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Critical dynamics of helium below T,
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The frequency- and wave-number-dependent density correlation function has been calculated below T, for the

symmetric planar-spin model of helium to first order in 4 —d. In the hydrodynamic limit, the ratio of the

damping of second sound to its velocity is an order of magnitude smaller than was found by Tyson. The

theoretical results seem consistent with the light-scattering measurements however.

In a previous paper, the renormalization group
was applied to several models of the critical dy-
namics of helium and the antiferromagnet above
T,.' Based on the simplest model for helium, the
symmetric easy-plane ferromagnet (model E), we
have investigated the critical dynamics below T,.
We have calculated in a Feynman-graph expansion
to order & =4 -d the full frequency- and wave-
number-dependent correlation function of the den-
sity which participates in second sound. From it,
we extract the velocity u, and the damping D, of
second sound and the leading corrections in k$ to
hydrodynamics. Numerical calculations of the
shape function in three dimensions for arbitrary
II| $ will appear in a separate publication. The
shape function is necessary for a detailed compar-
ison with light-scattering data within a millidegree
of T, when kg~1. ' At present we can make con-
tact only with the macroscopic second-sound mea-
surements of Greywall, Ahler, and Tyson' ' and

light scattering for k$ ~ 1.
The model we use below T, is given by Eq. (8) of

Ref. 6, or Eq. (2.1) of Ref. 1 with yo=0 and C, = l.
(The symmetric model of helium neglects the im-
portant corrections to scaling caused by the slow
approach of the effective-specific-heat exponent
to zero. Computations are much simpler than in
the more exact asymmetric model and with a few
modifications it describes the antiferromagnet
as well. ) The I angevin equations of motion, when
expressed in terms of the free energy, remain
unchanged below T,. In the free energy, however,
one must allow for the effects of spontaneous syrn-
metry breaking. ' Our model then reproduces the
thermodynamic relation for the second-sound ve-
locity correctly. ' '

Let m be the appropriate combination of energy
and density fluctuations which couples to the trans-
verse component of the order parameter to pro-
duce second sound:
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Equation (1) has been written in a scaled form
which is universal except for the first factor pro-
vided that the ba.re parameters (denoted by a sub-
script "0"), are given their e-expanded values.
They have the following meaning: yo, the static sus-

ceptibility of m or specific heat; uo, the four-spin
coupling constant; Ao, the thermal conductivity;
I'„ the kinetic coefficient of the order parameter;
and go, the dynamic coupling constant. The reader
should consult Ref.1 for details. We have scaled
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and again is related by a universal factor to mea-
surable properties such as the damping of second
sound. The scaled second-sound velocity is

x,r', ~,'-'a' =
q, r,'8&,

and y~ is the static transverse correlation func-
tion. At the fixed point"'

u, = —,
' e(1+ —', e)A'/(4! ff, ),

g', /&, r, = (e -0.284e')A'/tf„,

&&,/y I = 1+ 1.659&, u,'= 5+ 3.875K,

(3a)

(3b)

where K, is the phase-space volume element;
equal to I/2&&2 in three dimensions and I/8&t' in four
dimensions.

Our calculation was done with the formalism of
Ref. 10 which we found rather cumbersome below

T,. Its application to helium was discussed in
Ref. 1. Several remarks are in order about Eq.
(1) to assist those who wish to reproduce it. Since
we work to lowest order in &, any universal quan-
tity occurring within the integrals has been evalua-
ted in four dimensions. We were able to write
Eq. (1) in a form suggestive of hydrodynamics al-
though it is valid for arbitrary k and co. Nonhydro-
dynamic effects appear only through Z, and Z, .
Our formalism, however, generated six distinct
self -energies. We have freely rearranged the
order-& contributions, dropping or adding E' terms
where necessary, to make the result take itspre-
sent form. While we must obtain hydrodynamics
to all orders in e, there is no guarantee that all
the corrections to hydrodynamics occur only
through the functions (Z, and Z2) which renormal-
ize the hydrodynamic parameters.

Although we will not derive Eq. (1), several re-
marks might make it at least plausible. In the
hydrodynamic limit, both Z, and Z, are real, of
order k', and contribute to the damping of second
sound. The form of the equation insures that all
sum rules are satisfied. The velocity of second
sound agrees with its thermodynamic definition in

all lengths with

(8 y2A-6)1/&2 1 &

where gp is the spontaneous value of the order pa-
rameter and A the ultraviolet cutoff. In four di-
mensions /&( is just (-2t)'/', the inverse longitu-
dinal correlation length (t is the reduced temper-
ature), and in any dimension is related by a uni-
versal factor to /& [see Eq. (5)], which is deter-
mined experimentally from p, ."' The nonuniver-
sal frequency scale is defined by

&d2 = 5' 'k(1.0+ 0.412@+0.0032ek')

—ik'(1.0+ 0.440& 0.0051ek2),
(4)

where the frequency and wave number are in units
of cu„and w&, respectively. To compare with ex-
periment, it is convenient to work in terms of the
inverse transverse correlation length z defined by
by'

Xr-=&t&', //&' 'k' -
=&t&,'/p, k' = (1 ——,', e}/k'+ 0(e') (5)

for k$ ((1. In Ref. 9 If.
" in three dimensions is

calculated from p„"
/& = 0.3

~

t i'"A ' at all pressures.

From their respective definitions, it follows that

/& //& = [5K„(I "e)/e]'/&'-'& (6)

terms of yr [see Eqs. (4.3}-(4.5) of Ref. 1]. At
T„u2 in physical units vanishes, and we recover
the same expression one would calculate from
above T,.

Subtractions were required to make Z, and the
first term of Z, independent of the cutoff A. The
counter terms correspond to the relevant variables
A. , and I, we found in the recursion formulas above
T,.' As functions of &&, they have been exponen-
tiated to give the frequency scale in Eq. (2). The
exponent e/2 is the same as we found above T„
in accord with dynamic scaling. ""We have
found no divergences in the density correlation
function other than those either associated with
static quantities or with dynamic parameters al-
ready encountered above T,. When k( tends to
infinity, the terms which required a subtraction
diverge logarithmically. This simply means that
the frequency scale at T, is ~k' ' ' as required
by dynamic scaling. ' The accuracy of Eq. (1) is
not uniform in k( for finite &. For k$ ) 1, we en-
counter the same difficulties as did Aharony and
Fisher when they calculated the static order-pa-
rameter correlation function. The singularities
predicted by an operator product expansion appear
as logarithms in a Feynman-graph expansion. "
Unless they are properly exponentiated, the & ex-
pansion is numerically unreliable. " For small
k$, the corrections to Ornstein-Zernike behavior
or to hydrodynamics appear to be regular. " Since
the leading singularity at T, is fixed by scaling, its
coefficient can be found by a Feynman-graph ex-
pansion. [See Eq. (9a).]

In the hydrodynamic limit, Eq (1) has a well
defined pole which may be found by expanding Z,
and Z, in both k and & and inserting the fixed point
values of Eq. (3). The coefficients of the expan-
sion are rather complicated integrals which were
evaluated numerically. We find
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R, = 0.06 —0.13. (8)

The range of values results from extrapolating
1+as instead of 1/(1 -ae) and retaining or omitting
z-dependent numbers in the surd when raising to
an &-dependent power. The k corrections in Eq.
(4) should be decreased by -0.05 when using units
Of K.

In Ref. 1, we defined a characteristic frequency
in terms of the height at zero frequency of the cor-
relation function. [See Eq. (2.16) and Appendix
D.] Although this definition facilitates the theo-
retical calculations, a more suitable method would
be to fit the entire shape function. If we adopt the
former definition for the characteristic frequen-
cies of the order parameter ~ ~ and density ~
at T„ two additional universal ratios may be
defined

R""=[&u (k T=T)/u «](« Ik)'' '

R;"'=[(o,(k, T= T,)/u, «](« /k)'

In an E expansion we find

R""=(K /e)' '(1+ 1 4t)
R„'"'= (K /e)'~'(1 —0.3e).

(9b)

The light-scattering measurements of Winterling
et al. and Vinen et al. measure the density correla-
tion function as it crosses over from the hydro-
dynamic to the critical regime. ' Figure 4 of Win-
terling et aE. plots the line width and position of
the second-sound peak along with an extrapolation
in 0 and & of the macroscopic measurements of
damping and velocity. The frequency shift coin-
cides exactly with the extrapolated velocity, while
the linewidth is approximately temperature inde-
pendent and deviates from the extrapolated damp-
ing. The extrapolations cross when T, —T =0.8
&& 10 ' mK or k/« = 1.0 in our units (k is held fixed
in the experiments). Equations (4) and (8) imply
that the linewidth should be an order of magnitude
smaller than the frequency shift. We feel that the
experiments provide only an upper limit on R, of
around 0.3. It should be noted that the hydrody-
namic form does not fit the measurements within
a millidegree of T, and the instrumental width is
somewhat larger than the reported damping. Cor-
rections to hydrodynamics are on the order of
10 '-10 ' when k/« = 1 and presumably not mea-
surable as was found. Light scattering also de-

The ratio of the damping of second sound times
to its velocity is a universal quantity R,. It

follows from Eq. (4) as k -0 and Eq. (6) that

R, = D,« /u, = (1+0.028m)« /5' i'«& .
We extrapolate to three dimensions by setting & = 1
and K~= 1/2w':

termines R '" in Eq. (9). The e expansion for
R is poorly convergent.

The most accurate measurements on second
sound in helium are those of GreywallandAhler"
and Tyson. ' Combining their measurements, one
finds for R,

R;* =0.65~&~-'"=1.0.

The theoretical value of R, disagrees with ex-
periment by an order of magnitude. Although Eq.
(6) indicates that the e expansion is rather poorly
convergent, our experience above T, led us to
expect agreement within 100%.' The calculation has
been carried out to the same order in & in both
cases. Above T„graphs of order E' were needed
to determine Eqs. (3a) and (3b); but the same fixed
point values apply below T,. For both helium and
the antiferromagnet above T„ the amplitude ratios
analogous to R, were a factor of -2.5 too large in
four dimensions and decreased to nearly their
experimental value to next order in &. Most of
the change came from K~

' which varies by a fac-
tor of 2 between three and four dimensions. It was
treated exactly and not expanded in e. (There is
a longitudinal and transverse correlation length
below T, and a single correlation length above T,
which are known experimentally in helium. The
two universal ratios that they determine agree
with theory within a factor of 2.') To lowest order
in e Eq. (7) gives

R = (8v'e) 'i'

which is the same (for e =1) as Eq. (8), contrary
to what happened above T,.

Strictly speaking, the asymmetric planar fer-
romagnet (model E) is required to describe hel-
ium. ' It contains a coupling between the energy
and order parameter which is absent from the
symmetric model we used below T,. Because
the specific-heat exponent is slightly negative in
helium, the asymptotic properties of both models
are identical, although there are large correction
terms. To second order in c, calculations could
only be done in the symmetric model. To first
order in &, however, fixed point parameters differ
by 25% between the two models, and the correction
terms make a significant contribution to the ef-
fective exponents. There is no reason to expect
that below T, the asymmetric model would change
Eq. (8) by more than 25%.

We have not resolved the conflict between the two
types of experiments discussed above. Among
conceivable explanations might be (a) an unanti-
cipated extrinsic source of damping in the macro-
scopic measurements due to the experimental cav-
ity; (b) a breakdown of hydrodynamics leading to
a term proportional to

~
ln(kg)

~
in the damping. '"
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