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Bloch and Neel disclination lines in a small-anisotroyy ferromagnet
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Bloch and Neel lines are, from a topological point of view, disclinations in a spin lattice. They are described

in a small-anisotropy ferromagnet (I( & 2m M s) for two different situations. First one considers Bloch lines at
the limit of vanishing anisotropy: A complete calculation shows that cross and circular Bloch lines have no
core singularity, which fact decreases exchange energy, and that stray fields control the size of cross Bloch
lines, while magnetostriction controls the size of circular Bloch lines. Second one considers Neel lines in a
situation inspired by recent experimental results on amorphous ferromagnets. Here it is shown that the
interactions between lines, whose size is controlled by the existence of a small anisotropy, are mainly due to
stray-field effects and magnetostriction efFects. Topologically Bloch lines are wedge disclinations and Neel lines

are twist disclinations. The importance of magnetostriction is emphasized throughout the article and original

methods are given in an Appendix to calculate the internal magnetostrictive stresses due to singularities.

Although the theoretical results do not coincide fully with the experimental ones, especially because a strictly
two-dimensional calculation is used, we are confident that the analysis is true in the main. Qualitatively, this

analysis difFers drastically from the case K p 2m M s.

I. INTRODUCTION

Up to now, singularities in ferromagnets have
been studied mostly in the two following very dif-
ferent situations:

(a) Bloch lines on Neel walls in very thin films
of low anisotropy (q =K/2xM~2 «1). The config-
urations are dominated by stray-field effects; the
well-known cross-tie walls are characteristic of
such situations. '

(b) Neel lines (commonly called Bloch lines also,
but we prefer to reserve this terminology for the
first situation described above) on 18K Bloch walls
in high-anisotropy uniaxial materials (q =K/2vMq
» 1). This is the typical situation encountered in
"hard bubbles"'; an even number of Neel lines
are disposed periodically on a circular Bloch
wall. This equilibrium is determined by a com-
petition between attractive stray-field effects
(each line is charged) and repulsive exchange ef-
fects (see Fig. 1). Two typical lengths enter into
the physics of this geometry: a Bloch-wall thick-
ness 8 =(A/K)'~', where A is the exchange ener-
gy constant, and the exchange length of stray-
field effects 5~ = (A/2vMz)'~ . Because the stray-
field effects are so small, one gets 5~/5 =q'~'

The exchange effects of a singularity extend
therefore over long distances, which explain their
contribution to the general balance.

It appears today that, although Neel walls and
Bloch lines in low-q materials have been thorough-
ly investigated, it is only in the case of bubbles
in high-q materials that the notion of singularity
has really attracted the attention of magneticians
and that singularities have been studied as such.

In this paper, we plan to study singularities in

the low-3nisotropy limit. It is a remarkable fea-
ture of this limit, which appears clearly when K
is strictly zero, that spontaneous magnetostriction
comes in as an important factor in the general
balance of forces: The spin singularities act as
sources of internal stresses. This is in fact an
extension of a previous work in which we cal-
culated the internal stresses created by simpler
inhomogeneities, viz. , walls" and wall junc-
tions. ' In this article, we calculate them for
line singularities, and show that for q«1 they
contribute in an essential way to the stability of
lines on a wall, since they are not masked by
exchange effects between lines. The details of
the calculation, which are not trivial, are given
in a long Appendix. We consider this Appendix
as an essential part of this paper, although this
paper should be readable without a detailed study
of the Appendix. Another point in this paper is
that we insist on a presentation of singularities
as distinct objects, and as such spin singularities
in ferromagnets are diselinations. In our opinion,

FIG. 1. Arrows indicate the direction of the magneti-
zation in the middl, e of the wall. Neel lines in the cen-
ters of the dotted circles.
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this concept has not yet got the status it deserves
in the fie1.d of magnetism, although some attempts
have been made. ' The main object of this paper
is the specific properties of singularities in low-

q ferromagnets, not with a general description of
singularities in a vector field. However, some
comments of a general nature are necessary, and
we include them in this Introduction.

In any ordered material, the physical descrip-
tion of singularities necessitates the use of two
kinds of concepts. First, the singularities are
related to the geometrical invariance properties
of the material, for example, in a solid crystal
a dislocation is characterized by its Burgers's
vector, equal to a vector of translation of the
point lattice; in a nematic crystal a disclination
is characterized by its rotation vector, whose
direction and magnitude are such that the perfect
nematic crystal is invariant under such a rotation.
We refer to such properties as topological prop-
erties. Second, the energy of singularities must
minimize some thermodynamic function and the
distribution of the quantity which describes the
variation of order [for example, the elastic dis-
placement u(r) around a dislocation in a solid,
or the angle Q(r) the magnetization makes with
a fixed direction are such quantities] must obey
some constitutive laws. Such properties, which

imply some knowledge of the physical interactions
in the material, we call energetic properties.
Calculations resorting to these properties are,
for example, those of line energy, mobilities,
etc. Such a double point of view can be profitable
in the study of ferromagnets. We introduce the
term "spin lattice" by which we mean that there
are some geometrical properties of invariance
in the ground state of a spin system. Let us in-
dicate some important topological and energetic
features of ferromagnets.

Topological properties. On a macroscopic
scale, a ferromagnet is a set of magnetic mo
ments (spins) which can be described by a vec-
torial density M(r) depending continuously (ex-
cept in a reduced number of points) on the posi-
tion. In the ground state, all the spins are par-
allel and pointing in the same directions, which
is a situation reminiscent of the nematic arrange-
ment in liquid crystals, but different anyway,
since in the latter case the director n(r) can point
either way without any variation in the free-energy
density. However, the analogy can be fruitful if
one tries to give a general description of the sin-
gularities capable of occurrence in a spin "lat-
tice."

The symmetries of the lattice are not locally
broken in a smooth variation of the density M(r),
but so they are in the vicinity of a singularity.

Singularities must be limited to small regions.
These requirements constitute the true justifica-
tions of the Volterra process, well known in dis-
location theory, ' by which it is shown that dif-
ferent types of singularitie' correspond to the
different point symmetries (of translation and of
rotation) of the lattice. For an illustration of this
point of view in the case of liquid crystals, see
Ref. 6. In ferromagnets, this leads us to con-
sider Bloch and Neel lines as disclination lines
of strength multiple of + l (the magnetization ro-
tates by an angle multiple of + 2n when one follows
a circuit enclosing the line). Disclinations are
related to rotation symmetries. Lines of strength

are not topologically allowed since rotation
symmetries by an angle of n' do not exist for M

(they exist for the director n in a nematic). Point
singularities, which we shall not mention any more
in this article, can also exist in ferromagnets, as
they exist in nematics; their topological properties
have been recently studied by Nabarro. ' It is
worth mentioning that the spin lattice of ferro-
magnets is invariant in any translation of the
spins ~ Therefore, dislocations of translation of
not quantized Burgers's vectors are allowed in this
lattice, but, if such a dislocation of Burgers's
vector b happens to exist, it can relax to b = 0 by
emitting permitted dislocations of infinitesimal
Burgers's vectors db (except if some defect of
the crystal lattice is able to pin it). The same
situation is already known to hold in nematics, '
where dislocations of translation are viscously
relaxed to zero.

Let us finally note that, in the language of dis-
clinations, Bloch lines on Neel walls are uedge
disclinations, which means that the rotation vec-
tor characteristic of the singularity is along the
line; Neel lines on Bloch walls are twist disclina-
tions, which means that the rotation vector de-
fining the singularity is perpendicular to the line.

Energetic pxopexti es. They can differ widely
for different media having the same symmetries,
and consequently the same topological objects
(in the sense indicated above) will demonstrate
different physical properties in these different
media. For example, because of the existence of
an anisotropic coupling to the atomic lattice, spin
configurations in a ferromagnet are characterized
by Weiss domains and Bloch (or Neel) walls, and
the singular lines are confined to stay in these
walls. Ferromagnets with vanishing anisotropy
K (amorphous ferromagnets with no long-range
internal stresses) allow a more direct comparison
between lines in ferromagnets and nematics. Even
in that case, stray-field or magnetostriction ef-
fects might be the dominating terms in the ob-
served configurations. There is nothing com-
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parable in nematics.
The first part of this paper (Sec. II} is devoted

to isol.ated wedge lines in an amorphous ferro-
magnet. In the second part (Sec. III), we shall
consider the situation where q =K/AM& is small
compared to 1 and show that the balance between
twist lines, in a particular geometry, is obtained
through a competition between stray-field effects
and magnetostriction effects. Most of the results
we obtain are conjectural, but the model we
shall use for Neel lines on Bloch walls is inspired
by a recent experimental work on amorphous fer-
romagnets. ' In this article, our main intention is
not to explain the model used in this recent work,
but to use it as a starting point in order to develop
considerations specific to low-q ferromagnets.
As was already indicated, we shall insist on mag-
netostriction effects.

II'

where M =My n'Fg~ 1s minimized by

where I. is a position-dependent Lagrangian multi-
plier taking into account the constraint n2 = 1. If
Q is the angle made by M (M„,M„, 0) with a con-
stant direction in the x, y plane, and 8 an azimuthal
angle in this plane, one gets as singular solutions

(I) =$(9+$0, 8 =+ I, + 2, etc.

a formula already obtained for nematics. ' For
8 = 1, (I)o =0 corresponds to the radial Bloch line
and $0=&m to the circular Bloch line. The line
tension ls given by

II. %/EDGE LINES IN AN AMORPHOUS FERROMAGNET

Spin disclinations in ferromagnets are attended,
at very small distances, by very large variations
in exchange energy. Even in the case KW0, it is
conce1vable that, 1n the core reg1on 1tself, the
major contribution comes from exchange energy
and that stray-field effects come afterwards, as
first-order perturbation terms.

Consider a straight wedge disclination, i.e., a
line such that M rotates by an angl, e + AS about
the axis of the line when moving along a. circuit
enclosing the line. The main topological possibil-
ities correspond 'to (see Fig. 2): S =+ I: the
circular Bloch line, the radial Bloch line, the
spiraling Bloch line; S = —1: the cross Bloch
line.

Qther possibilities wi. ll not be considered here.
%e discuss successively for these cases the ex-
change magnetostatic and Inagnetoelastic energies,
as the main contributions to their energy.

e e e j

or

a}

o

l

ro

b)

where yo is an outer length (ro is, according to the
case, a wall width, a distance between neighboring
lines, etc.) and a is a lattice parameter. W, is a core
energy, necessary because the distribution (3)
is singular for x =0.

The line tension (4) is large and another solution,
taking into account the possibility for M to have
a, nonvanishing M, component (cf. a similar prob-
lem for nematics'0") enables us to decrease it
drastically, allowing even the singularity to dis-
appear, if one imposes M„=M, =0 for r =0 (see
Fig. 3). One gets, assuming M, =0 at a distance
x =so, and cylindrical symmetry,

A. Exchange energy

Let us first assume that the spins stay in planes
perpendicular to the line and look fox solutions
which minimize exchange energy alone. The ex-

o

(j)

S=+1

FIG. 2. Wedge disel. inations. 8 =+ 1: the circular
Bloch line, the radial Bloeh lines, the spiraling Bloeh
line; 8 =- 1: the cross Bloeh line.

FIG. 3. The solution which minimizes the exchange
energy in a Bloch line: (a)—(c) circular Bloch line; (d)
cross Bloch line; (a) with a singularity on the eox'e (meri-
dian cut); (b) without a singularity on the core (meridian
eut); (c) section perpendicular to the line (no core singu-
larity); (d) section perpencidular to the line (no eoxe
singularity). The nail indicates a tilted axis and the ar-
row' the dixeetion of M. Curved arrows indicate the
lines of force of the projection of M in the plane of
dl awing.
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where g is the angle between M and the z axis.
The line tension therefore reduces to

This quantity is indejendent of xp and does not con-
tain any singular terms. Using a terminology
borrowed from the theory of disclinations, one
would say that the core has split, and that the
splitting occurs in all the volume offered to the
line.

8. Magnetostatic energy

This is a nonlocal term. Let us first note that
one can write (Vn)' Lcf. Eq. (1)] as the sum of a
"splay" term (div n)', a "twist" term (n curl n)',
and a "bend" term (nxcurln):

F,„=A[(div n)'+ (curl n)'] .
In this equation, we have neglected a term which
integrates to a surface term, and therefore does
not contribute to the bulk equilibrium. This de-
composition (and the terminology) are borrowed
from the theory of liquid crystals (see, for ex-
ample, Refs. 9 and 12). As an illustration of this
decomposition, note that the planar circular Bloch
line is divergenceless (no splay term) and twist-
less, and that the planar radial Bloch line con-
tains only splay. A Bloch wall contains only twist.

The splay term corresponds to a magnetic
charge

divM= -p, (8)
and must be avoided as much as possible. This is
the reason why the radial Bloch line 8 =+1 is
forbidden; ln this ease div n ls of a constant sign.
On the other hand, circular Bloch lines are di-
vergenceless. The radius of the circular Bloch
line is therefore defined by a competition between
anisotropy energy and exchange energy, i.e.,
typically is of the order of 5 if Kc0. In an amor-
phous ferromagnet, the radius of a circular Bloch
line depends on surface stray-field effects and
magnetostriet ion.

In contradistinction with the circular Bloch line,
the cross Bloch line (8 = —1) is not divergence-
less, but the total charge is zero. Its radius is
therefore determined by a competition between
bulk magnetic charges (quadrupolar) and exchange.
One can therefore expectr, (S = —1)= 5~ . This latter
relationship obtains by writing a balance equation
between stray-field energy (- 2wM& per unit vol-
ume) and exchange energy. Some published cal-
culations on isolated Bloch lines" " reach com-
parable conclusions.

p~ ik1~l j, k y (9)

where e,';(r) are the symmetric local magneto
strictive distortions; they would be the only dis-
tortions present if M were uniform. In a cubic
ferromagnet, they read

p~» = a 1ppS

p 3
~12 &~»1~1~2 N

(10)

where X,«and A. », are the dimensionless coef-
ficients of magnetostriction.

One realizes immediately, consulting Eq. (9),
that the important sources of internal stresses
are those regions where M varies rapidly or is
singular, i.e., walls, "wall junctions, ' dis-
clinations, and singul3r points. This last object
will not be considered here.

Let us first consider a planar circular Bloch
line. In cylindrical coordinates, the associated
dislocation densities are

o.,e = —(2/2r)x~,

where Xs is an isotropic constant of magneto-
striction. e,~ can be interpreted as a density of
tilt walls terminating on the line (see Fig. 4) and
giving rise to an over-all elastic wedge disclina-
)iopg of rotation vector

Q~ = a3~rd6 = —3m'. s .
~'

(12)

The reader is referred to Ref. 15 for a description

FIG. 4. Stresses due to a circular Bloch wall are
those due to a constant density of tilt walls. Here these
tilt wal. ls are represented by edge dislocations.

C. Magnetostriction

We have developed elsewhere the general theory
of internal stresses due to inhomogeneities in the
magnetization distribution. ' One can introduce
fictitious dislocation densities o;, (r), which act
as the sources of these internal stresses, and
are related as follows to the magnetization M
=M, n(r)
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of the elasticity of disclinations in solids.
The stresses due to the densities o.~ are sin-

gu1ar on ~ =0. They are decreased if, once more,
one assumes that M has a nonvanishing M, com-
ponent. In fact, one can introduce a variable Q,(r)

D (~)=s~z, sing-v —8'
my),

dg
3 (13)

which does not represent the whole internal stres-
ses, but their largest sources.

As we do not wish to enter into the details of
the calculation, we only note that these results
indicate that we can estimate the magnetoelastic
energy of a circular Bloch line as the energy of
a disclination Q, (for an upper limit), i.e.,

2 2
&me (14)

(Here and in other places the suffix me stands for
ma.gnetoelastic. ) This quantity is small compared
to 8',„as long as xo does not reach values of the
order of

i.e., 50iL m with 4 = 10 ' dyn, p = 10"dyn/cm',
X~ = 10 6 rad. This calculation assumes K =0. If
the anisotropy does not vanish the problem is
quite different, as we shall see below.

For a planar cross Bloch line in an amorphous
ferromagnet, one gets

o~ =(3/2r)az cos46;

a,„=(3/2~)x, sin48.
(15)

Here, too, these sources of internal stresses are
decreased by letting M escape in the third dimen-
sion. Note that the analysis of the sources defined
by Eq. (14) requires more complex elastic con-
cepts than in the case of the circular Bloch line:
there are no simple elastic disclinations, but for
each value of 8 the densities of Eq. (15) define a
mall of dislocations. The internal stresses they
create are discontinuous on the wall. This wall
is a Somigliana defect. Hence the planar cross
Bloch line appears as the boundary line of a density
of Somigliana defects. However, we shall assume
for the time being that the magnetostrictive line
tension of a cross Bloch line is of the same order
as the value found from Eq. (14). This is certainly
true as long as 5,» 6~, 5& being thetypical dimen-
sion of a cross Bloch line.

This discussion of magnetostriction has assumed
a perfectly cylindrical geometry of the magnet-
ization around the Bloch line. This is not the case
except if K is strictly zero and if there is no
anisotropy of any kind. But cross Bloch lines,
even for K = 0, have a finite dimension 5~, which

where It(x) is the step function [U(x& 0) = 1; U(x& 0)
=0]. o.» and n» vanish outside the wall.

The long-range stresses created by the densities
of Eq. (16) can be calculated in details by a method
we shall use in a subsequent paragraph for a dif-
ferent case. Here we shall content ourselves in
noting that the only densities which are liable to
give rise to important stresses at long distances
are those related to the 5(x) term. We can over-
estimate them by replacing this term by a dis-
location dipole. n» represents a dislocation den-
sity whose Burgers's vector is along x, and whose
direction is along z (edge dislocation). Integrating

0 e e ~

~ ~ ~ 0
0 0

0

~ ~ ~

/Xt

e ~~ ~

FIG. 5. Cross Bloch lines in an amorphous ferromag-
net are dimensionally limited, but circular Bloch lines
are not. Here is pictured a possible situation satisfying
the first requirement. The dashed lines represent the
"wall" boundaries.

leads us to think that such objects are necessarily
embedded in regions where the magnetization is
practically uniform. The simplest way of con-
ceiving such a requirement is to reintroduce walls,
at least in the vicinity of cross Bloch lines (Fig. 5).

In other words, as regards magnetostriction,
the dislocation densities introduced above are
limited to finite regions and are, moreover,
screened at the wall boundaries by opposite densities
They are, therefore, very little effective, except
inside the lines. Pursuing the analysis, we are
led to distinguish these internal effects, which we
know are weak anyway because of the core split-
ting, from long-range stresses; for their evalua-
tion we can simplify the geometry as follows: %e
consider a wall of thickness 2d (Fig. 6) and a
region of vanishing thickness inside the wall, on
which the magnetization changes abruptly; this
represents, in place of the Bloch line, a small
Bloch wall perpendicular to the mall. The lines
of force of M are assumed circular. One gets
in the axes drawn in Fig. 6

37 .

PTER

a, =—Xz sin —-z Xz sin —5(x),4d d d

37k
o.„=—X, cos —[V(x) -V(-x)],
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a3i in the range 0& y& d, one gets for the Burgers's
vector

f(d/v)X, .
Assuming d - 10 ' cm, A,s - 10 ', one gets 5- 10 '

cm, i.e., a value typically ten times smaller than
a crystal dislocation Burgers's vector. But note
also that d, which is small for a cross Bloch line
(d =5~), can be very large for a circular Bloch
line. The line tension, using Nabarro's formula
for a dipole, "amounts to

32@'~ 1 -v 3 As

The stresses decrease with distance like r . Suc-
cessive Bloch lines along a Neel wall act as dipoles
of alternating signs.

Consider, therefore, a wall, as depicted in Fig.
5, and assume that K=O. The relevant energy
terms al e:

(i) from the cross Bloch lines: 2'/L per unit
length of wall. The factor 2 takes into account the
fact that the cross Bloch line is charged; we as-
sume that there is an equal contribution to the total
energy from exchange (vA/L) than from stray
fields. The magnetostriction term is negligible
since 5s is so small;

(ii) from the circular Bloch line:

mA. 9p, dXs 4 r
L 32'' (1 v)L 3 X~-

where d is the radius of the line;
(iii) from the triangular regions between the

lines, where we have exchange energy and mag-
netostatic energy. Using a dimensional analysis,
one gets e(A/d) +(iMz L, where o. and 3 are nu-
merical coefficients.

When minimizing the total energy (in an approxi-
mate way), one finds that the presence of the mag-
netostrictive term determines the dimension of
the circular Bloch line (d 5me), while the presence
of the magnetic poles in the triangular regions
leads to a value of J. the smallest possible. Hence
the lines 8 =+ 1 and 8 = - 1 must be in close con-
tact. A more precise discussion would be worth-
while, in which a two-dimensional array of lines

should be introduced, and its stability discussed.
But in summary we can conclude that, for K =0,

while the width of a Bloch line is controlled by
stray fields, the width of a circular Bloch line is
controlled by magnetostriction.

For K+0, the argument has to be modified. For
in this latter case a third length occurs intheprob-
lem, which is the wall thickness 5 . It seems
probable that two cases now occur, whether the
value of the dimensionless parameter P =5'//5',
=gXz/K is smaller or larger than unity.

P&1. The wall thickness is large. One is led
to the conclusion that magnetostriction will con-
trol the size of circular Bloch lines, as in the
situation already described.

P& 1. The wall thickness is small, and the typ-
ical configuration is in the form of cross-tie
walls, where the size of circular Bloch lines is
of the order of 5„. The size of cross Bloch lines
is still of the order of 5s.

III. TWIST LINES IN A SMALL-ANISOTROPY
FERROMAGNET

In this section we intend to show that twist-line
stability (Neet lines on Bloch walls) depends es-
sentially on a competition between magnetostrict-
ive and stray-field effects in low-q materials.
First we recall some general features of the top-
ology of twist lines. Then we discuss the pos-
sible occurrence of twist lines in low-q materials
with regard to the experimental work of Puchalska
and Sadoc. ' Finally we calculate the exchange,
magnetostrictive, and stray-field effects in a
geometry of zig-zag walls with twist lines at the
tips of the zig-zag.

A. Topology of twist lines

This topology has been described in details by
Nabarro' and we just recall the two most impor-
tant situations encountered in 180' Bloch walls.

(i) Twist line perpendicular to the direction of
M in the adjacent domains (Fig. 7). As indicated
by Rault, '~ this model is not devoid of twist
(n curine 0), but largely avoids the effects of
splay: two small zones are not divergenceless

ooeoo o o 6
IC

I"IG. 6. Model of the circular Bloch line used to cal-
culate the long-range stresses it creates.

I"IG. 7. Neel (heist) line. The spin rotation is right
handed in the left part of the figure, and left handed
in the right part (nail convention).
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(divnx0) but are of opposite signs; the line acts
as a, magnetic dipole. There is no singularity on

M here. This Bloch line is well known in platelets
with parallel anisotropy.

(ii) Twist line parallel to the direction of M in
the adjacent domains (Fig. 8). The deformation
is essentially bendlike (n„curl nc 0). The mag-
netostatic effects are strong, since the charges
on the segmentgg are all of the same sign.
Nevertheless, this situation is very frequently
encountered in high-q materials (q & 1) when the
axis of anisotropy is perpendicular to the speci-
men; recently, such lines have even been seen in
low- q materials. '

There is no singularity anywhere on the line, and
the geometry is symmetric with respect to AB.
This symmetry is conserved if one tilts the walls
with respect to a direction perpendicular to A. B
(Fig. 9}. This is the geometry we shall study in

the remainder of this article, assuming that such
lines appear periodically along parallel zig-zag
walls (Fig. 10).

8. Important comments on the geometry of Fig. 10 in love-q

materials

The geometry of Fig. 10 has been inferred from
Hitter experiments' on Co-P amorphous electro-
deposited platelets. The thicknesses T of the
platelets range form 12 p. to 38 (Ljm, the period-
icity of the zlg zags from $2 jJ, m to 8 4 p,m

the angle 00 from 50'to Vo; and the distance
D between parallel walls from 5 to 13 p. m. The
material possesses a small uniaxial anisotropy (K
-1.7@10' erg/cm') giving an easy axis perpendi-
cular to the plate thickness. The saturation
magnetization'& is of the order of 700 6, and
the exchange constant 4 -0.4&& 10 ' erg/cm.
These values are from Ref. 18. They lead to q
= K/2zM~ - 0.03.

Uniaxial materials with perpendicular easy axis
are well known to display striped domains. Few
theoretical efforts have been made in order to
understand stripes ln high- g materials ' i.e.

()
~Op 0

oe Qe

8 i~ ~8
I p e4I I

(b) IF
g

e~
8

+ 8
Qe

%8
eN

0
8

FIG. 9. Same as ln Fig. 8, 13ut tilted alongA8 . Fig.
9(b) corresponds to a more favorable situation than Pig.
9(a), because of a smaller exchange energy.

materials for which the demagnetizing effects
due to the stray fields at the surface are so small
that it is possible to assume that M(x, y ) does not
depend on the z coordinate. In such a case striped
domains appear at any thickness. Under an ap-
plied perpendicular field, they transform to bubble
domains. The stripes repeat distance 29 is ap-
proximated (for large q) by

More work has been done when q is small. In
such a case, it is clear that the stable situation
at vanishing thicknesses is M lying "in the plane. '*

It is only above a critical thickness T, that striped
domains can Bppear. According to Murayama, "

B
QGGG 068080880$GG 6 0

FIG. 8. Neel. (twist) line. The spin rotation is right
handed in the left part of the figure, and left handed in
the right part.

PIG. 10. Direction of the magnetization in the middle
of the wall is figured out. See text for other comments.
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this critical thickness is of the order of the wall
thickness

7, =2v(A/K)"' (20)

while the critical repeat distance 20, is given by

D -T (21)

For T & T, , in Murayama's model, the repeat dis-
tance increases with T according to the law

O =T''"(v'A/AM', )'", (22)

which differs from Eq. (19) by a renormalizing
factor q '".

Murayama's calculation takes into account the
possibility for M to depend on z. In fact, his
method includes the well-known p, * correction of
Williams et al."and puts into evidence the even-
tual existence of flux-closure configurations inside
each stripe. An experimental illustration of this
property of flux closure can be found in Ref. 22

(iron single-crystal thin foils).
These flux-closure zones, which are not in the

form of closure domains, or this p. * correction
take place in the vicinity of the surface, in a thick-
ness typically of the order of 5&." In the inner
zone the magnetization fluctuates with a maximum
amplitude $,(T) depending on the thickness. For
large thickness (i.e., la. rge compared to T,), lg
reaches practically the easy-axis direction, and
the stripes turn to true domains spearated by
walls"; in fact, this asymptotic behavior of stripes
also appears on Eq. (22), which is the equation
obtained by Kittel" for the flux-closure pattern
containing true closure domains in low-q materi-
als. This result is not suprising. Note also that
Eq. (22) does not seem to be violated by the ex-
perimental results of Puchalska and Sadoc. ' This
comment cannot be made more specific because
of the necessary impreciseness of these measure-
ments, as well as the large possible fluctuations
on the physical constants involved.

In conclusion, the treatment of the magnetic
pattern of Fig. 10 can be done (qualitatively but
not quantitatively; some quantitative features
would have to be reconsidered, if for example
there are some true closure domains and if the
walls are oblique to the plane) with the assumption
that M does not depend on z, but the discussion
we have done implies much more. The relation-
ship between D and T is given by Eq. (22), which
does not take into account the existence of a zig-
zag shape of the walls, as well as a fine distri-
bution of M inside the walls. This seems reason-
able indeed.

(a) Any fluctuation of the surface magnetic free
poles involving a periodicity along the stripes
does not couple magnetostatically with the stripes

(see Appendix A). Hence, the periodicity of the
zig-zag is independent of D.

(b) The zig-zag depends, therefore, on the dis-
tribution of the magnetic poles in the walls and in
a strip of amplitude &S tan0„and on exchange and
magnetoelastic terms related to the inhomogenei-
ties of M in the walls. The magnetoelastic terms
linked to the layer of thickness 5s on the surfaces
are small compared to those in the walls, because
5s is so small in low-q materials.

(c) As regards the magnetic poles (see Fig. 11),
the contributions due to the regions outside the
wall and those due to the singularities at the apexes
of the zig-zag are of very different orders of mag-
nitude.

The poles in the triangles of surface &S'tan0,
(see Fig. 11) are spread with a density of the order
of qM (p* correction). Along the Neel lines the
total charge is (8dM/m)T, where d is half the wall
width and T the thickness of the sample. Let us
compare these two contributions. One gets

tan0
0'~ 32 dT

(22)

This is of the order of q tan0, if one uses the ex-
perimental values and is therefore small ~

In other words, the only poles contributing to
the general equilibrium of the zig-zag come from
the Bloch lines. We study in the next subsections
the different contibutions to the zig-zag pattern.

C. Exchange energy and exchange interactions

According to the argument developed for the
case of wedge lines, the exchange line tension is
of the order of nA. There is no core energy.

A typical dimension of the line is still 5&. Now

6&«5„, since q is so small. Therefore, exchange
interactions between lines are small. It is likely
that Fig. 9(b) is more favorable than Fig. 9(a)
from the point of view of exchange energy. Hence
in Fig. 10 one has assumed the strengths of suc-
cessive lines are equal in sign (compare with

Fig. 1). But the relative signs of the successive
lines on a wall are irrelevant in the general sta-
bility of the pattern. The total contribution of
the exchange energy is, per unit length of wall
along the x axis,

li exch = 271 A /S ~

where S is the distance between lines (Fig. 10).

S/ &an8

)
2

FIG. 11. Magnetic free poles contributing to the zig
zag shape.
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%e shall not use S any more as a symbol indi-
cating the s rength of a line (see Sec. II) so there
should be no confusion.

D. Magnetostriction

Exchange energy playing no role in the stability,
one has to look to magnetostriction. Appendix 8
is devoted to a complete calculation of this term
for one zig-zag tip, i.e., a dihedron with infinite
half-planes. The complete zig-zag is the sum of
such dihedra alternating in signs (see Fig. 12,
from which it is apparent that the extra half-
walls cancel) .

In Appendix 8, one shows that the quasidisloca-
tion densities attached to the zig-zag wall divide
in two parts: a part which is a density spread
along the walls and a part which is an edge dis-
location localized along the Neel line, of Burgers's
vector 5- —(3/2v)X~d sin80 [Eq. (B15)]. The zig-
zag pattern is defined by two independent vari-
ables: the repeat distance S and the angle 80, let
us say. A virtual displacement of 8, (at S con-
stant) corresponds to the work of a virtual force
along y, to which the most important contribution
comes from the tips of the zig-zag. This force
can be estimated by the Peach-Koehler formula"
for the edge dislocation localized along the Neel
line. The virtual displacement at 80 constant is
taken into account by minimizing the total energy
with respect to S.

%'e need

Pi A.s d . singSln80

[see Eq. (B9)] for insertion in the Peach-Koehler
formula [Eq. (B16)]. We want to calculate this ex-
pression in point 4 (see Fig. 12), i.e., for x = (},

y =-,'S tan80. The only dihedra contributing are
localized along the rom at y = -+S tan80. %e get

sing S 1
2 ' [-,'S + (n —1)S]'+-,'S2 tan'8,

=—tan80

FIG. 12. Dihedra of infinite half-planes alternating in
signs constitute the true magnetoelastic zig zag.

pared to the amplitude of the zig-zag. This cal-
culation, mhich is not reported here, gives the
foHowing order of magnffgde (per unit length of
wall along the x axis):

8'mc ——p, As —T sin 8 +-
S 0 S2 cos'8 (26)

The first term arises from the terms in I/r [see
(B9}]and the second from the terms in r ' [see
(B9}].

the sign is such that the force is attractive.
The calculation is done in Appendix C. One

finds [Eq. (11}]

E. Stray-field energy

%e first calculate the potential V of the magnetic
free poles in' (see Fig. 12), assuming that all
the magnetic free poles in the different Neel lines
are concentrated at points, mith charges e
= + (6d/v)MzT, where d isthewallthickness. The
stray-field interaction energy is therefore TV& =e ~
per line, and the configurational force exerted on
a line by the stray fields of the others is

=—tanh —tan 8
2S

(24) 64 dF = ——— M&T' exp(-2vtan8 ).
v S ' (tan8 )~~2

The summation of this series is classical; use,
for example, the 1' -function properties (Ref. 2V,

p. 264).
The Peach-Koehler force F „' in A. is equal, for

the line of length T, to

F, ' =
4& g Xz 4 (T /S ) sin 8O tanh(-,' v tan80) .

This term is repulsive.
The energy of magnetostriction of a wall can be

calculated from the e„(r). It is reasonable to as-
sume that parallel zig-zag walls do not interact;
this is because the periodicity D is large com-

(2V)

F. Balance of the different contributions

Apart from the contributions which have been
calculated, one has to add the wall energy, mhich
reads

per unit length of mall along x. 8' contributes to
the configurational force along the Neel line. %e
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evidently have

F, = —2(AK)'~' Tsin8, .

The balance of the configurational forces reads

These contributions are of different orders of
magnitude a priori, according to the experimental
values of M&, p, , Az, A, and K. I et us note that
F„and F, are of the same sign. The presence of
the magnetostrictive term F, " is therefore neces-
sary in order to obtain an equilibrium. But its
numerical coefficient is small compared to F,
and F~:

—g(8, ) —2x10 ' —g(8,),
'E, ' 9 px& A &,d
F'- =4(AK) KS"" " "'S-""

This imposes necessarily g(8o) large 1.e. 80
large, as well as S/'T. This is possible, since
making tan(9, large reduces F, by a large factor.
But a similar argument cannot be used for the
competition between F, '

and F, . We are there-
fore led to the necessary following conclusions:

(a) The role of magnetostriction is compulsory:
This is the only term which is repulsive. Ex-
change interaction between Neel lines could also
be repulsive, but small because of q«1. The
only possibly repulsive term which has been neg-
lected is that one due to magnetic free poles in
the triangular regions, but it must be small too.
If these structures exist in strictly zero mag-
netostriction material, their equilibrium would
involve this magnetostatic effect, neglected here.

(b) The wall surface tension is certainly over-
estimated in Eq. (28) if one chooses for K the
experimental value of Ref. 18. This would lead
indeed to a value of S- 10 ' d, which is too small
by three orders of magnitude. But note that there
are large fluctuations in the measurements of K
done on electrodeposited platelets, attended by
large fluctuations in the measurements of M&."
Also it is possible that the wal1. 8 are not truly
180' walls, but that M oscillate on a smaller angu-
lar range, as in ordinary striped domains. This
point needs further experimental and theoretical
research, but at the moment internal consistency
of the theory we present leads to drop F, in Eq.
(29), as if K =0 as in a true amorphous material.
In such a case the only contribution to the wall
tension would come from magnetostriction [Eq.
(26) I:

Fig. 40 is not the only one compatible with the
observations; the existence of a zig-zag does not
mean that there is necessarily a Neel line at the
tip. If such a Neel line does not exist, the sense
of rotation of the spins on both sides of the tip is
the same and there are no magnetic poles. The
stray-field effect disappears completely. But
even if there is no Neel line, the magnetostrictive
terms, etc. , are practically of the same order of
magnitude" as when the Neel line exists for large
value of 90. They, however, have to vanish for
6), =0. Now R bRIRnce 18 possible between mag-
netostrictive terms of different signs [repulsive:
Eq. (25); attractive: Eq. (30)], if K =0. But it
is clear a prior that such an equilibrium cannot
be stable against a general flattening of the wall.
Hence we are led to reject this model, and to at-
tribute the stability of the geometry to the pres-
ence of the Neel lines, through their stray-field
effects.

Let us now consider the solutions of Eq. (29),
assuming K =0. We get approximatively

2.10 '(S/T ) sin'8, tanh(-,' v tan80)

x (tan8, )'~~ exp(2v tan8, ) = 1,
that lsd

S/T-2(for 8, =50')

(experimental value S/T =-,'),
S/T —1O-'(for 8, ='70$,

(experimental value 8 T-10 ') .

Although the variation of S /T is correctly ob-
tained, the orders of magnitude are drastically
different. Here too we can think that it does not
invalidate our main arguments. For small values
of S/T, S and T are both small, and interactions
between the two surfaces and between parallel
wR118 should be tRken into Recount. For 1Rrge
values of S and T, the contributions from the tri-
angular regions have to be taken into account (the
component of M normal to the plate becomes more
important), and screen the mutual magnetostatic
interactions of the Neel lines, which would result
in a decrease of the exponential behavior. We,
therefore, stay confident in this result that the
balance is due to a competition between magneto-
static and magnetostrictive terms. Also, the ex-
perimental results show a large dispersion. "

Finally we have obtained here only one equation
of minimization (that one relative to tan8, ). Vir-
tual variations of 8 lead to the other one.

F~ = —4$ ~g —T tan&0 cos 90+ —
2

(c) The magnetization distribution proposed in

IY. CONCLUSIONS

In this article we have studied two opposite sit-
uations relative to small anisotropy (K/2vM2~«1)
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ferromagnets. In the first one, we assume that
the spin singularities are wedge lines (Bloch lines)
and show that the sizes of such singularities are
controlled by different mechanisms according to
the strength of the singularity for cross Bloch
lines by stray field effects and for circular Bloch
lines by magnetostriction. In the second one, the
spin singularities are twist lines whose mutual
arrangement has been suggested by experimental
results. Here too the theory puts into evidence
the importance of stray-field effects and magneto-
striction effects.

These magnetostriction effects are typical of
small-anisotropy ferromagnets. The geometries
are difficult to calculate because the small aniso-
tropy allows the magnetization to vary in the three
dimensions, in order to decrease as much as pos-
sible stray-field effects. Such thxee -dimensional
variations are well known in striped domains in
which a complete calculation, although at-
tempted, ' '" has never led to a correct fitting
between experiment and theory. In this article we
have not attempted a three-dimensional calculation
and the experimental and theoretical results are
still harder to reconcile; but we are confident that
the main mechanisms we have described are the
correct ones.
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APPENDIX A: PERIODIC SURFACE MAGNETIC POLES

I.et us start from the classical striped domains,
and assume first that each stripe bears constant
magnetic poles, which only change sign from one
stripe to the other (Fig. 13). Note o, the surface
magnetic poles density. According to Maxwell's
equations, the potential 4 obeys the following
relationships:

in the bulk:

(A2)

Hence

(AS)

The magnetostatic energy is given by

W = — oo(x, y)4o(z =0)dxdy .1

Let us now perturb this configuration by adding
a periodic density of magnetic free poles:

(A4)

~o ~ A elhllloP elPQ&
P (A5)

where m and P are integers running from —~ to+ ~.
One keeps the same periodicity along y. Owing to
the linearity of Maxwell's equations, the variation
in potential 64 is readily calculated:

(A6)

where

k ~ =(p'q'+m'q20)'~' .
The total energy reads

(AV)

1 1
W= W, + — (ooE4+4,Ao)dxdy+2 bo 64dxdy .

%e are interested in the interaction energy

W, = — (o064+C, so)dxdy1
2

~ ~t

15 ~ 2 ~ QAAQ
Q'o ~ fP

where the sulIltnatlon g excludes N = 0.
This expression immediately tells us that the in-

teraction energy depends only on those components

V2@ =0

on the surface:

= —250 (A1)

4(z =+0) =4(s = —0) . +a,

Then we have, expanding o(xy) in Fourier series,
and using an index 0 for the configuration of Fig.
13

FIG. 13. Surface distribution of the magnetic free
poIes.
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of Acr which do not fluctuate along x. The others
are completely decoupled. The periodicity of the
fluctuations along x is independent (magnetostati-
cally) from the periodicity of the stripes.

APPENMX B: MAGNETOSTRICTIVE SELF-STRESSES

AND SELF-CURVATURES OF A NEEL LINE

The geometry which is considered is pictured in
Fig. 14(a). Each half-wall is first calculated in its
own axes [Fig. 14(b)], then the distortions and
curvatures obtained are transformated to the axes
xyz linked to the Neel line [Fig. 14(a)]: +8, is the
angle of the wall with the x direction. The direction
of M in the middle of each wall is indicated on the
figure, as well as outside the walls, which are
perfect Bloch walls all over their length and thick-
ness, except along the segment AB. Here the
magnetization abruptly changes direction.

The calculation of the stresses and curvatures
(bend-twist) are made first for a slice of wall of
thickness dy~(measured along Af3), located at P.
This is the reason why we choose the XKZ axes to
be mobile with I'. We use the formulas obtained
by Kleman ' for a half-wall. The results are
afterwards summed over AJ3.

Then, we calculate the energy of the singularity.
In a second part, we calculate the interactions
between Neel lines. All the frames of reference
are right handed.

Distribution of M

For the left half-wall

M~ =Mcose; M~ =Msin6)

8=(&/2d)y~ cos8„——,'& 8«+-,'v.

For the right half-wall (in different XYZ axes)
the same formulas correspond,

positive s direction], we get

ae» = + ~X~ sin28n 8 = —a (8,n 8),

Ae,', = +a(8,68),

n e» = —2A~ cos2846 = —c(6,n, 8) .

Using the notations of Ref. 8, one gets

E3, = —c, Q, =Q2=Q3=0.

ae,', =0, ae,', = ——(1+1np), (H2)

a +Ee, = ——„
Pi% 2'w

where y' and p are polar coordinates in the XPZ
frame of reference [Fig. 14b)] / is for left. One
chooses the determination - ~ & q

' &+ ~.
The nonvanishing bend-twist components are

given by

Xp

Note that because of the vanishing of the Q, , this
slice of wall does not introduce any rotation be-
tween the domains 8 and 8+ 48 which it separates.
The E» distortion is put arbitrarily equal to zero,
which introduces a nonvanishing g,', stress at
infinity. But this can be adjusted afterwards if
necessary. One gets finally (Ref. Sb)

Left half-wall, slice of thickness dy

We first evaluate the quasiplastic stresses
60&,. for this slice, then the strf..sses and curva-
tures (bend-twist) in the axes XY. The only
nonvanishing quasielastic distortions are

e1) =~ A,s cos 6;0 2

0 3e'„=& ~ssine cose;

Then, if we orient the slice along the +y direc-
tion [ according to the "FSRH"(finish start, right
hand) convention of de Witt" for orienting the
singularities, the line is here oriented along the

FIG. 14. Geometry of a spin singularity at a wall
junction. Fixed (x,y} and mobile axes (x&, y& }.
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bK'„= —(c/2wp} cosy', bK,', = —(c/2wp) siny'

(B2)

bK,', =+(a/2wp) cosy', bK2, =+(a/2wp) siny'

d(b(u', ) =K,'; dl{', .

Now the same quantities in the fixed axes xyz
read (we drop the superscript +):

be» = —(a/2w) cosg, [y'cosgo —(1+lnp) singo],

be, 2
= —(a/2w) sing)y' sin8, +(1+lnp) cosg, ],

be» = —(a/4w)[+y' sin28, + (1+lnp) cos29,],
(B4)

be„= —(c/2w)[y' cosg, ——,'(1+lnp) sing, ],

be» = (c/2w)[-y' sing, ——,
' (1+lnp) cosg, ],

be» = + (a/2w) y
' .

bK„= —(c/2wp)cos8, cos(y' +8,),

bK„= -(c/2wp) sin8, cos(y'+8, ),

bK» = + (a/2wp) cos(y' + 6,),

bK» = —(c/2wp) cos6, sin(y' + 6,),

bK» = —(c/2wp) sing, sin(y' +6,),

aK„=+ (a/2w p) sin(y' + 6,),

(B5)

ddC3, =bA32 =AK33 =0 .

Right half-wall, slice of thickness dy

Similarly to the left half-wall, we first obtain
the e',&. The slice is oriented along Y. One ob-
tains the right half-wall by simply rotating the
left half-wall and changing signs.

be'„= —wow sin2&b &=+a(8, bg),

be'„= -a(6, b 8),

beo„=+2hw cos28 bg =+c(6, bg} .

One therefore gets

EI I + ~33

They are such that, by definition, the variation
d(b&o'&) of curvature of the lattice between two
points g; and g; +dy& is given by

Going now to the fixed axes xyz, one gets, with
obvious changes of notation:

be» = (a /2w) cosg,[+y"cosg, + (1+lnp) sing, ],

&e» =+(a /2w) sing, [+y" sin8, —(1+lnp) cosg, ],

be„= (a/4w)[- y" sin28, +(1+lnp) cos28,],
(B6)

be„= (c/2w)[- y" cos6, ——,
' (1+lnp) sing, ],

be» = (c/2w)[+y'sin&, —
~ (1+lnp) cos&0],

be„= —(a/2w)y" .

bK» =+(c/2wp) cosg, cos(y" —8,),
bK» = —(c/2wp) sing, cos(y" —9,),
&K» =+ (a/2wp) cosg, cos(y" —9,),
bK» =+(c/2wp) cosg, sin(y"- 8,),
bK» = —(c/2wp) sing, sin(y" —8,},
bK» =+(a/2wp) sin(y' —8,) .

Distortions of the singularity

They read, for each slice 40, corresponding
O„a given point P:

be„=(a/2w)[(1 +lnp) sin26, +(y' —y') cos'6,],

&e» = —(a/2w)[ (1 + lnp) s in2 6, —(y" —y' ) sin'6, ],
be» = —(a/4w)(y' + y') sin28, ,

be„= (c/2w)(—y' + y") cosg, ,

be» = (c/2w) [(y"—y') sing, —(1+lnp) cosg,],
be„= (a/2w)(y' - y') .

Let us now introduce the polar angle y' in the
axes x'Y'z' with origin P parallel to the fixed
axes xyz with origin 0. The quantities
p' —p", P'+p" express simply as functions of
p' and H„modulo constant angles depending on
the various determinations of y'. But fa, Jc
sum up to zero when integrated on the wall
thickness. Therefore in the final results these
constant angles do not appear, and we may write,
without caution



3104 M. KLE MAN

p'+ f" = 2g',

We therefore have M(x, y)

sin28,
11 ~ 22 11r 3327

sin280, cos 6,
m

0
13

7T
r

0 Cyr

COSP0
e23 = — C lnpr

mhere a and c are the differential forms defined in
Eq. (Bl).

The evaluation of these equations can be done as
folloms: In the complex plane xyz let us introduce
the complex number pe'" (Fig. 15}. One has

aV'
pe = g —z~

= ~ —
'&SAN

gg
28, ——cos 80m

m cos8,

where z is the affix of M(x, y).

The integrals me need are simply related to the
integrals

FIG. 15. Fixed (x,y} and mobile axes (x', y'} along
the junction AB of Fig. 14.

~~sd sing
2 cos80 r

3A.sd2 Sin2P
2m cos'8,

3A,s d cos2+
clnp =—

2'F cos 80

where y and V are the polar coordinates of M(x, y)
in the axes xyz. Finally me get the folloming ex-
pressions of the distortions due to the Noel line

(lnp+icp') cos26d8,
3 ~sd . sin%SI80
2 w r

K = (lnp +it'p'} sin28d8. 22 11

Writing V = {iw/d) cos8, z, x = 28, one gets

+P
J'= — ln(x+ V) cosxdx,

2

+lf

K= — ln(x+ V)sinxdx .~ lf

We integrate by parts

e„=O,
3 . Cos@= ——A dsln8
4~ '
3~s sin2V

2m'
1

cos 80

3A.sd~ 1 cos29'
e =+

4P cos80 'Y

(B9)

I S lIlX

2 -& x+V

V+m I ' cosxdxE= 2ln +—
V —r 2 -& x+V

and look for the long-range stresses (( V(»x).
One therefore gets 4-x/V'; K-w/V, i.e. ,

3~sd cosy .
2 cos80

For 8, = 0 (straight wall), "the dominating terms
are of the same nature than those due to a "dipole"
of dislocations. This is very similar to the result
obtained for a Bloch line (see main text) but the
dipole dislocations are of a different nature than
for the Bloch line (see below). For the Noel line,
a dislocation term appears as soon as 801 0, but
at the same time the dipolar term increases and
becomes catastrophic for 8, = —2'm; a double mall
[Fig. 16(a)J with a Noel line at its tip is unstable
versus magnetostriction. A process of bulging
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Bend-twist curvatures of the singularity

They read, for each slice

nlrb» = —c/wp cos6, cosp',

nK» ———c/wp cos6, sing'

All the other curvatures vanish.
We need to calculate J (c/p) cosp', 1 (cjp) sing'.

These integrals are related, as its real and
imaginary parts, to the complex integral fe/(a ae)-,
which can be calculated from

dJ cos26
d

2im cos6),
dg pg'

From these expressions, one gets

d' 1-2 eos2@cosg
7P cos&0

3 6 . 1+2 cos2Psing-e' ' cose r'
0

(B11)

These rotations are most important for 8, - —,'m,

and do not vanish for the straight Bloch wall (8, = 0);
if d is large enough they should be visible in I,ang's
topography.

Quasidislocation densities equivalent to the singularity

The calculation we have presented of the distor-
tions and curvatures of a Neel line uses in a direct
way the results obtained by KlOman' for a half-
wall. An evaluation can also be made starting f rom

[»g 16(h)l would reduce the magnetostriction
term. There is some evidence that "hard bubbles"
nucleate easily at the end of double walls" and such
an instability we describe can be at their origin
{apart from important magnetostatie effects).

the quasidisloeations equivalent to the singularity.
This way we have used, in the main text, to esti-
mate the magnetoelastic role of a Bloch line. Of
course a ealeulation of the type presented in this
appendix could have been done, and would have led
to more accurate results, since the quasidisloca-
tions considered were restricted to the terms in
the form of a Dirac function. We intend to do the
same approximate calculation, using the n;;
densities, for the NOel line.

In the XI'Z axes, the left half-wall magnetization
has components

M» =Mcos(w Y/2d)U(Ytan6, -X),

Mw
——Main(w Y/2d)U(Ytan8O -X),

where U(X) is the Heaviside step function

j l, x&0
U(X)=]OX 0

Transforming to t e xyz axes, one gets

M, = Mcos[(w/2d)(y cos8, —x sin8, )]cos6,U(-x),

M, =M cos [(w /2d)(y cos 6, —x sin8, )]sin6, U(-x),

M, =Mein[(w /2d)(y cos 8, —x sin6O)]U(-x) .
(B12)

The same calculation for the right half-wall gives

M„= —M cos [(w /2d)(y cos 8, +x sin8, )] cos6,U(x),

M, =Mcos {(w/2d)(y cos8, +x sin6, )] sin6, U(x),

M, =+Mein[(w/2d)(y cos6, +x sin8, )]U(x),
(B13)

and we can formally write the total distribution by
adding B12 and B13.

Now we need the e'„= ~Asn;n„ from which we
obtain the dislocation densities'

0
+$j ~ik1 ~EJ (B14)

We shall content ourselves here in calculating
those parts only in u;; which are of the Dirac
function type, and which come from the derivative
dU/dx= 5(x). They arise from the following e,'.&,

e'„= wkly sin8, cos6, cos'6[U(-x) —U(x)],

FIG. 16. Magnetostrictive bulging at the tip of a double
mall facilitates the nucleation of hard bubbles.

e» ——ah~ cos60sin8 cos6[U(- x) —U(x)];

hence for the e;,.
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n» = ~he cos8, sin285(x}

a)~) = —eke sln28O cos 85(x) . (B15)

Because sin26 changes sign along the segment
A.B, tt,', represents a dislocation dipole term (but
see just below}; n~o, is an edge dislocation of
Burgers' vector t) = —(Sd/2w)i)e sin8, (by averaging
on the segment AB}. It is very interesting to notice
that these dislocations resemble those inferred
from the distortion tensor (B9}, calculated (in
another way) by using all the densities ct;, , and not
only those pertaining to the segment AB solely.
Some comments are necessary:

(a) First of all, let us note that the dislocations
(B15) do not satisfy the so-called "node" condition

e;,. ; = 0. This means that it is necessary (at least
for a», since o.», =0), to complement them,
topologically, with a part at least of the densities
we have dropped, and which are not localized on
AB.

If i =~lg &ya)+at (816)

tells us that such 0,'., 's exert a point force on the
s ingularity itself

f )
= o~ J eq 3) t) ~ I) = gled s ln8 o

which are certainly dominant with respect to the
force densities in the Somigliana walls.

fects), and play here a drastic role. But their
contribution depends also deeply on the real length
of the segments joining consecutive singularities.
Hence, in order to calculate the stresses due to a
zig-zag wall the length of these segments is the
dominating term at long distances.

On the other hand, the o)» dislocation of Eq. (B15)
provides us with the main term necessary if one
wishes to calculate the confi gur'ational force
exerted on a zig-zag wall by a set of stresses 0,.
The Peach Koehler formula"

(b) Secondly, let us remark that the total "dipole"
term behaves in 1/cos8„and not in cos8, (B15).
The densities which are dropped in (B15) are
representative of the half-walls (Somigliana de-

Line tension of a singularity

We start from Eq (B9) and write the energy
density as

2 d2
—,'g,~;;=,X)d', '

t
' 'la+-,' s'q) ~. . . t

' '2W ~ —,
'

D '2)')) .
2m' & eos 8g

After integration, one gets r„' = S2[(n —~)'+-,' tan'8, ]

As 2d2
W=~ p. 1r'

sin'6, ln —+ + . B171
27 eos Oo

=-,'S'[(2n -1)'+tan'8, ].
The configurational force for the Noel line of

length T reads
APPENDIX C: MAGNETOSTATIC INTERACTION

BETWEEN NEEL LINES

The geometry is pictured Figs. 11 or 12. The
magnetic free poles in the triangular regions be-
tween the zig zags are neglected. The magnetic
free poles of a Neel line amounts to

C)p 25 ~ 1Zs =e = —e' —tane Z
ay 2

which can also be written

s 2e a t/'

S e(tan8, )
'

(C4)

(C5)

e = + (Bd/7))MeT,

where d is the wall width and T the sample thick-
ness. The calculation is done assuming that this
charge is concentrated in a point in the middle

plane of the specimen. The potential therefore
reads

where

The summation in Eq. (C2) can be put in the
form of an integral by using the Cauchy formula
for complex integrals. " Consider a region in the
complex plane bounded by a curve y (see Fig. 17).
y includes a circle of radius R which we shall
make infinite; the two poles z =+ itan8, of the
complex function f (e) = (z'+ tan'8o) ) t' are left "out-
side" of y. Because of the pole at z = -itan0„z
changes argument by an angle of m' when one de-
scribes y fromm to 8. Hence f(z) changes sign
fromm. to B. Also note that the residue of f
vanish at the poles, and that ~zf (z)[ -1 when
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(C7)

The contribution to this integral from the circle
of radius 8 is imaginary when ft -~[tan —,'wz-i;
f(z)-+I/z. It must therefore be equal to zero
since V is real. We are left with the contribution
from the segment along the y-axis

e "
tanhmy dy

S rane (y' —ta.n'8 )'" (C8)

which, by a straightforward change of variable,
reads

FIG. 17. Integration of Eq. (C2) (see text).

+~OO ~

Now we have

wf (z) cot(wz) dz
Y

=2f [fw( )s+f(-I)+f(2)+f( 2)+ "1-

„wf (z) . dz
1

s lnpz

1 —tanh'(wutan8, )-4e ""tan8, ,

e2-+ S7r—
g2

e ""tan8,udu
(u2 1 )

I /2

This is an integral which adds up to

e "tanh(wu tan8, )du
(u2 1)t/2

Therefore

e' " [1 —tanh'(wu tan8, )lu du
(u2 I )1/2

But the argument mutan6, is large, due to the
magnitude of tan8, . We write

(C8)

=»w[-f (1)-f(-I)+f (2)+f (-2)+ ] E, =+ 8w(e'/S')K, (2w tan8) (C10)

where we have in the right members the residues
of the integrand for the poles z = + n of cot mz a.nd
1/s inw z. He nce

wf (z) —dz =4iwg f(2P-I) =2—VS
sin ma e

(C6}

which reads also

where K, is the modified Bessel function of the
second kind. Since 2wtan6}, is large, one may write

K, (2wtan8, }--,' (1/tan8, }' ' e "tan8, .

Finally we get

s
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