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%e present a theoretical discussion for the transition temperature &~ of superconducting
alloys taking into account both the effects of composition and of atomic order. T, is found
from the ensemble-averaged vertex equation for a Cooper pair written in the atomic repre-
sentation. The application to new experimental data on the effect of long-range order on Tc
of Nb3Sn, V3Au, and V36a yields good agreement between theory and experiment.

I. INTRODUCTION

The effect of composition and of atomic ordering
on T, of the binary alloys A„B,„„is of considerable
experimental interest. In particular, high-T, A-15
substances have been investigated by producing
different degrees of atomic disorder by high-
energy neutron irradiation, "' oxygen-ion bom-
ba, rdment of thin films, ' and quenching of alloys
from high temperatures followed by subsequent
annealing. ' ' In the new experiments on A-15 sub-
stances it is found that large changes in T, ac-
company the changes of /ong -marge order as mea-
sured by the Braggs-Williams pa, rarneter S.
Furthermore, there are alloys between two transi-
tion metals where a small diff erence in the atomic
sizes of the constituents leads to sItoyt ~ange order
as indicatedby solid-solution hardening. ' For these
alloys, too, T,willdependnotmerelyonthe compo-
sition, but also on Bethe's order parameter g that
measures the extent of local order between nearest-
neighbor atoms. '

We wish to present a theory of T, for super-
conducting alloys that takes both the effects of
composition and of atomic order into account. We
presume alloys with narrow energy bands, where
the electrons responsible for superconductivity
have atomic character in the sense that they re-
volve several times around an atom before the
itinerant band motion carries them to a neighbor
atom. To determine T„we start from the inte-
gral equation for the vertex part of a Cooper pair
1 written in the Wannier representation. ' The
temperature T, is defined by the ensemble-aver-
aged vertex equation, the kernel of which contains
the pair Green's function E and the electron-elec-
tron interaction I owing to the short-range Cou-
lomb repulsion and the frequency-dependent ex-
change of lattice excitations. For the kernel, we
presume the contact model, which means physi-
cally that we consider those interactions in which
the two electrons of a pair are initially at one and
the same site and finally again at one site. Using
the contact model, we calculate T, as a function

of composition and ordering. In the alternative
coherent -potential-approximation treatment of
superconducting alloys, random disorder is an
essential presumption. '

II. ELECTRON-PHONON MODEL

For a particular al1oy, we presume the following
model: The electrons oeeupy a partly filled band
whose eigenstates w are given by

q„(r)=N'i' Q Qa„(n )w- (r) (a=1, . . . , N),

where n labels the lattice sites occupied by n
atoms (o. =A, B), ~ denotes the Wannier function
at n, and N is the number of atoms. The coef-
ficients a„connect the ~ and n representations, by
a unitary transformation. In the Wannier repre-
sentation, the Green's function at T = 0 has the
form

(, ),~ a„(rj)a„*(n,)
GoG n n a =X"'~

K K K

where ~„ is the band energy with respect to the
Fermi surface and 5„=+5 for E„~O. In terms of

G, the density of states per atom is given by

N(t) = -(wN) 'sgnE Q g ImGO(n„n; 6)
CK

= PN (c).

The model for the normal modes is analogous to
that for the electrons. " The modes / have the
eigenfrequencies Id, (l = 1, .. . , 3N) and the displace-
ment eigenvectors g;, (i= 1, 2, 3, corresponding
to the three Cartesian coordinates). The lattice
Green's function L, describes the propagation of a
lattice distortion between m and m at T =0; this
function is given by

+rn~. @m j t
Q;,.(m&, m~; &u) =(M~M&) '~' g

t —g
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X I'(n,', n; (o„)= -p, Q Q (n,', n „";(o., )
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&& F(n „n, ; cu„, )I(n, , n; &u, , —cu„), (6)

X
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FIG. 1. Graphical representation of the vertex equa-
tion for an alloy in the contact znodel.

x [L„,((u'+ i6) L„,(u)' -—i6)]

g.(~). (5)

We find the partial densities of states N (e) and

g (&u) by substituting the corresponding Green's
functions into Eqs. (8) and (5)." In the framework
of this electron-phonon model, we formulate the
vertex equation for a Cooper pair.

III. ENSEMBLE-AVERAGED VERTEX EQUATION

where M is the mass of an o. atom. Using Eq. (4),
we write the density of states as

g((u) = (6Nvi) ' Q QQ M
a m~

where ~,=iv(2v+ 1)/p and p= I/&sT. Eq (6) rep
resents a system of Ã' equations. For large N,
the value of T, given by Eq. (6) should apply not

only to just this particular alloy but to an ensem-
ble of alloys of which this one is a representative.
All of the alloys in the ensemble have the same
value of the order parameter, S or v. We wish
to determine T, from the proper ensemble aver-
age of Eq. (6).

To this end, we first introduce some quantities
to describe the alloy statistics. The probability
distribution for r atoms, p(n„. . . , n„), is the
probability that the sites n„.. . , n„are occupied by
the constituents n„.. . , n„. For convenience, we
write below the pair distribution p(n, n, ) as p(n ne ),
=p(n —n~ ), etc. The conditional probability dis-
tribution p(n„. . . , n„~ n„„,. . . , n„) gives the proba-
bility for the constituents at the sites n„„,. . . , n„
if the constituents at n„.. . , n„are fixed. This
probability is defined by the following factoriza-
tion:

p(nay. . . n/) =p(n$ . . . np )p(ng . . . ny tnp . . . ng).

The vertex part I' satisfies at T, a homogeneous
integral equation of the form I'= -I'GGI, where G

is the thermal Green's function (cf. Eq. 2) and I
is the irreducible interaction. In the contact mod-
el, I depends on two sites only, since both elec-
trons of a pair are taken to be at one site. The in-
teraction can scatter the pair to a new site. In
this model, the explicit form of the vertex equa-
tion is given by (cf. Fig. 1)

In terms of the conditional probability, we define
the restricted averages of any quantity which de-
pends on the alloy configuration [cf. Ref. 15, Eq.
(2.15)].

We write the restricted ensemble average of

Eq. (6), taking o. and P atoms at the lattice sites
n and n', respectively, and averaging over all of
the possible alloy configurations at the other N —2

sites. We get

p(nzn, )(I')~, ~
= —P g (I'FI)~, z., ~„~ [p(nzn'„'n~" n )+6~&.,P(n~n', "n )+ 6z.,~...p(n~n„"n )+6~.„~p(nzn„"n~")

y () rin, g r

+ 6&,„„,p (nz n„n, ) + 6&,~P (n~ n„"n,'") + 6~~„6z„sP(n~ n',")

and (n =n')

+ 5~,„„,6„„„p(nan )+ 6&s„6~.&...p(nan )+ 6&„~„,5&„,zp(nan„)]

(8a)

p(n )(I')„=—g p (I'Fl)~ ~. .., [p(n n'„'n', )+ 6~„„„,p(n, n,")+6&&.,p(n n'„')+ 6~~„p(n n6 ) + z~„qe.„p(n,)].

(8b)

Here the Kronecker 6~,z„=-5z,z„,. the subscripts
n, P, y, 5=A, B.

Equation (8) is exact within the contact model.
To proceed, we employ an approximation, namely,
the chain factorization of the probability distri-
butions containing three and four different sites

into a chain of pair distributions. For three sites
we have, for example,

p(n, —n8) p(ns —n„") p(n„' —n, )

Pn Pg Pr

where p =p(n, ). This approximation is used in the
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tight-binding theory of the electronic structure of
liquid and amorphous metals. ' In a corresponding
manner, the restricted ensemble average of
&I'FI& is factorized into a product of three aver-
ages,

&I'"(~.)&~.=N 'g g P&L(~,)&„&~'&,,s,
m y

[p(nt, m„n, )+ 5s&p(n, n, )+ 6s„p(n', n, )

+6„,„P(m„n )+6-~p ], (15)

&rFf&,,,„,„, = &r&,, , &F&,-,-.&fh-. &
. (10)

where

&'=- g l(univ; v;„ln.) I'

This type of chain approximation is reasonable
if, e.g. , the quantity I'(nznz) does not fluctuate
much about its restricted average &I')-„. „-."

We now substitute Eqs. (9) and (10) in Eq (8)..
By summing the new equation over n', n we even-
tually get

is the squared matrix element of the ion-potential
gradient at rn between Wannier functions centered
at n' and n. Presuming cubic symmetry, we get
the restricted average of L for y atoms as

"'
&I&...

y, 6 PyP6

&I (~,)&„=—g &I-;;(~,)&,=M„'
i ~0

(17)

where

&f&6. =N ' PP(ni-n. )&1&r g+6a gP. &f&.] (12)
5'&n 6 0.

The quantities &I'&z„and &F)» are defined corre-
spondingly. The subscript fl enters Eq. (11) as a
common label and, therefore, it may be dropped.
Hence Eq. (11) represents a system of two cou-
pled integral equations.

To arrive at the simple form of Eq. (11)we have
exployed one additional approximation, besides
the chain factorization. This approximation con-
cerns those paths n'-n"-n"-n which are not self-
avoiding, Fig 1. In this case, where at least two
of the four sites are identical, the corresponding
terms in Eqs. (8) and (11) are a.ccompanied by
different pair distributions. " This difference is
neglected, the reason being that the number of
non-self-avoiding paths is by a factor 1/N smaller
than the number of self-avoiding paths. We have
now clearly stated the approximations made in the
averaging procedure leading to Eq. (11). The chain
factorization, Eqs. (9) and (10), is the pertinent
approximation made in this context.

Next, we calculate the quantities (F)„, and &I&„,
Eq. (11). The irreducible electron-electron inter-
action is given by

where &u =2vig!P. The short-range Coulomb part
is

+&K) „p„5 ], (18)

&~'&„„.-=&~'&-„-„a., &K'&., -=&~'&a.sp.
p„=p(m„—n ), and m=n+d, , where d, is a vector
between nearest-neighbor sites, j= 1, 2, ..., z.

The quantity &F&„~ has the form of Eq. (12). To
calculate this quantity, we take the ensemble av-
erage of the pair Green's function &F) = Z„,&F&„,
to be equal to the arithmetic mean value of I" for
a given macroscopic alloy. The two averages will
be identical if we restrict ourselves to homogene-
ous alloys without clusters of either constituent.
We get

&F((u„) ,&„=N ' Q F(n'„n„; (u„)
B6

N, (s)N„(~) d~
N(e) ku„—Z((u„, e)I' —~' '

(19)
where c „and c are the band extrema with re-
spect to the Fermi surface and Z is the electron-
phonon self-energy,

where g„(ur) is defined by Eq. (5).'9 For suffi-
ciently localized Wannier functions, the three-
center matrix elements in Eq. (15) can be neglect-
ed and the two-center matrix elements between
nearest neighbors can be considered to be dom-
inant. Equation (15) then becomes

&I'"(~.)&s.= Q„&L(~.)&, z[&&~~.P ~.(5s, + 5.,)

&f'&, =5, P,&fj&, (14) -neo„, if leo„l cu,

where (U) is the intra. -atomic Coulomb integral
for the a atoms. The interatomic Coulomb inter-
actions are assumed to be small compared to (U),
and they are therefore ignored. The phonon part
in Eq. (13) is given by

z((u„e) =

0, otherwise;
(2o)

X is the coupling parameter given below, Eq. (21).
The partial density of states N„(c) depends on both
the composition and the atomic order.



IV. COMPARISON BETWEEN THEORY AND EXPERIMENT TABLE I. Parameter values used to calculate T, (8).

The transition temperature T, can now be ob-
tained from Eq. (11). By parametrizing the fre-
quency dependence of I'"{&u,) in the manner of
BCS, we get

RENT,

= 1.13&v„exp[-(1+A)/(A. —p*)],

where

u*= ~//1+ ~h (e,/~. )l,

Substance

Nb3Sn

VBAu

V3Si
V3Ga

A p

8(
('K}

0.12 290
155 018 240
0.71 0.18 340
1.10 0.18 409
1.18 0.18 302

18
18
4.6

18.4
15.6

4
26
5, 6
27, 28
27, 29

Tcp
( K) Reference

~ N„(0)NB(0) (I'"(lu), l =0)) ~

N(0) p p~

~ N (0)N~(0) (I') ~

N(0)

The energy E~ is an effective "half-width" of the
band defined by

(22)

»e, =-'(inly. I+»le...l).
The parameters A. and p, depend, first of all, on
the composition x=p, . For random disorder, x
is the single-alloy parameter. For the more in-
teresting cases with atomic order, X and p, depend
in addition on an order parameter. There are two
different types of alloy order. The long-range or-
der S measures the order of A and B atoms upon
A and 8 sites over the entire 1.attice. The short-
range order o is not connected with A and 8 sites
but with the local configuration of nearest-neigh-
bor atoms. For both of these types of order, ex-
pressions for the partial-structure factor p z in
terms of S and o, respectively, can be found in
the literature. o The parameters A. and p, depend
on the p z via the interaction (I),z. Furthermore,
N, (0) and

g~(M )dco

(d0

depend on the atomic order. These parameters
may be considered as "experimental quantities, "
since a quantitative theory for their dependence on
S or o is not yet available. In fact, for a. number
of 4-15 substances, the electronic specific heat
and the Debye teroperature 8 have been measured
as functions of S."'"

Using these data, we calculate T,(S) for Nb, Sn,
V,Si, V,Au, and V,oa, and compare the results
with experiment. %e presume the linear-chain
model. " The long-range order S is determined by
x~, that is, the probability of a chain site being
occupied by an A atom; S=4x~ —3 for stoichiomet-
ric A.SB. The parameter A. is given by

1.0
c 09

Tco
0.8-

of Nb sites occUPl&d bg SA QtofYls
15 10 5

I

O

0.7-

0.2
j'

0.3 0.4 0.5 0.6 0.7 0.8 0.9

where X = X(S= 1). The parameter p = p, „„»1 by
virtue of the large values of the densities of states
at the Fermi surface and of the Coulomb interac-
tion (U)„; hence we take p*=1/ln(e~/&uo) and ne-
glect the S dependence of 1n(t, /u, ); p*= p,*.

In calculating T, vs S, we use McMillan's formu-
la, which has been applied with remarkable suc-
cess to strong-coupling superconductors. " The
parameter values used for A, p,,*, and 8, are
summarized in Table I. To get A.(S), we deter-
mine N„(0, S)/N„(0, 1) from the corresponding ex-
perimental ratio between the low-temperature
specific heats, taking into account the electron-
phonon renormalizatjon. 2 ' ' The phonon param-
eters 8 and (uP)„are assumed to be independent

S+ 2 'N„(0, S) ((u'(1))„
AA 4 N (0 1) (~2(S))

FIG. 2. Reduced transition temperature T, /T~ p vs
the Iong-range-order parameter S; T«= T~@=1).
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