodal character of H. Six motions have in com-
mon the fact that the distance to the reference
atom remains small. They therefore contribute
to the statistics H, . The neighbor 111 of the ref-
erence atom at 001 has two preferred direct
neighbors 201 and 021 in the tangential plane. If
displacements would occur only here H would
have a rodlike shape, as drawn schematically in
Fig. 8. The diffusion of a vacancy from the
four other neighbors 102, 012, 100, and 010 to 111
takes place, but the reference atom 001 is then
slightly repulsed.

The diffusion of vacancies can also happen from
ihe five sites 210, 120, 221, 212, and 122. Now

the distance from the migrating atom to the atom
001 increases and a contribution to H» takes place.
Kaplow et al. have discussed these kinds of dis-
placements with reference to the melting point.
They found that at the melting point the thermal
oscillations of the four black atoms in Fig. 8 are
so large that atom 111 can migrate in the direc-
tion [110]without being hindered by these, if they
are in such extreme positions. Since the same
holds for all other directions, the contribution of
these motions to H must be rotationally symmet-
ric with ~, =c, ~~r. AUrey~6 has discussed such.
displacements in connection with liquid and amor-
phous structures.

A collective motion of the 12 neighbors of atom
ill within the first coordination shell gives rise
to a rodlike contribution to H. As an example, the
arrows in Fig. 10 indicate the cooperative dis-
placements of the 12 atoms from a fcc position io
an icosahedron. Inhibitions will happen only with
the second coordination shell because it is impos-
sible to build up a regular lattice with icosahe-

FIG. 10. Paracrystalline microdomain. with the 12
next neighbors in fcc position. The arrows denote the
displacement of a collective motion into the configura-
tion of an. icosahedron.

drons. Since at the melting point a certain amount
of free volume is generated, such collective mo-
tions are possible in the first coordination shells.

A one-dimensional collective motion of atoms
can explain a contribution to H, and H«, which is
not rotational symmetric around the mean dis-
tance. The atom 111 tends to approach one of the
six gaps in the fixst coordination shell at 110, 101,
011, 211, 121, or 112. If it is displaced, for ex-
ample, in the direction [010]by d A the reference
atom 001 is repelled by the same amount in the di-
rection [100]of one of its next gaps. The relative
motion of the atom 111with respect to the atom
001 is then v2d and points in the direction [110]of
the rod in Fig. 8. These gaps 101 and 011 there-
fore produce larger displacements than the two

gaps at 110 and 112, where the reference atom is
not repelled. These four motions together give a
contribution to the statistics, H, with a, &c,&b, .
The last iwo gaps at 211 and 121 give rise to mo-
tions which are not in a tangential direction and
therefore produce larger distances, which contrib-
ute to the statistics H» with a» &a, .

The motion described above (four paragraphs
preceding) takes place in connection with the dif-
fusion of vacancies. The motion considered in the
paragraph just preceding this does not need any
vacancies but requires that the four atoms of the
next gap clear the way. This again is only pos-
sible by a collective motion of certain groups of
atoms.

A two-dimensional collective motion exists in
an fcc lattice according to Zhdanov" for (111)slip
planes in the [110]direction. The atoms of adjacent
slip planes then come into the so-called half-dis-
placements or semidislocations. ' They contrib-
ute to the statistic H«of the interparticle dis-
tances, but they will also contribute, to a certain
amount, to the statistics H, and nicely explain its
special shape. For the reference atom 001 two

slip planes exist with respect to the coordination
statistics H in Fig. 8, namely the lattice planes
(ill) and (111). Each of them is inclined against
the direction of the mean distance r, of H, but the
sum of their two statistics gives a tangential dis-

r~ ~r
A fundamental conclusion can be drawn from the

three-dimensional structure analysis, namely,
the conventional theories of liquids» neglect the
azimuthal dependence of the nearest-neighbor sta-
tistics and take into account only a simple ~-de-
pendence of the neighborhood of each arbitrarily
chosen atom. These theories must therefore
compensate for this neglected angular fluctuation
by artificial radial fluctuations of spherically sym-
metric auxiliary functions. These have nothing
in common with the physical state of the single
microdomains. This holds for both the direct
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correlation functions and the derived pair poten-
tials, where the subsidiary maxima and minima
of the latter and the large negative valley of the
former' have no physical significance.
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