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Linear and nonlinear critical slowing down in the kinetic Ising model: High-temperature series
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The difference between the critical exponents (5"' and 6'"') of the linear and nonlinear relaxation times of the
order parameter (~~ and r "') is investigated in the two-dimensional one-spin-flip kinetic Ising model. We have

calculated the high-temperature series for v
"'

up to ninth order and made use of the known series for 7 " up to
twelfth order. The series are analyzed by the ratio and the Pade-approximant methods. The correlation
between the critical-point and critical-exponent estimates in the Pade approximants allows an improvement in

the determination of 6 ". The result, 6"' = 2.125 ~ 0.01, is higher than previous estimates of 2.0 ~ 0.05. The
estimate of 6'"" is less precise but the result b, '"" = 1.95+ 0.15 leads to the conclusion that 5,"'QA ""and that
the difference between the two is of order P (critical index of the order parameter). This is in accord with the

scaling prediction.

I. INTRODUCTION

The application of the renormalization-group
formalism to dynamic phenomena' ' has greatly
improved our understanding of the dynamical as-
pects of critical behavior. By this method, how-

ever, only the singularity of the linear dynamical
response has been investigated while experiments'
and Monte Carlo calculations' ' often provide us
with the nonlinear response of the system.

It has been noted recently that the critical-point
singularities of the linear and nonlinear dynamical
responses are different not only in nonergodic' but
also in ergodic systems. ' This gives rise to the
problem of how to calculate the new set of critical
exponents describing nonlinear phenomena.

In the simplest case of purely relaxational sys-
tems without conservation laws, scaling argu-
ments'0" relate the critical exponent (&o"' ) of the
nonlinear relaxation time of a physical quantity Q
to the critical exponent (6o ) of the corresponding(1)

linear relaxation time by the scaling law

—pp,( ni) (i)

where Pz is the exponent characterizing the scal-
ing of Q with respect to temperature. For exam-
ple if Q=M is the order parameter, then P&=P or
if Q =E is the energy then Ps = 1- a (P and o. being
the critical exponents of the order and heat capac-
ity correspondingly).

The final verification of the scaling prediction
(1) is the task of experiments and microscopic
theory but some idea about its validity can be ob-
tained from high-temperature expansions and
computer simulations. Previous Monte Carlo"
and high-temperature expansion' works on the
two-dimensional one-spin-flip kinetic Ising mod-
el, "which is a purely relaxational system without
conservation laws, suggested that 4„"' = h~'. In

the two-dimensional Ising model, however P~ = P
=0.125 is so small that the Monte Carlo calcula-
tions with their 5%-10%accuracy cannot distinguish
between &„'"' and &~ if the difference is P. In the
case of the high-temperature series' only six
terms have been calculated and there is an alge-
braic error at the end of the calculation making
all the coefficients, and consequently the ratio es-
timates of ~&"', in error.

In this paper we have corrected this error and
have calculated up to ninth order the high-temper-
ature series for the nonlinear relaxation time of
the magnetization in the square lattice one-spin-
flip kinetic Ising model. The resulting series have
been analysed by both the ratio and the Pads-ap-
proximant method. Parallel to the analysis of the
nonlinear relaxation time we reanalyzed the linear
relaxation-time series. The recently discovered"
correlation between the estimates of the critical
temperature and critical index in the Pade approx-
imants allowed us to determine 4~„') with higher
precision; the result ~„' =2.125 +0.01 is different
than the previously accepted value, h~' =2.0+0.05.
Unfortunately, even this correlation method does
not give a very precise answer for ~„. From
the result A~~"') = 1.95 +0.15 one can conclude only
that 4„" & 6„"and the difference is of order P.

Section II contains a brief discussion of the kin-
etic Ising model, the linear and nonlinear relaxa-
tion times, and also the results of the high-tem-
perature expansion. In Sec. III we analyze the
series. Finally, in the Appendix some details of
the calculation of the high-temperature expansion
are given.

II. RELAXATION IN THE KINETIC ISING MODEL

The Ising model which played an essential role
in developing the ideas about critical phenomena
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has no intrinsic dynamics. One of its simplest dy-
namical generalizations is the one-spin-flip kinet-
ic Ising model. " In this model the interaction of
the spins with an infinite heat bath gives rise to
spontaneous flips of spins. The probability that
the ith spin flips over [Nt;({tI})] in a unit of time
depends on the state of the system described by
the value of the N spins {o}={o„.. . , o'„}, o» =+1.
The transition probabilities are chosen so that the
system relaxes to the equilibrium of the standard
Ising model. Thus the static properties of the
model are well known and the system has no com-
plications other than the diverging lifetimes of
fluctuations near the critical point.

Denoting by P({o};f) the probability of configu-
ration {o'}at a time f, the dynamics of the above
model is described by the following master equa-
tion"'.

r —P({o}f)=- g~ ({o})P({o}f)d

+ g ~;({o};)P({o};f), (2)

where ro is just a constant setting the time scale
and {o};is a configuration differing from {II}by
flipping over the ith spin. The condition that the
equilibrium distribution is a steady-state solution
of (2) does not determine Nit({II})uniquely. One of
the possible forms used in high-temperature ex-
pansions is"

Rtt({o})=-,' [1—o, tanh(pE;)],

where 28~ is the energy change induced by the flip
of the ith spin. In the case of nearest-neighbor
lnteI'Rctlo11 Et =el+i vi whel'e eJ ls tile lllte1'Rc'tloll

strength and the sum goes over the nearest neigh-
bors of s.

Having the solution P({o};f) of (2) satisfying the
initial condition P{{o};0), the time evolution of
the order para. meter (magnetization) is completely
deter mined

M(f) =Z P({o};f)M({o}),

where the sum is over all possible configurations
and M({o})denotes the value of the magnetization
111 tile conf lg111'R'tlon {11}.

In the one-spin-flip kinetic Ising model the mag-
netization is not conserved; its relaxation time 7
in the high-temperature phase (&M& =0) can be de-
fined as

This definition is meaningful only if there is a
prescription as to how the initial state [with M(0)

e» 0] is prepared. If at t=0 the system is in equi-
librium with an infinitesimal magnetic field, so
that M(0) is also infinitesimal then (5) is the defin-
ition of the linear relaxation time" and it ean be
shown that ln ergodle systems lt ls equal to the
relaxation time of the equilibrium fluctuations

T"' = lim T=
M(o) ~o

"&M(f)M(0)& „,
&M') (6)

where r =(T —T, )/T, , T, being the critical temper-
ature.

These critical exponents can be estimated from
the coefficients of the high-temperature series of
7

(' ~ and 7( ~. The derivation of the series has
been discussed in details' "for both 7(' and

Here we quote only the final result. Intro-
ducing the operator

f-=g INt({&})(1-P;),

where P& is the spin-flip operator of the ith spin

T"' and 7' ' canbe writtenas

T" ' =&Ms, 'M&/&M'&

T"'=&L, 'M& /(M& (12)

where the brackets ( &, denote the average in the
initial ensemble with M(0) =finite. For simplicity
the initial state is chosen to be the completely
ordered state.

The operator L can be split into a part indepen-
dent of temperature and parts proportional to the
high-temperature variable It =tanh(J/kT) and to It'

(for details see Appendix). By expanding L ' in
powers of It the problem of calculating (11) and
(12) reduces to graph counting on a lattice.

In the ease of the square lattice 7 ' has been
calculated" up to v" while v'("'~ has been given'
erroneously up to v . Our calculation yields the
following result for T("' ~:

wlle1'e tile 111'Rckets ( ) denote 'tile equlilbrium
average without the field.

On the other hand, if M(0) is finite then (5) is the
relaxation time of the magnetization in nonlinear
response'

(nl ) r [N(tt)= finite ( I)

Approaching the critical point, v'('~ and y("'~ will
in general diverge with different exponents

T(i ) ~-~(' ' T(~ ) ~-«~ ~
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) =1+4m+16@'+'4' v3+ 4'6 v4

+ 10444 V + 433 264 V6 + 3 15 24 V7
27 405 12 15

+ 705704768 ~8 + 1 584 670852 ~9 + ~, ,91 125 76 545 (13)

Some deta. ils of the calculations can be found in the
Appendix.

III. ANALYSIS OF THE HIGH-TEMPERATURE SERIES

In this section w'e apply the ratio'7 and the Padd-
approximant" methods to estimate 6( ) froxn the
high-temperature series. Since our main goal is
to compare 4 ') and Q("', we reanalyze the series
for T(') parallel to the analysis of the series for
~(nl )

In the Ising model the critical value of the ex-
pansion variable v, = W2 —1 is known so that the
ratio method gives an unbiased estimate of the
cr itical exponent. The ratio analysis of 7(') and

are displayed in Table I.
The estimates of n~"' ' (first column of Table I)

do not seem to be settled. There is some oscilla-
tion in the values of 4( ) but there is a growing
tendency too. The dangers of guessing the critical
exponent when the estimates are monotonic or al-
most monotonic can be seen for the example of

Originally, ~ was calculated" from the
series for ri (M') - r "".From the mono-( 1 ) 2 -&(&)-1.75

tonic estimates (second column of Table 1) it was
concluded that 6 ' =2.0+0.05. At the same time
the values of 4 ' found from the series for 7

show a much more regular oscillatory behavior.
From the third column of Table I it might be con-
cluded that

Comparing the estimates of 6 ' and 6("' one
expects that &("' (& ' and the difference is of
order 0.1 -0.2.

Trying to Improve the estimates of d(l) and ~("1)

we have applied the other familiar technique of ex-
tr apolating finite series, the Pade-approximant
method. We have formed Pads approximants to
the logarithmic derivative of r "', r ' (M') and

The Pade tables of critical point and expo-
nent estimates for the case of r i ~ ' and r~ ' '(M')
are presented in Tables II and III. Conventional
analysis of these tables would yield 6("' = 1.4 and
g(') +1.75 = 3.75. Especially the value of ~("') is
far off the value one would expect from the ratio
estimate.

It has been found" however that the better the
Pade approximant gives the critical point the bet-
ter is the estimate of the exponent. Furthermore
it was noticed" that the plot of the exponent esti-
mate against the critical point estimate is a
smooth function which crosses the exact critical
point at the exact exponent.

In our case almost all the entries in Tables II
and III give critical point values lower than the
true value u, = 0.4142. The simple correlation can
be observed from the data that the higher the crit-
ical point estimate, the higher the exponent esti-
mate. This means that the conventional analysis
underestimates ~ " and 4 ' . Plotting the expo-
nent estimates against the critical point estimates
{Figs. 1 and 2) one can see that both are smooth
functions and a straight-line extrapolation to the
critical point yields the following values:

TABLE I. Ratio estimates of the critical exponents
(4(' and 4 ") of the linear and nonlinear relaxation time
of the magnetization in the square lattice one-spin-flip
kinetic Ising model. In the second column & ') was cal-
culated from the series for 7 ' (M ) (v —v~)
while the third column estimates are coming from the
series for 7(').

TABIK II. Pade-approximant table of the estimates of
the critical point@, =0.4142 (upper numbers) and the
critical exponent 6 ("') (lower numbers, underlined) of
the nonlinear relaxation time of the magnetization. As-
ter isk indicates the presence of a defect in the Pade
approx imant.

3.

5.
6.
7.
8.
9.

10.
11.
12.

1.657
2.314
1.831
1.657
1.777
1.873
1.842
1.869
1.966

1.564
1.806
1.898
1.911
1.937
l.960
1.980
1.986
1.999
2.012
2.022
2.028

1.657
2.314
2.039
2.098
2.056
2.166
2.100
2.075
2.127
2.167
2.122
2.109

0.2996 0.3753 0.3999 0.3966 0.3907 0.3948
0754 1244 1516 1465 1359 1447

0.4247 0.3970 0.4036* 0.3931
2.052 1.473 l.543 1.407

0.4000 0.3655 0.3908 0.3940
1.475 0.970 1.365 1.425

0.3749 0.3850 0.3997
1.107 1.255 1.570

0.3993
1.599

0.4252
3.204
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TABLE III. Pade-approximant table of the estimates of the critical point v, =0.4142 (upper
numbers) and the critical index 4 ' +1.75 (lower numbers) calculated from the series for

(M2). Asterisks indicate the presence of a defect in the particular Pade approximant.

My.
0.4012
3.313

0.4098
3.655

0.4137
3.831

0.4107
3.666

0.4126
3.782

0.4107
3.653

0.3104*
3.292

0.4132
3.802

0.4120
3.742

0.4119
3.735

0.4116
3.720

0.4114
3.707

0.4119
3.735

0.4121*
3.746

0.4268
4.786

0.4120
3.746

0.4117
3.72 3

0.3988
2.845

0.4112
3.689

0.4592
11.048

= 1.95+ 0.15 (15)

and

A~'~ =2.13 +0.02. (16)

The large uncertainty in 4( ~ follows from the
relatively poor critical-point estimates. One has
to extrapolate quite far to reach the exact critical
point. Note that this value of ~~"'~ is consistent
with the ratio estimate.

=2.13 +0.02 is different from the conven-
tionally expected 2.0+0.05 and it is consistent with
the value given in Eq. (14) from the ratio estimates

can also be calculated by forming Pads ap-
proximants to the logarithmic derivative of 7

and again plotting the estimates of b against the
estimates of v, . The result is again that of Eq.
(16) with about the same accuracy. The accuracy,
however, can be increased if one notices that in
the Pads approximants there are two unphysical
poles on the imaginary axis at about the same dis-
tance from the origin as the physical pole. These
singularities can be transformed away by the
Euler transformation"

w =2v/(1+ v/v, ) .

2.0— 3.9—

0

's

14- p8 e
C

I

0.39 0 40 0.41 0.42
FIG. 1. Correlation between the estimates of the criti-

cal exponent of the nonlinear relaxation time 4~"'& and
the estimates of the critical point v, in Pade approxi-
mants calculated by keeping 8 (triangles), 7 (circles),
and 6 (squares) terms in the high-temperature series
of din~'"'~/dv. The letter s denotes the presence of de-
fect in the particular Pade approximant. Straight line
extrapolation gives 4'"' =1.95 +0.15 at the exact value
v', =vs -1.

3.8—

ghs0

3y7

0.4I I

I

0.4I2
I

0.4I3

Vc
1

0.4I4

FIG. 2. Pade-approximant estimates of the critical
exponent ~ '~+1.75 and the critical point v~ calculated by
retai»~g 11 (triangles), 10 (circles), 9 (squares), and 8
(closed circles) terms in the high-temperature series of
din(T ~'~(M2))/dv. The letter s indicates the presence of
a defect in the Pade approximant. The straight line ex-
trapolates to 6 "+1.75=3.88+0.02 at the exact critical
point v, .
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Padd approximants are then formed to dlnT /dzu

and analyzed by the previously described correla-
tion method (Fig. 2). We arrive at the estimate

4" ' =2, 125 ~0.01.

Although the analytical structure of T
" is sim-

ilar to that of T ' transformation like (I'I) does
not lead to improved accuracy in s(" ~.

We have tried a number of other methods taken
from the literature for estimating 6 ', 6 " ~ and

but none gave better accuracy than the
above correlation method.

The conclusions to be drawn from the above ra-
tio and Pads-approximant analysis are as follows:
(i) hi "' i & Ld'l and the difference is of order P.
(ii) Since in the two-dimensional Ising model every
critical index is a simple fraction from (19) one
guesses that & ' ='-,'. lf the scaling law 4 "'

—P holds then this implies d" I =2. (iii) The
Monte Carlo results 6('~ =1.85+0.I is clearly not
from the critical region. Since in the temperature
region from where this estimate comes the static
exponents already assume their asymptotic value
this would mean that the dynamical critical region
is narrower than the static one. An alternative
explanation, of course, is that we do not under-
stand something about Monte Carlo experiments.
(iv) The constant c in the renormalization group
calculations [2 ' = v(2+cd), see Ref. 1j which is
independent of dimension near d =4 dimension
(c = 0. VS) approaches c = 2 as d- 2. This is differ-

ent from the many component order parameter
case' where c 0 as d-2. If c' is a smoothlyvary-
ing function of dimension, then one expects that,
for d = 3, 0. 5 & c & 0. V3. Analyzing the high-tempera-
ture series of v''' in the d =3 kinetic Ising model

(Fig. 4) one finds

~&,"= 3..32+0.03.

It suggests that e = 1 although the uncertainties
of the static exponents and the uncertainty of g(l}

itself allows a range of values 0.5& c~ 3. From
(19) the scaling prediction for h~i"' is 6, "''= 1.

Returning to the problem of the scaling law ~
~ —P, it would be desirable to have a few

more terms in the series of T("'~. Probably it
would be also worthwhile to calculate the series
for ~ " in the three-dimensional kinetic Ising
model since the difference between ~ "'' and 6 '

would be much larger (P = 0.21) than in the two-
dimensional case.
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APPENDIX: HIGH-TEMPERATURE EXPANSION OF r&"0

IN THE SQUARE LATTICE

The operator I. [Eq. (9)j can be split into three
parts' I.= I, + I&+ I... where

2.l 5—

2.IO— I.3—

~8
0

I.2—

2.05
00

0

I.I,—
I

0.2I5
l

0.2I7
I

0.22I Vc

Wce
I I

0.4I4 0.4I5

FIG. 3. Pade-approximant estimates of 4 " and the
critical point so~ after transforming away the unphysical
singularities in «~~ by using the Euler transformation
w=2~/(1+v/v, ). Notation is the same as on Fig. 2. At
the exact sr~ =a~~=~2 —1 the critical exponent of the
linear relaxation time is &+=2.125+0.01.

FIG. 4. Correlation bebveen the estimates of the
critical point B~ and the critical exponent 43 of the
linear relaxation time of the magnetization 73" in the
cubic lattice one-spin-flip kinetic Ising model calculated
from Pade approximants to dln7'&~ ~/de retaining 9 (tri-
angles), 8 (circles), 7 (squares), and 6 (closed circles)
terms in the high-temperature series. The "exact"
value 8; is estimated from the susceptibility series.
At B~ the straight-line extrapolation gives 43 1 32
+ 0.03.
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L.=-g(1-P),1

k

(A1) a, = P (X,'S)„
l=p

(A 9)

a
L[, -2 p p a[a[, (1-P, ),

k lCk
(A2)

c
Lc= g g a[ or a[ o[, (1 —P[, ),

l+k
(A3)

and

a =-,' tsnh(4j/kT) +& tsnh(2J/kT)

= v —3v'+ 15v' —85v' +493v'+ ~ ~ ~ (A4)

where I'k is the spin-flip operator discussed in
Sec. II and l( k means that l is one of the nearest
neighbors of the lattice point k. The coefficients
a and c have the following expansions in the high-
temperature variable v = tsnh(Z/k T),

(S),= 4c/3(1 —4a),

(X,S), = 16ac/3(1 —4a),

(X[',S), = 736a'c/27(1 —4a),

( X[,'S), = 9920a' c/81(1 —4a),

(X[',S), = 129 920a'c/243(1 —4a),

( X,'S), = 1 658 176a'c/729(1 —4a),

(X[['S),= 20873 216a'c/218'l(1 —4a) .

a, in (A7) is a double sum

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

and since X~- v, S-v' the sum has to be calculated
up to l =6. The results of the graph counting ex-
ercise (details of the graph counting problem can
be found in Refs. 8 and 16) is

c =-,' tsnh(4J/kT) —7 tanh(2J/kT}

= —2v' + 14v' —84v' +492 v'+ ~ ~ ~ . (A5)

ln terms of the operators (Al)-(A3) r"' (l3)
can be expressed as

a2 =

k, l= p

(X,'X, X,'S),

and up to v' only the terms k+l +3 has to be
found:

( X,S)o
= 16c'/5(1 —4a),

(A17)

(A18)

x(L —L& )
0 (A6)

x Q [(L, —L, ) 'L, ]
k=p

ak .
k=p

Since L, - v' the calculation of 7 "
up to v' in-

volves only the calculation of this sum up to k =3.
The zeroth-order term is easily found

a, =(1 —4a) '. (A8)

After expanding (L, —L, ) ' and introducing sim-
plifying notations L, 'L, =X» L, 'L, =X, and
N '(1 —4a)X,Q,"c,=S, a, is expressed as

where ( )o denotes the average in the completely
ordered state.

Noticing that L,M=M and L,M=azM where z is
the number of nearest neighbors T can be re-
written in the following form:

=N '(1 —4a) '

(X[[X,S), = 224ac'/15(1 —4a), (A19)

(X,X, S)0 = 160ac'/9(1 —4a), (A20)

(X,'X, S), = 237 376a'c'/3375(1 —4a), (A21)

(X[,X, X[,S), = 156 992 a'c'/2025(1 —a), (A22)

(X,X,'S), = 5 312a'c'/81(1 —4a), (A23)

(X~'X,S), = 3 2'l4 112a'c'/10 125(1 —4a), (A24)

(X~'X,X,S) = 10 384 768a'c'/30375(1 —4a),
(A25}

(X[,X,X~'S)o = 1 710464a'c'/6075(1 —4a), (A26)

(X,X,'S) = 324 928a'c'/1215(1 —4a) . (A27)

Finally, from a, one has to find only one term

( X,'S), = 19 808c'/1575(1 —4a) . (A28)

The terms (A9)-(A13) and (A18) have been calcu-
lated previously' and our result agrees with that
calculation. The difference arises after summing
up these terms and substituting the expressions
(A4) and (A5) for a and c in these formulas. We
believe the correct answer is given by (13}in Sec.
II.
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