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Quasi-one-dimensional fluctuation contribution to ultrasonic attenuation in clean type-II
superconductors above T,(,B)~
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We have calculated the effect of fluctuations on the ultrasonic attenuation in a clean bulk type-II
superconductor at temperatures above the transition temperature and in magnetic fields near the zero-
temperature upper critical field, where the fluctuations are effectively one dimensional. The result is a decrease
in the attenuation which should be observable experimentally. The effect increases with increasing mean free
path.

The phase transition between the normal and

superconducting states produces sharp experimen-
tal features in both thermodynamic and transport
properties which agree quite well with mean-
field-theory predictions. ' However, for temper-
atures T near the transition temperature T„ fluc-
tuations of the nonequilibrium phase produce both
a reduction in T, and a broadening of the transition
tion." The most spectacular effect of fluctuations
is seen in the enhancement of the diamagnetism
above the superconducting transition, a precursor
of the perfect diamagnetism of the superconduct-
ing state. Due to a large mean-field-theory dis-
continuity and the accuracy with which susceptibil-
ity measurements can be taken, this effect can be
detected over a wide range of temperatures and
magnetic fields. ' A great deal of attention has also
been paid to the fluctuation conductivity in zero
magnetic field, which is extremely small and can
be detected only in dirty samples of reduced di-
mensionality. " The effect on other zero-field
transport properties is even less significant
and is thought to be inaccessible to present experi-
mental techniques.

However, it has been pointed out by several au-
thors that close to the upper critical field of a
type-II superconductor fluctuations in the number
of electron pairs are essentially one dimensional
in nature. ' In particular, Lee and Shenoy' have
shown that they give rise to a specific heat well
above T,(B), the transition temperature in the
presence of a magnetic field, proportional to
[T —T,(B)] '~', characteristic of one-dimensional
behavior. The physical picture is of fluctuating
electron pairs moving in Landau orbitals charac-
terized by k, and n. The transition temperature
T,(B) is the temperature at which the n= 0 Landau
orbital becomes stable, giving rise to the vortex

state. Just above T,(B) the lowest, n=0 orbital
dominates the fluctuation contributions and only
one degree of freedom, k„remains. A bulk super-
conductor behaves like an array of one-dimension-
al rods parallel to the field with the number of rods
per unit area given by eB/vc, the Landau degen-
eracy factor for particles of charge 2e; c is the
speed of light. More recently, the fluctuation spe-
cific heat has been calculated below the transition
temperature by Thouless, ' who also provided a
scaling formula giving the dependence of the spe-
cific heat through the critical region. The theo-
retical results agree well with the experimental
data of Farrant and Gough, ' who measured the
specific heat of a bulk clean (l»$, ; l is the elec-
tronic mean free path and $0 is the zero-temper-
ature coherence length) type-II superconductor in
a magnetic field through the critical region. This
important result is the only measurement of a
significant fluctuation effect, other than diamag-
netism, in a clean three-dimensional supercon-
ductor.

In this paper, motivated by this work and pre-
liminary results of Farrant and Gough, "we ex-
amine theoretically the fluctuation contribution to
the attenuation of longitudinal sound in a clean
type-II superconductor in a magnetic field near its
upper critical field and at a temperature T & T,(B).
As we have already discussed, in such fields the
fluctuations can be assumed to be one dimensional.
We will assume that interactions between fluctua-
tions can be neglected and furthermore that the
fluctuation propagator has Ginzburg-Landau"
form; that is, we assume that long-wavelength
fluctuations provide the dominant contribution to
physical quantities near the transitions. This is
not true in general, as can be seen from the de-
tailed calculations of the magnetization, "'"where
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for high fields, H»H, ,(0), the bulk critical field
at T=O, or for high temperatures, T»T, (0),
high-energy fluctuations are important, and a more
complete form of the free-energy functional is
required, which turns out to be nonlocal in charac-
ter. It is also assumed that only lowest-order
fluctuation contributions to the attenuation need be
considered. By lowest order we mean only those
terms in the density-density correlation function
which originate, in a 4 -derivable approximation, "
from the lowest-order fluctuation contribution to
the free-energy functional (see Fig. 1).

As a starting point, we note that if u~ &&1 and

ql &&1 the attenuation coefficient of longitudinal
sound is simply related to the density-density
correlation function; + and q are the frequency
and wave vector of the sound wave, respectively.
The attenuation rate is given by"

n = 1m(q'/urp, .„v,)(PF'/3m)'u(q, (o).

Here pF is the Fermi momentum and v, is the ve-
locity of sound. The function u(q, &u)=([n, n]) is the
Fourier transform of the retarded density-density
correlation function and is obtained by analytic
continuation of the thermal product &(q, ~,) from
the set of points ice, =2nwT to z=co+i5; n is an
integer. The diagrams contributing to the lowest-
order correction to the attenuation are found by
attaching in all possible ways two density vertices
to the electron lines in the two-particle vacuum
polarization diagram, Fig. 1. The components of
these diagrams are a free-electron Green's func-
tion,

G„(pg = (iG„—$~) ', (2)

where 5„=&u„+ (I/2r)(~ &u„~/~„), &u„= (2n+ I)vT,
$~ = p'/2m —p, , p, is the chemical potential, and the
fluctuation propagator

(k) [+(0)(R+~
l
~a

l

/8T+ vzck,'/6v'T')] ', (3)

where g=[T —T,(B)]/T,(B) is the reduced tempera-

C
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FIG. 1. Vacuum-ring diagram and the first-order
corrections to the density-density correlation function
due to fluctuations. The broken line in the ring diagram
represents a pair interaction, and the solid and wavy
lines represent the electron and fluctuation propagators,
respectively. At the left- and right-hand vertices in
( [n,n] ) we put density operators.

ture, &u, =2mnT, and o=-,' (3), where t is the Rie-
mann & function. Since the magnetic field restricts
variation of k to one dimension, it is assumed that

q & 2H/H„(0), ' and the phase-space element is
dk, /2vA, where the area A = (eB/hc) ' is the in-
verse of the Landau degeneracy factor. In the
clean limit the electron-impurity scattering time &

appears only in the propagator G„(p). The im-
purity renormalization of the electron-fluctuation
propagator vertex is given in general by

F(&u„, k) = (I —[tan (kl/2'
l
~. I

)]/ki] ' (4)

where cu„ is the frequency associated with a single
electron entering the propagator and where we

have neglected the two-particle frequency. In the
calculation of the density-density correlation func-
tion the discrete frequencies ice„are analytically
continued to real frequencies cu, which are then
integrated over, weighted by the convergence fac-
tor cosh '(~/2T). In the clean limit, T,(0) &r&1,

and for T = T,(0) the dominant contribution to the
frequency integral is from &u ~ 1/r; hence the ver-
tex function I' (k) is of order 1, provided kl »1,
that is, [B H/, ,(0)](l /$ )o' » ,Ia, condition which is
easily met in the clean limit. On the other hand,
in the dirty limit the vertex function takes on the
well -known form

I'„(k)= (2(u„r + -,'k'I ') '. (6)

After this preamble we proceed to the calculation
of the diagrams of Fig. 1 under the conditions out-
lined above. In the zero-field case diagrams (a)
and (b) were first studied by Aslamazov and Lar-
kin, "who found a sharp peak in the attenuation
which diverged as [T T,(0)] '~' in —three dimen-
sions and [T —T,(B)] '~' in one dimension. How-
ever, the numerical prefactor of the fluctua-
tion component was so small, n»/n„-(T, /E~)',
in the clean limit that experimental observation
of this effect is impossible; a„ is the attenuation
in the normal state. In fields near H, (0) we have

C2

verified that, as expected, the attenuation due to
these diagrams diverges as [T —T,(B)] 'i', char-
acteristic of one dimension, although again the
coefficient is extremely small.

Diagram (e) istheso-calledanomalous Makidia-
gram" which, as has been much discussed in conduc-
tivity calculations, "diverges independent of the
value of T in one or two dimensions in the dirty
limit with no pair breaking. For example, in the
dirty limit at zero field Robinson et a/. "find that
the contribution of this diagram to the fluctuation
attenuation in one dimension is

-v 1
!o„4lV( )0(Dk'+ 5)[(v/8T, )Dk'+ q]

81V (0)SD"'(6q)' '[ri'I'+ (v6/8T )'~ 2] (6)
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Here 8 is the cross-sectional area of the whisker,
B= 3m~i is the diffusion constant, and 5 is the pair
pair-breaking energy first introduced by Thomp-
son. " The divergence mentioned above has its
origin, in the limit 6-0, in the 1/k factor appear-
ing in Eq. (6), which in turn is a result of the k'
dependence of I'„(k) in the dirty limit. Notice
also that Eq. (6) predicts a decrease in the total
attenuation, as would be expected in a broadened
transition.

However, in the clean limit (that is, under the
condition //$0 && 1) diagram (e) leads 'to an attenua-
tion contribution of the form

n, -w~ eB ~ 1+0((q/) ')
n„4N(0) Kc ~~ q+vj„ok'/6m'T''

Neglecting the correction term of order (q/)
' and

performing the one-dimensional sum over k, this
becomes

(6)

The remaining two diagrams, {c)and {d), which
are simple modifications of the normal attenua-
tion due to emission and absorption of fluctuating
pairs, give a contribution to the fluctuation atten-
uation which is exactly equal in sign and magnitude
to the correction term in Eq. (7) of order (q/) ',
therefore they are negligible.

Thus the net result is that the effect of Quctua-
tions on the attenuation is dominated by the anom-
alous Maki diagram and is given by Eq. (6), to low-
est order in (q/) '. Again this leads to a decrease
in the attenuation, effectively smearing out the
transition. The apparent divergence is -q '~',
which is, of course, cut off in the critical region.

For typical values of the parameters of interest
B/H (0)=10' T (B)/T (0)=1, 1/k~)0-2X 10',
and l/$0-6 x 10', we find n, /a„= —10 ' at q =10 ',
indicating a, 1% effect at temperatures T/T, (B)
—1 = 10"'. This result emphasizes clearly the
increase in the effect of fluctuations as the sample
becomes purer, "contrary to the general lore that
adding inpurities increases the fluctuation effect.
Some insight into the reason why o.,/o. „ is propor-
tional to E can be gained by noting that below the
superconducting transition, the change in the at-
tenuation is also proportional to l."

Although we feel that in the temperature and field
range considered here short-wavelength fluctua-
tions should not be important, a careful investiga-
tion of this effect will be carried out. Of further
interest is the extension of the theory to the region
q/&1.
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