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The hypothesis of universality implies that there are four universal ratios among the six usually defined

thermodynamic critical amplitudes. Theoretical information from series and & expansions is presented on the
values of these ratios for short-ranged Ising, Heisenberg, and spherical models, and for dipolar systems. A
number of real materials are discussed (Xe, CO2, Ni, EuO, and LiTbF4), and the present state of our
understanding of the thermodynamic ratios for these systems is found to be rather crude.

I. INTRODUCTION

The phenomenological theories of scaling" and
universality' have contributed significantly to our
understanding of the thermodynamic properties of
real materials near their critical point. ~'' In

practice, experimental data are often represented
in terms of sealed equations of state, whose ex-
ponents are constrained to satisfy the scaling re-
lations. Even when independent measurements of
the exponents are made, the scaling laws are
tested, and the values of the exponents are used
to designate universality classes. It has become
clear in recent years, ' ' however, that ratios of
critical amPlitudes play an equally important role
in characterizing universality classes, and that a
significant amount of information is available if
amplitudes are also properly analyzed.

The renormalization-group theory of critical
phenomena' has deepened our understanding of
scaling and universality, and has provided a num-
ber of calculational tools for estimating universal
properties, i.e. , both exponents and amplitude
ratios. The purpose of the present paper is to
collect and complete the presently known theoret-
ical information concerning thermodynamic am-
plitude ratios for different universality classes.
We shall draw on the results of series expansions,
and also on the «-expansion method using the re-
normalization group. Most of the results we pres-
ent have appeared, either implicitly or explicitly,
in earlier work, but we believe that it is useful
to give a unified presentation of the amplitude
ratios, in order to focus the attention of experi-
mentalists on their importance. Our brief con-
sideration of measured values of the ratios in
Sec. IV demonstrates that little reliable informa-
tion exists at the present time on their system-
atics for different classes of real materials.

Although the «expansion is not expected to be
particularly reliable for three dimensions, it is
a versatile method, which can be applied to a
wide range of models, some of which are inac-
cessible to series expansions. An example is the
low-temperature specific heat of the Heisenberg
model. Another advantage of the «expansion is
that it makes various trends, such as the n de-
pendence of the amplitudes (n is the degree of

symmetry of the order parameter), quite appar-
ent, and suggests which ratios will vary smoothly
as a function of n. It would of course be highly
desirable to develop approximate methods for
calculating amplitudes using the renormalization
group in three dimensions, ' but until such tech-
niques become available, we believe that the
present combination of series and «expansions
gives a rather clear picture of the values of the
universal amplitude ratios.

In Sec. II the notation for universal and non-
universal quantities is defined, and various
thermodynamic amplitude ratios introduced. Sec-
tion III gives the «expansion of the ratios for
short-range models, which follow from the sec-
ond-order scaled equation of state. "'" New re-
sults are presented for dipolar systems, for both
n = 1, d = 3, and n = d =-4 —«. Series expansions
are considered for both Ising and Heisenberg
systems in Sec. IV, as well as the results of
scaled-equation-of-state analyses of some fluids
and magnets. '' Numerical estimates for the
amplitude ratios are collected in the tables, and
a number of calculations on model systems are in
the appendixes.

II. UNIYERSAL AND NONUNIYERSAL QUANTITIES

In this section we shall introduce our notation
for the various universal and nonuniversal ther-
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modynamic quantities. Unless otherwise noted,
we sha. ll follow the notation of Ref. 2 and 5, but
we shall also introduce a number of new symbols
for the critical amplitude ratios. Using the mag-
netic language, the equation of state near the
critical point may be written'

H =M ~M ~'-'a(x), (2.1)

x=t(M)-'", (2 2)

M„=NSg p~ (2.4a)

(N is Avogadro's number). The specific heat C
(per mole) is measured in units of

t = (T —T,)/T„H is the magnetic field (or the
chemical potential i(, —i(.,), M the magnetization
(density p —p, ), and T the temperature. It is often
convenient to assume that H and M are already
given in dimensionless units'; i.e., H is mea-
sured in units of

(2.3a)

(S is the spin, g the g factor, and ps the Bohr
magneton) and M (the magnetization per mole) is
measured in units of

where X is the susceptibility, and e, o', P, y, y',
and 5 are the usual critical exponents, which
satisfy the scaling relations"

a, =a(0), h(-x, )=O. (2.13)

Rescaling h(x) by ho and x by xo, we finally arrive
at the universal equation-of-state scaling func-
tion, '

h(x) =$(x/x, )= I h( )x (2.14)

The hypothesis of universality' states that the
function h(x) is the same for all systems within
a given equivalence class. From Eq. (2.1) one
immediately finds that '

(2.15)

1=P(~ —1), o =2 —2P —~

(2.12)

Note that A and A' are the amplitudes for the
singuEax Parts of the respective specific heats,
and C~ and C~ are constants. All the expressions
are valid asymptotically, for t, JI-O.

%'e next define the two nonuniversal constants
xo and A. o through

C„""=H„M„/T,=8=8.317 Jmo1e 'K '

For fluids, p is in units of

Px =Pc~

and p, ls ln units of

P» =&c/Pc~

while C is in units of

C» =P,w/T. p. ,

(2.5a)

(2.3b)

(2.4b)

(2.5b)

r=itm[x~/a(x)]=x~a r,

r'=pxg-'/I'(-x, ) =xgI r',

(~„H„/c,(A= (() ("(v)y 's(-(2.17)

(2.18)

whex'e P ls the cx'ltlcal pl essux'e p the cx'ltlcal
density, and sv the molecular weight. The formu-
las we shall write down in what follows will hold
for dimensioned variables, and also for the (non-
universal) dimensionless quantities introduced
above. (In the latter case one should set C„=H»
=M„=1. %e sha, ll use the sa,me notation for the
dimensioned and dimensionless quantities. )

The relation (2.1) can be used to obtain all the
relevant critical amplitudes. Following Ref. 2,
these are def ined by

where X', F', A, and A', are given by"

r = 1im [x~/0 (x)],

A=oP t h"(y)y 'd1, -

(2.19)

(2.20)

(2.21)

(2.22)
M= a(- t)', t& 0, a =0

X=lt &, t&0, B=O

y=r'(-I) ~, I&0, H=o

C =C„=(A/c()t "+C, t&0, H=o

C, =(&'/o')(-&)-"+C,', «0, a=O

H = DM iM i
' ' t = O

(2.6)

(2.9)

(2.10)

(2.11)

etc. [Note that Eqs. (2.18) and (2.19) are valid
for n &0. The case a&0 is mentioned in Appendix
B.]

Since h(x) is a universal function, it follows
that F, I"', A, A. ', B=—1, and D=—1 are all univer-
sal. All the nonuniversal features in the critical
amplitudes a.re reflected through their dependence
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and

A/A' =A/A',

r/r' = r/r',
R„=—1DB '=l",

(2.23)

(2.24)

(2.25)

R, = (M„H„/-c„}AB 'r =Ar. (2.26)

on the two scales xp and Ap Any combination of
nonuniversal amplitudes which is independent of
xp and A p is thus unive r sal .

Since there are only two independent scales,
there must be four universal relations among the
six amplitudes A, A', I', I', B, and D. These
may be chosen in direct correspondence to the
scaling relations (2.12), which reduce the six
exponents n, n', y, y', P, and 5 to two indepen-
dent ones. We therefore define the four universal
ratios

the critical isotherm,

X (t = 0, H) = (5D) 'iM(t = 0, H) i'

one is left with seven exponents and amplitudes.
Apart from the six already considered, one can de-
fine an exponent o.,and an amplitude A, for the spe-
cific heat on the critical isotherm, with associated
scaling laws and amplitude ratios. Since this quan-
tity is rarely measured, we have not evaluated these
ratios in this paper. We may also mention that I"is
finite only in the Ising case (n= 1), so for n & 2 there
are in all six exponents and amplitudes, and four
universal relations among them (including o., and

A, ).
Let us note finally that the above discussion, and

especially the definitions of amplitudes through
Eqs. (2.6)-(2.11), must be modified for the three-
dimensional dipolar Ising model. "' '6 In that
case, one has

In terms of these quantities we may write, for
t- 0',

X (t) =R zH
' [M (H = 0, —t) ]' [M (H, t = 0)],

(2.27)

(M„H„/C„)C'(t)=Rem 't '

x [M(H=0, —t)]'X '(t),

(2.28)

M=B( —t)' '~lnt~' ', t&0, H=O

q=rt-'~lnt~' ', t&0, H=0

y = r'( —t) '[ln)t(['~', t = 0, H =0

Cs=A[ln[t[['t', t &0, H =0

C„=A'[ln(t[[' ', t&0, H=0

H=DM'/ln/M// ', t=0

(2.32a)

(2.32b)

(2.32c)

(2.32d)

(2.32e)

(2.32f)

(2.29)

(2.30)

[The superscript of C' indicates the singular
part. ] These relations express the thermodynam-
ic functions entirely in terms of universal ampli-
tudes, and of the magnetization along the coex-
istence curve and critical isochore.

The quantities R„and A/A' were discussed in

some detail in Ref. 5. The ratios R„and Rc were
considered by Bauer and Brown. ' In terms of
their notation, we have

Rx UR

Rc ——nR

(2.31a)

(2.31b)

The ratio R„was also considered by Tarko and

Fisher, "who defined a quantity Q, given by

(2.31c)

It may be noted at this point, that since there
are three fundamental thermodynamic quantities
(M, y, and C) and three singled-out paths (the
critical isochore for t&0 and t&0, and the critical
isotherm), there are in general nine critical ex-
ponents and amplitudes. Since, however, M is
identically zero on the critical isochore for t&0,
and X and M are exactly related to each other on

instead of (2.6)-(2.11). With these definitions of
amplitudes, one can again find four universal
relations among the six amplitudes, and define
A/A', I'/I", R„, and Rc in terms of A, A', etc.

III. e EXPANSIONS AND RENORMALIZATION-GROUP

RESULTS

Some insight into the origins of the universality
of the ratios (2.23}-(2.26) can be obtained from a
derivation of the equation of state using the re-
cursion relations near and at four dimensions. "
Since this derivation is rather technical, we sum-
marize it in Appendix A. A more direct calcula-
tion is to use the Feynman-graph expansion of the
universal equation of state h(x), as derived by
Brezin, Wallace, and Wilson" and Avdeeva and
Migdal. " From this equation, using Eqs. (2.21)
and (2.22), an explicit (although somewhat
lengthy) calculation yields

ne 6ln2 ——,
' ln31+E 1+

4(n+ 8) n+ 8
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3» 4» 2
9 24 188+38n —n

a~ y)s)n+8 27

n+8 (n+8)' n+8
(3.2)

S = I,(-,'-) —6I, (-,') —3I,(-,'}+21,(-,') ——.
' ln'3, (3.3)

We shall use the sprea, d in values thus obtained as
a rough estimate of the errors of the extrapola-
tion procedure. For n = 1, » = 1 we have

with I„ I.„and I, defined in Ref. 11.
Combining (2.26), (3.1), and (3.3) we immedi-

ately find

2-2 8-].
Rc = 1+ e 1 — ., + O(e), (3.4)n+8 (n+ 8)'

A„= I =1.61+0.10, n =1, d=3.

A similar study of the case n =3 yields

Rx =I =1.33+0.01, n=3, d=3.

(3.12)

(3.5)

2 = —' 1+ — ln2+ 0(»')n+8

A/A'=A/A' =2 '(1+ e}n+ O(e'), (3 7)

F/F'= i/i" =2~ 'y/P+O(e') for n =1. (3.8)

Similar powers of 2 appear in the» expansions
of A/A' and F/F', " originating from the different
basic temperature scales above and below T,.
They would disappear from combinations like
A'8 'I", when g)) the amplitudes are for T &T,.

Similarly, (2.25} snd (3.2) immediately yield
A„= I'. For completeness we also list the» ex-
pansions of A/A' and I'/I" first derived by
Brezln ef Ql. ~

The s ituation with regard to Rz is s imilar: One
can expand Rc, Rc', or In(Rc/e), one can expo-
nentiate 2 '8 or expand it, one can use the known

value of P, from series, or the one resulting from
the first-order e expansion (3.5), etc. Since the
coefficient of e in Eq. (3.4) is close to +1, the re-
sult from calculating Rc' is probably less reliable.
The different methods of extrapolation of (3.4)
[with 2P in the exponent taken from (3.5)j yield for
n=1, d=3,

Rc =—(1 + 0.86

le�)

-0.052,

36(1 —0.86 le)

R~ =—exp(0.861»)-0.066,

and for n = 3, d= 3,

Rc =—(1+0.94le)-0.132SQ

The» expansions of Qf, p, y, etc. are given in
Ref. 9. Note that I"=~ for n &1.

There are many ways to extrapolate the expan-
sions (3.2} and (3.4) to e = 1. Clearly, using the
expansion (3.4) for I' ' with a = 1 and then inverting
the result, or inverting the expansion and then
substituting» = 1 yield different numerical results.
For example, for n =1,'

3»
44(l —0.941&)

R =—exp(0. 94 le) - 0.175.3»

Note that R~ = 0 for n = 0, and

(3.15)

(3.16)

l" ' = 1 —0.3183» —0.0967»'~ 0.5850

1
1.709' (3.9}

I"= 1+0.3183» + 0.1980» ~1.516.6=l (3.10)

1 = exp(0. 3183e +0.1473m') 1.593.
e=1 (3.11}

A third way is to expand lnI', and then put » =1.
At least this way one will get consistent results
when using j' or l '. This yields

for the spherical model (n =~) (see Appendix Il}.
Thus R~ is a smooth function of n near d =4. From
a study of series expansions in Sec. IV, we shall
see that A~ is also monotonic for d =3„and that
it varies from 0 to ~ as n goes from 0 to ~. This
is in contrast: to the quantity R =e 'A~, which is
directly proportional to the specific heat [see Eqs.
(2.28) and (2.3lb), but diverges when n =0, and

changes sign at that point. Thus the theoretical
uncertainties are much smaller for quantitative
estimates of R~, than they are for n 'R~.

Similar to the above analysis, one can extra-
polate the expressions (3.7) and (3.8) for A/A' and
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I'/I" to e = 1 in various ways. Since the coeffi-
cients in the e expansion (3.8) of I'/I" are not very
large, all the extrapolations yield values close to"

R„=I'=I+-,'a+0(z') (dipolar) .
A similar calculation yields

(3.20)

I'/I" = 4.8, n = 1, d = 3. (3.17) Rc = -', e+ O(e'} (dipolar) . (3.21)

On the other hand, the coefficient of e in (3.7) is
equal to +1, so that replacement of (I+e) by
(1 —e) ' leads to divergence at e =1. Extrapola-
tion of (3.7) yields"

0.55, n=1, d=3

. 1.36, n=3, d=3
(3.18)

A/A' = —,
' + O(z) (dipolar) (3.19}

while extrapolation of ln(A/A') will increase these
results by a factor 1.36.

As noted by Brezin et al. ,
'9 the results (3.18)

are in surprisingly good agreement with those ob-
tained in specific-heat experiments. " Neverthe-
less, the ambiguities in the a expansion for A/A'
noted above would suggest that one should regard
the agreement with considerable caution. It would
therefore be highly desirable to have the next order
in &, in order to use Pade approximants, which
might give greater consistency between the various
extrapolations. Similar comments apply to the re-
sults (3.14) and (3.15): The first and third extra-
polations are in reasonable agreement with the
series values discussed in Sec. IV, which leads us
to conclude that the second extrapolation should
not be used. The values we choose as best extra-
polations of the a expansion at a = 1 are summa-
rized in Table I.

Before concluding this section, we give some
results for dipolar systems. In analogy to the
above discussion, one can use the dipolar equa-
tion of state for n = d = 4 —c (Ref. 20) to obtain all
the amplitude ratios. Since I"= ~, I'/I" is mean-
ingless. Reference 20 already includes the results

A/A' = 1+ O(e),

R„=1+0.239&+0(e'},
Rc= e (short range, n=d) . (3.22}

At e= 1, the two sets of values do not differ sig-
nificantly from each other. (The apparent differ-
ence in A/A' may be an artifact due to the vanish-
ing of o'. to lowest order in e, for the short-range,
n=d case. )

The calculation for the dipolar Ising (n= 1) case
is different, since the critical behavior is now de-
scribed by Eq. (2.32}, i.e., by mean-field expres-
sions with logarithmic corrections. The easiest
way to treat this case is to use the recursion re-
lations, as described in Appendix A. Most of the
amplitude ratios for this case were obtained by
Brezin, ' with the results

and

A/A' = -', I'/I" = 2, (3.23)

9 =31' (&'I') '"=(')'"
where I', is the amplitude of the susceptibility
along the critical isotherm,

(3.24)

it=1', a ' '~im '", f=o.
Combining (2.23) and (3.25), we see that I',
=(81D) ' ', and hence

(3.25)

(3.26)

Since these results are available only to the
lowest nontrivial order, it is difficult to compare
them with real systems at d = 3. However, one
can compare these expansions to their short-range
counterparts, Eqs. (3.7), (3.2), and (3.4), which
yield (for n=d=4 —e)

TABLE I. Summary of d =3 values of thermodynamic amplitude ratios for various models.

n=0 n=] n=3 %=1
~ expansion Series '

& expansion Series '
e expansion Dipolar

Mean
field

theory

A/A'

Rc

R„ 1.9

0.51

5.07

0.059

1.75

0.55

4.80

0.066 0.165

1.23

1.36

0.17

0'

0b

' See Table III.
b See Eq. (3.28), and preceding discussion.
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A similar calculation, along the lines described
in Appendix A, yields

R,=ax-'I =', . (3.27)

As noted by Hrezin, " the result (3.26) is not given
by the limit e-0 of (3.2), although (3.23) and

(3.27) are given by the c-0 limit of (3.7) and (3.4).
This is simply due to the logarithmic factors in

Eq. (2.32), which affect the scales of lnM and
lnH along the critical isotherm.

In mean-field theory, the amplitude A vanishes,
but the jump in specific heat 4C is related to the
other critical amplitudes by the universal ratio.

(3.28)

which is analogous to A'I'B '=Ac&'/A. Note,
however, that the value of (3.28) does not agree
with the corresponding expression A. 'I'B '=

& of
the three-dimensional dipolar Ising model.

IV. SERIES EXPANSIONS AND REAL SYSTEMS

A. Ising model

In two dimensions the amplitudes 8, I", and I"
have been calculated exactly, "while A, A', and
D have been obtained by series. '4 The results
for the amplitude ratios are shown in Table II.

In three dimensions, the amplitudes I', I", B,
D, and A. have been calculated for a number of
lattices using series-expansion techniques. " The
ensuing values of the universal ratios have roughly
a 5 k spread between the different lattices. We
show a typical set of values in Table III. For the
amplitude A' the low-temperature series seem
quite unreliable, ' and we quote instead the value
of A/A' obtained in Ref. 5 by integration of the
equation of state of Gaunt and Domb. "

A, /A' =1 —tv a, (4.1)

TABLE III. Series values for amplitudes and universal
ratios for typical three-dimensional models.

Is ing
& =1, bcc

Heisenber g
&=3, s=~, fcc

also exists a Monte Carlo calculation for the clas-
sical sc Heisenberg model by Binder and Muller-
Krumbhaar, "with parameters values @=1.36, 5
=5.3, 8=1.03, X'=0.32, a=4.74, which yield R„
=1.73. Th' b t p t' l ly 1 t
the series and g-expansion values quoted in Table
III. The amplitude& was given by Stauffer et al.29

As was mentioned already in discussing the
Ising case, series determinations of specific-
heat amplitudes seem rather unreliable, and it
is preferable to obtain both A and A' by integrating
the equation of state. ' Such a procedure was fol-
lowed by Krasnow and Stanley" in the Heisenberg
model, but the ensuing value of A disagrees strong-
ly with the value quoted in Ref. 29, and leads to
improbable values of Rc. %e have therefore dis-
carded this evaluation, assuming that some error
had been made, as was already found' in the Ising
case. Similarly, the A' found in Ref. 30 cannot be
relied on, even though the A/A. ' has the "rea.son-
able" value 1.46. It would be interesting to re-
evaluate A. and A. ' from the Heisenberg equation
of state of Milosevic and Stanley, since we have
no reason to doubt its validity, but. we have not
carried out the necessary integration.

As noted in Sec. III, the f- expansions for 4 and
A/A' also seem particularly ill behaved. There-
fore, we believe that the most reliable way to
estimate A/A' comes from the observation" that
for small & one can write

B. Heisenberg model

For the case n=3, there exist only high-tern-
perature series, and we use the values of 8, I',
and D obtained for the 8= ~, fcc lattice by
Milosevic and Stanley" (see Table III). There

A
A'

J3

1
r'
D

0.0138
0.027 '
1.5059
0.985
0.194'
0.345

0.88
0.58
1.22
0.279

2.1284

TABLE II. Universal amplitude ratios for the two-
dimensional Ising model (Hefs. 23 and 24).

A/A' =1

r/I' = 37.693651 95

A/A'
I /r'

c
R~

0.51
5.07
0.059
1.75

-0.13

0.38

0.165
1.23

Since the specific heat diverges logarithmically,
(t —1}/n is replaced by —lnt. The definition of Rc,
Eq, (2.26), remains unchanged.

' From integrating the equation of state; see Hef. 5.
b Heference 29.
~ Obtained from A/A' and from A.

Heferences 25 and 26.
~ He fer ence 27.

From Eq. (4.1).



UNIVERSAL RELATIONS AMONG THERMODYNAMIC CRITICAL. . . 3087

with 6' = 4, independent of a. Ne have therefore
used this method of obtaining the "series" value
of A/A. ' quoted in Table I for n =2 (with a deter-
mined from series), but clearly a more direct
evaluation would be highly desirable. Our three-
dimensional estimates of the ratios coming from
& expansions and series are summarized in Table
I for various models.

C. Real systems

In this section we first wish to summarize
briefly the information on universal amplitudes
which was obtained in the analysis of four sys-
tems (Xe, CO„Ni, and EuO) in Ref. 5. It must
be emphasized that this analysis was by no means
complete, since results from various experiments
were combined, and no detailed consistency
checks were made. Thus the data presented here
are primarily illustrative of the type of analysis
which is feasible, rather than an attempt at ac-
curate determinations of the universal amplitude
ratios of real systems.

The data are summarized in Table IV, which
contains the thermodynamic amplitude ratios ob-
tained for various empirical equations of state.
The parameters of these equations were deter-
mined by fits to experimental exponents and am-
plitudes. As explained in Ref. 5, these "experi-
mental" quantities are not necessarily the most
accurate representation of the raw data, since
various constraints had been placed on the fits,
such as the scaling relations (2.12), or the as-
sumption that there are no singular corrections

to scaling. The linear-model (LM) and Missoni-
Levelt-Sengers-Green (MLSG) equations contain
two scales, determined by fits to J3 and I', and
three universal parameters. These are two in-
dependent exponents (usually P and 5), and one
extra quantity, denoted b or E„which is fixed
by an over-all fit to the equation of state. These
five parameters entirely determine the equation
of state and yield the amplitude ratios quoted in
Table IV. As was noted in Ref. 5, the values ob-
tained for A and A' in the linear-model analysis
of EuO and Ni are quite far from the experimen-
tal values. The "modified MLSG" equation has
an extra universal parameter (e,), which was de-
termined in Ref. 5 by a fit to the experimental
A/A'. The independent exponents used in that
analysis were P and o, with y and 5 determined
by scaling. The precise values of P and o. chosen
were such that the amplitude A itself fit experi-
ment. Such choices were possible within the un-
certalntles of the data' but this would probably
no longer be the case with better data, and a
larger number of universal parameters would
have to be introduced into the empirical equation
of state, in order to obtain an adequate fit.

From the numerical results for the critical am-
plitude ratios in Table IV, we see that there is
some consistency between the various empirical
equations for a given substance, and also some
consistency between fluids on the one hand and
magnets on the other. The ratios A„and R~
roughly follow the theoretical trends in Table I,
in going from n= 1 to n=3. The ratio A/A' seems
quite well behaved, as was discussed in detail in

TABLE IV. Heal systems (Ref. 5).

Modified
MLSG

Modified
MLSG

Modified
MLSG

Euo
Modified

MLSG

'y

6
A
A'
B
r

D
A~
R~
G. ~pc
A/A'

0.10
0.35
1.20
4.44
2.2
5.1
2.0
0.065
0.014
2.4
1.6
0.037
0.35
0.43
4.6

0.10
0.35
1.20

2.5
5.5
2.0
0.065
0.015
2, 3
1.6
0.041
0.39
0.45
4.2

0.10
0.35
1.21
4.48
32
6.6
2, 0
0 ' 061
0.015
2.3
1.5
0.050
0.53
0.54
4.0

0,09
0.35
1.21
4.46
2.1
3.9
1,8
0.074 '
0.018
2.7
1.6
0.048
0.54
0.54
4.2

0.07
0.35
1.24
4.53
2, 9
4.4
1.8
0.065 '
0.016
3.0
1.6
0.058
0.89
0.65

0.11
0.36
1.18
4.32
1.6
3.5
1.8
0.12 ""
0.028
2.7
2.1
0.061
0.56
0.44

-0.11
0, 38
1.35
4.58
0.17
0.081
1.5
1.5
0.38
0 ~ 29
1.7
0.11

-1.0
2.0
3.9

-0.09
0.38
1.33
4.52
0.23
0.17
1.4
1,3
1.1
0.29
1.4
0.16

-1.7
1.4
1.3

-0.06
0.39
1.29
4.35
0.25
0.16
] 3 8

0.55
0.15
1.3
1.6
0.18

—3.0
1.6
3.7

—0.04
0.37
1.31
4 ' 56
0.47
0.39
1.3 '
0.37
0.14
1.8
1.5
0.11

-2.5
1.2
2.7

Experimental. input to the equation of state; see Ref. 5.
This number was incorrect in Table V of Bef. 5.
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Ref. 5, Rlld I/I" ls reasonably collslstellt fol'

fluids, but quite erratic in the magnets. As men-
tioned in Ref. 5, its physical meaning is not clear
in that case, since the measured values are domi-
nated by corrections to the Heisenberg Hamilto-
nian. We should also mention that Euo is ex-
pected to show Dlox'e dlpolRx' behavior tI1Rn Nl,
but me do not feel that there is accurate enough

experimental or theoretical information at this
stage to make meaningful comparisons of the

amplitude ratios.
Anothex' real system which has recently be-

come of great interest, is the dipolar Ising ferro-
magnet LiTbF4, for which careful measurements
of the specific heat" confirm the form (2.32), with

4/R = 0.4394. Data for the susceptibility above

T, were fit to33

x/x =1 25t "2 t&0 H=o

while data fox the magnetization were fit to3~

M/M =2 I 53{-t) 24 2 t & 0 H=O

Foxcing these results into the forms given in

(2.32), we find that roughly B/M, =2.92, I'/X,
=2.8, so that finally R, =0.14, in reasonable
agreement with the exact prediction (3.28). It
should be remembered, homever, that these fits
are very crude, and a direct analysis of the orig-
inal data, including corrections to the leading
singular terms, "would provide a better test of
the theory.

In concluding this brief summary of experimen-
tal data, oux over-all impression is that the ques-
tion of universal amplitude ratios in real sys-
tems is still at a very crude stage, and much
more careful work needs to be done before our
knowledge of the ratios approaches that of the
critical exponents,

In Table I me also included the values of the
amplitude ratios for n=0. It would be interesting
to relate these to experiments (and theories) on

polymer solutions. "
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APPENDIX A: RENORMALIZATION GROUP

In this appendix, we use the renormalization-
group recursion relation results of Nelson and
Budnick" to derive the universal amplitude ratios.
They start with the reduced Ginzburg-Landau-
Wilson Hamiltonian

3c = — d'x(-.'[2 S(x)'+ (v S)']

+uS(x)' —HS„(x)) . (Al)

They then solve the xecuxsion relations for x, u,
H, and the magnetization M =(S„), and stop
iterating after / iterations, such that the longi-
tudinal susceptibility X(l*) is equal to unity. At

this point, they calculate the various thermo-
dynamic functions using perturbation theory.
The magnetization, field, and longitudinal sus-
ceptlblllty are given by

e- (1- 4 /2 &I M{Ittt) H e- (2- 2/2)l H(i2t)

x=e" x(l*)=e" (A2)

while the perturbation expansion yields

H(ln)/M(l*) = t(l*)+4u(l*)M(F)2+ O(u(l')), (A3)

1 = X(l*) ' = t(l*)+ 12u(l*)M(l*)2+ 0(u(l*) ), (A4)

=in-,'/
(In[/ tat t&O, H=O.

Substituting these back into (A3) finally leads to
the expressions (2.32). Combining the appropriate
RIIlpll'tudes yields (3.23) (3.27), RIld (3.28). To
obtain (3.28) one also needs the free energy, which

wRS found by Nelso11 and Rudnick to be

[ t2/16 (4 u)](q(4-n)/(nt 2) I)

+ min(-,' tq-'"""'"'"M'+uq-'M'-HM)
N

The Hamiltonian of the three-dimensional di-
polar Ising model may be written, ""

with (to order e)

u(l) = ue "/q(l),

t(l) te21q(l) (n t 21/(n t 21

q(l) = 1+4K~(n+ 8)u(e" —I)/2 . (A5)

Determining l* from (A4), and substituting (A5),
one can now obtain all the amplitudes in (2.6)-
(2.11) to order c, and combine them to yield the

ratios (2.23)-(2.26). It turns out that the non-

universal parameter u (and the momentum cutoff)
drop out, to leave universal results for these
ratios, in agreement with the ones quoted in Sec.
III.

At d=4(e=o), q(l) =4E4(n+8)ul. Solving (A4)
for l* yields

f2= /In(M/ /
at t=O,
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1
&~fC [r+g '+ g (q, /q)2] o;o;

Oq I+qlloqqtqtt ++OP

(A7)

where f; = (2v) ' f d'q, ~q~& 1. The leading terms
in the recursion relations for this case are com-
pletely analogous to their d=4 short-range counter-
parts, . provided u is replaced by u~ ' ' and & is
replaced by & —1." These terms are all we need
to obtain the leading singularities, Eqs. (2.32a)-
(2.32f). Thus, the final results (3.23), (3.27), and

(3.28) are the same as those for the d=4 short-
range case.

h(x) = (1+x)",

with

r=( I—e/2) ', 0=-', (B2)

and all other exponents obtained by scaling rela-
tions. In particular,

The main one is that the free energy per spin com-
ponent of an n-component spin model approaches
that of the spherical model in the limit n- ~."
One can thus calculate exactly the various univer-
sal quantities in this limit for any dimensionality.
A comparison with the & expansion is then helpful
in obtaining a feeling about the accuracy of this
expansion at d= 3.

The universal equation of state in the spherical
model is"

APPENDIX B: SPHERICAL MODEL

There are several reasons why it is instructive
to consider the exactly soluble spherical model.

n= — &0 .
2 —&

Therefore, (2.19) must be modified to read'

(B3)

A = nP(1 —n)(2 —n) dy y '[(1+y)"—1 —yy ——,
' y(y- 1)y'],

PO- «)( -2)( — — +y(y-1)
2 —a 1 —a 2n

«1
d& lyl 'f(1 v)'-I —ry —-'*llv —1)y')).

(B4)

For 3& d& 4, these integrals yield

A = e/(2 —e)2, A' = 0 . (B6)

Equation (B1) directly yields

B =D= I'=1
y (B6)

and hence the result (3.16) for Rc/n Agives .the
specific heat per component, "and

Rx ——1 (B7)

The result (B5) implies that A/A'=~ for 3& d
& 4. Since n equals —1 at d= 3, the calculation
(B4) must be modified in that case. Equation (Bl)
becomes analytic in x (y= 2), and the "singular"
part in the free energy mixes with the "analytic"
part. This leads to an arbitrariness in the defini-
tions of A and A'. The arbitrariness may be re-
moved, however, if one considers the n-vector
model, for very large (but finite) n, instead of the
(n = ~) spherical model. This was recently done by
Abe and Hikami. " To leading order in 1/n they
found, for 3& d&4,

n 2t)(3-d) l(d 2)I (d/2)-I (2 d/2)
A' I'((4 —d)/(d —2)) I'((2d —6)/(d- 2))

P(~)'P(d/2) It/ (d-2)

I'( (d —1)/2) (B8)

which agrees with (3.7) for n «, e =-4 —d-0,
and with A/A'=~ for n= ~. At d=3, however,
they found

A/A' = (v '/4) —1, (B9)

which is not proportional to n. Thus, the limit
n- «of A/A' has a discontinuity at d= 3, which
makes comparison with the & expansion at &=1
meaningless.

Returning to the result (3.16), it is clear that
truncation of the z expansion after one term, and
using it for &=1, gives an error of 100 jg. This
is mainly due to the large coefficient of &. This
is another indication of the fact noted in Sec. III,
that the e expansion of Rc may not be reliable at
@=1.
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