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The fixed-point topology of KadanofPs lower-bound renormalization transformation is discussed for the d = 2
square-lattice Ising model in the three-dimensional space of coupling constants for the nearest-neighbor, next-

nearest neighbor, and four-spin interactions. An obstacle one encounters in trying to calculate a critical
surface is pointed out. In the three-dimensional space of coupling constants KadanoFs fixed point has two

relevant vectors and can only be reached from a critical line, not from a critical surface. Another fixed point
is reported which does have only one relevant vector and can be reached from a critical surface. The critical
exponents of this fixed point are close to the exact values, though not nearly so close as for KadanofFs fixed

point. The properties of both fixed points as a function of the variational parameter p are described. Critical
values of the nearest-neighbor couplings leading to the fixed points are compared.

I. INTRODUCTION

Kadanoff and co-workers' have recently cal-
culated the critical behavior of the Ising and Wil-
son-Fisher models with a renormalization trans-
formation ' based on a lower-bound variational ap-
proximation to the free energy. The transforma-
tion is quite simple and is not restricted to a par-
ticular dimension. The Ising critical exponents
for d = 2, 3, 4 agree very impressively with known
results. Thermodynamic functions for the d = 2

Ising model closely approximate the exact Onsager
solution.

In applying the lower-bound renormalization
transformation (LBRT) to the d = 2 square-lattice
Ising model without external field, Kadanoff and
co-workers parametrize the nearest-neighbor,
next-nearest neighbor, and four-spin interactions
in the sequence of Ha.miltonians with coupling con-
stants K„, K„„and K4. They perform their cal-
culations in an invariant subspace of the LBRT in
which K„=K„,. In considering an initial Hamil-
tonian which only contains nearest-neighbor inter-
actions, they first perform a decimation transfor-
mation (an exact procedure) to enter the subspace
K,„=K„„before repeatedly applying the LBRT.

U sing a different recursion formula based on a
cluster-approximation method developed by Nie-
meijer and Van Leeuwen, Nauenberg and Nienhuis'
have also calculated the thermodynamic functions
of the d= 2 square-lattice Ising model. They ob-
tained a surprisingly accurate picture of the crit-
ical surface in the va.riables K„, K„„and K4.
One advantage of Kadanoff's LBRT is that it can be
more readily extended to higher dimensions than
the cluster-approximation method. An interesting
question is whether the LBRT can also be used to
furnish an accurate picture of the critical surface
of the Ising model.

In this paper the fixed-point topology of the
LBRT for the d= 2 square-lattice Ising model is

discussed in the three-dimensional space of vari-
ables K„, K„„and K4 not just in the subspace
K„=K„,. An obstacle one encounters in trying to
ca,lculate a critical surface for the Ising model is
pointed out. In addition to a relevant and an irrel-
evant eigenvector ' in the subspace K„„=K„„
Kadanoff's fixed point has an eigenvector outside
the subspa. ce, which goes from irrelevant to rele-
vant as the variational parameter p passes through
the value p~ = 0.741. For the optimum value
p* = 0. 766 used in calculating critical exponents
the fixed point can only be reached from a critical
line in the K„=K,„, subspace, not from all points
on a critical surface as one would expect. A sec-
ond critical point, which lies outside the K,„=K„,
subspace and has only one relevant vector, is re-
ported. This fixed point, which originates at p = p~

in a bifurcation occurring at Kadanoff's fixed point,
only exists for p& p, . Its critical exponents 2 —n
and 5 are 1.966 and 15.36 as compared with 1.998
and 15.04 for Kadanoff 's fixed point, and 2 and 15
for the exact exponents. The critical exponents of
both fixed points are described as a function of p.
Critical values of the nearest-neighbor coupling
calculated for the two fixed points are compared,
with Kadanoff's procedure, a decimation followed
by the LBRT, giving somewhat better results.

In the Sec. II the explicit form of the LBRT for
the d = 2 Ising model is briefly reviewed. In Sec.
III the new results referred to above are de-
scribed.

II. LOWER-BOUND RENORMALIZATION

TRANSFORMATION

In applying the LBRT to the d=2 square-lattice
Ising model without external field, '~ one considers
a sequence of Hamiltonian with the form

H-„(v) = — Q Q K,s,(o) .
squares i

The sum over i includes the four spin operators
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TABLE I. Four spin operators in the sequence of
Hamiltonians and the four independent classes of spin
configurations. n& gives the number of distinct spin
configurations in class i.

g0= 1

S~ = 0'10'2 ' 0'2IT2 + (Yg04+ 04ITf

~ann
= +1+2 + +2+4

S4 = ~1+2~3 ~4

Configurations

+ +++

+++—,———+, cycl1,c
perm utations

++ ——,cyclic
permutations

exp Kqs] p =Tr~ „,6 exp p p, ioi +' ' ' p.40'4

—)n2cosh)((r, + g) 41 K;;( )),
where p is a variational parameter adjusted to
maximize the free energy.

To obtain algebraic equations relating the K',.'s
and K s, one chooses particular configurations
for the p spine in Eq. (2). Each of the four
classes of configurations in Table I yields an in-
dependent equation. The algebraic structure be-
comes especially clear if new variables
z; = exp(LX&, II;) are introduced. The matrix
X,, =s;j„,«, ; is given in Table II. In terms of

z,. the LBRT has the form

shown in Table I. They form a complete set of
even operators reflecting the point-group symme-
try of a square of four spins. The LBRT generates
an H-„,(p) from Hx(v). The p variables are Ising
spins on a lattice with twice the lattice constant of
the e lattice. The transformation has the explicit
form

The right eigenvectors 5z; and eigenvalues A. as-
sociated with the fixed point are solutions of the
linear equations

4 P n), ,z*,. 5z, = X5z,

That the symmetry K„=K„,is preserved by the
LBRT may readily be seen from Eq. (2). If K„
= K,„„the exponential factor on the right-hand
side is completely symmetric under interchange of

any two 0 spins. This implies that the left-hand
side is completely symmetric under interchange of
any two p. spins. Consequently K,', = K,'„,. The
subspace K„=K„,corresponds to the subspace
z~ = z4 in the variables z; (replacing the indices
i =0, nn, nnn, 4 with i=1, 2, 2, 4). From Eq. (2)
and the explicit form of u' in Table II it can im-
mediately be verified that z3 z4 lf z3 z4.

An additional property of the LBRT will be used
in Sec. III. For any fixed point in the subspace
z, = z4, one solution of Eq. (6) is

5z = (0, 0, 1, —2), (7)
l(. =8z,*'(cosh p —1) .

This eigenvector lies outside the invariant sub-
space, and its direction is independent of the vari-
ational parameter P. In the space of the variables
K; the eigenvector has the direction

5K =(0, 1, —2, 0) . (8)

As discussed in Hefs. 1 and 2, for an initial
Hamiltonian with coupling constants K' ', a lower
bound to the free energy per particle f~(K")) may be
computed f rom the limit

K"&

f (K"') = —lim
0)+CC) 4

4

TABLE II. Matrices X and sv.

w, , = (I/n, ) Tr,,...„fP,(p)P, ((r) exp[P(g, (z,

+ ~ ' ' g4a4) —ln2 coshp((T, + g4)] ) .

1 4 2

X= 8X-' =
1

1 —4 2 1

Here P,. is a projection operator onto class j of the
four classes of spin configurations in Table I. n;,
the number of distinct spin configurations in class
i, is listed in Table I. When the trace in Eq. (4)
is evaluated, the expression for zv shown in Table
II is obtained.

The fixed points of the LBRT satisfy the nonlin-
ear equation

1
q —12 2 2q 1

(5)
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TABLE III. Five fixed points of the LBRT, their eigenvalues with even spin symmetry, and
their eigenvectors, computed for P =0.76.

F ixed
point

(1s) —0. 1621

0.2754

0. 1400

—0.1621

K*
4

0. 08366

—0.1266

2. 908
0.2243
0. 005114

0.3048
0.03447
0.050 33

1.970
1.113
0.4903

1
1

—2

1
—2

1

6K4

0
—0. 9115

1.009

—0. 9590
—3.255

0

—0. 6201
0

-6.306
—0. 000 5864 —0.4225 0. 000 3959 0.1111

0. 018 16
0. 001 750

—11.00
—0.7319

1, 021

—0. 6890
—0. 8032

1, 028

(3) 0.1578 0. 1092 —0.007 943 2. 015
0.8920
0.4497

1.738
—1.589
—0. 5086

—0. 7998
0.1695

—2. 776

where Ko~ ' is the value of Ko after n applications
of the LBRT. For the optimum value of p, g~(K+')
=0 wheref,(K"') —f,(K"')= g,(K"')&P+ O((~P)') . (10)

In calculating critical exponents, Kadanoff and co-
workers maximize the free energy for an initial
Hamiltonian equal to the fixed-point Hamiltonian.
They choose the p= p* and K*(p) for which
g~(K*(p*))= o.

III. RESULTS

Table III lists five fixed points'0 of the I BRT
and their eigenveetors and eigenvalues, computed
for p= 0. 76. As will be explained below in more
detail, (ls) and (1) are high-temperature fixed
points, (2s) is a low-temperature fixed point, and

(Ss) and (S) are critical fixed points. The sub-
script s indicates a fixed point in the subspace
K~= Knnn-

For both fixed points (Ss) and (S) the values of
the critical exponents 2 —n and 5 computed from
the largest nontrivial eigenvalues with even and
odd spin symmetry are close to the exact Onsager
values. %hen p is optimized according to the pre-
scription following Eq. (10), the results shown in
Table IV are obtained. Fixed point (Ss) was re-
ported by Kadanoff and co-workers. It has a rele-
vant (A.& 1) and an irrelevant (X& 1) eigenvector in
the subspace K = K„,and an additional relevant
eigenvector outside the subspace, which is the ei-
genvector shown as Eq. (8). Thus (Ss) can only be
approached along a critical line in the K = K„,
subspace. Fixed point (S) has only one relevant
vector, as one would expect for the Ising critical

TABLE IV. Critical exponents and values of the criti-
cal nearest-neighbor coupling. p* is the value of p
which maximizes the free energy for an initial Hamilto-
nian equal to the fixed point Hamiltonian, . P maximizes
the free energy for an initial Hamiltonian containing only
the critical n.earest-neighbor coupling.

Fixed point

{3s) 0. 7660

0.7610

2 —Q'

1.998

l. 966

15.04

15.36

Exact, exponents

Decimation followed

by LBRT

LBHT without

initial decimation

Exact value

p* =0, 766

P'= O. 773

P* = O. 761

P~= O. 73O

K~= g ln(1+W2 ) = 0.220

15

K~=0. 229

&' =O. 229

&~= 0. 242

Z' =O. 239

fixed point, and can be approached from a critical
surface. However its critical exponents are not
so close to the exact exponents as those of
Kadanoff's fixed point.

In considering an initial Hamiltonian containing
only nearest-neighbor interactions, Kadanoff and
co-workers first perform a decimation transfor-
mation to reach the subspace K„=K„,. This
transformation, which is exact if the initial Ham-
iltonian only contains nearest-neighbor interac-
tions, eliminates every other spin, increasing the
lattice constant by the factor M. It has the form

Ko= 8lncosh8K„+ —,
' lncosh4K + ln2,

K,', = K,'„=—,' ln cosh8K„,

K4 =—,' ln cosh8K„- —,
' ln cosh4K„.
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A
(25)

0.2

ts Iti
0.1-

Knn

I

0.1

(3S)

Knn

(2S)

0.3

K nnn

%'hen K,", is sufficiently close to K,'„ the trajectory
approaches (3) arbitrarily closely. There is no
value of K,", for which the trajectory goes to (Ss).

The position of fixed point (3s) in the space of
coupling constants is a slowly varying function of

p, In this respect (3) is strikingly different. Be-
low the value p =P, = 0. 741 (3) does not exist at all.
(Ss) is the only critical fixed point, and the eigen-
vector shown as Eq. (3) is irrelevant, so that (Ss)
has the topology expected for the exact Ising fixed
point. At p = p~ the eigenvector becomes marginal
(1=1), and bifurcation occurs at (Ss). As P is
further increased, the marginal eigenvector be-
comes relevant, and (3) moves away from (Ss) in

the direction of the new relevant vector.
The largest nontrivial eigenvalue with even spin

symmetry X~, the next largest Xz (the eigenvalue
which is marginal at P~), and the largest eigenval-
ue with odd spin symmetry X~, are shown as a
function of p for both critical fixed points in Fig.
2. The critical exponents 2 —n and 5 are related
to X; and X~, by the formulas

ik g372-' X)(3}

-0.12 —0.04 0.00 QQi, 0.08

Kf,

3.68-

FIG. 1. Trajectories generated by the LBBT with and
without an initial decimation from an initial Hamiltonian
only containing nearest-neighbor interactions. The pro-
jections of the trajectories onto the planes K4=0 andK„~
= 0 are shown. For the dark and light circles K~'„=K„'~
+0.001, respectively. The arrows through the fixed
points denote the directions of relevant eigenvectors.
The exact value of K,'„ is G. 220.

exact
3.66-

2.2-

exQct

g t (3S3

After the decimation transformation they repeated-
ly apply the LBRT. Following this procedure one
finds (see Fig. 1) a critical value K„of the initial
nearest-neighbor coupling constant K,",with the
following properties: For 0 (&,',"&&,', the trajec-
tory goes to fixed point (ls) (high-temperature
fixed point), and for K~& K,', the trajectory goes to
(Ss) (low-temperature fixed point). If K,", is suffi-
ciently close to K', the trajectory approaches (Ss)
arbitrarily closely before veering off to (ls) or
(Ss). The initial decimation transformation is ab-
solutely essential for reaching (Ss) since the criti-
cal line along which (Ss) can be approached lies in
the E„=E,» subspace.

If the LBRT is repeatedly applied to a starting
Hamiltonian containing only nearest-neighbor in-
teractions without first performing a decimation,
one finds (see Fig. 1) that for 0&if'"&K' the tra-
jectories always go to (1) and for If'"&It ' to (Ss).

~2 (3Sj

t. Q-

0.72 0.76 0.80

FIG. 2. Largest nontrivial eigenvalue with even spin
symmetry) f, the next largest &2, and the largest
eigenvalue with odd spin symn;etry A't, of fixed points
(Ss) and (3) as a function of p. (3) exists only for p& p»
=0.741. At P =p&, &2~=1. The arrows on the X axis
marked "exact" denote the Onsager values for X q~ and & j.
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2 —a = ln4/in', ',
V = in~', /ln(4/q) .

Some results for the critical value of the nearest-
neighbor coupling are shown in Table IV. Two
methods of choosing the optimum value of p were
considered. One method, already discussed, is to
use the p which maximizes the free energy of the
fixed-point Hamiltonian, i. e. , g~(K*(p*)}= 0.
The second method is to use the value p which
maximizes the free energy of the starting Hamil-
tonian containing only the critical nearest-neighbor
coupling constant, i.e. , g&t(If'(pt)) = 0. The pro-
cedure of Refs. 1 and 2, a decimation followed by

the LBRT, gives the best results. If the LBRT is
used without an initial decimation, p~ = 0. 730.
Since p &p, =0.741, for p=p (Ss) is the only crit-
ical fixed point and has only one relevant vector in

K„, K,~, and K4 space.

IV. CONCLUSIONS

The difficulty one encounters in trying to cal-
culate a critical surface with the LBRT may be
summarized as follows: Kadanoff's fixed point,
which yields critical exponents for d=2, 3, 4
amazingly close to the exact values, can only be
approached from a critical line in the subspace
K~=K», . To calculate a critical surface for the
fixed point, an initial transformation must be per-
formed to enter the subspace. For an initial Ham-
iltonian containing nearest-neighbor interactions
only, an exact decimation transformation is avail-

able, but for arbitrary values of the initial cou-
pling constants a different transformation is
needed. There is another fixed point outside the
subspace K„=K„,which can be reached from a
critical surface via the LBRT, but its critical ex-
ponents are not nearly so close to the exact values
as those of Kadanoff's fixed point.

It should be emphasized that the calculation of
a realistic critical surface is quite a severe test
for an approximate recursion relation. The stan-
dard critical exponents are solely determined by
the largest nontrivial eigenvalues with even and

odd spin symmetry of the transformation linearized
at the fixed point. Additional information must be
accurately produced to furnish a faithful picture of
the critical surface as well. In an approximation
in which an infinite set of coupling constants is re-
placed by three, it is not surprising that some
features of the exact solution are lost.

The difficulty one encounters in trying to calcu-
late a critical surface with the LBRT is closely
connected with the special role of the symmetric
subspace K„=K„,in the transformation. A desir-
able goal in improving the LBRT would be to elim-
inate this special role in as far as it is an unphys-

ical artifact of the approximation and to incorpor-
ate those exact symmetries of the Ising free energy
(such as invariance under If'„--K„)which are
not preserved by the LBRT in its simplest form.
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Hamiltonian containing only nearest-neighbor couplings
with K»& 0 approach). For larger values of P at least
two additional unstable fixed points exist.


