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Nonreciprocal attenuation of magnetoelastic surface waves
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The attenuation of Rayleigh-like surface waves on an insulating magnetic medium is calculated, particularly
for waves propagating parallel with the magnetic field along a [111]direction in materials such as YIG;
this attenuation results from the radiation of spin waves into the bulk rather than from magnetic resonance.
Propagation is generally nonreciprocal (i.e., the attenuations of forward- and of backward-traveling waves

differ) and the ratio of forward to backward attenuations can be large. The calculation makes allowance for a
small elastic anisotropy and for small deviations from colinearity between the wave vector and the magnetic
field.

I. INTRODUCTION

This paper presents a theoretical investigation
of the attenuation of Rayleigh surface waves on

insulating magnetic materials of cubic structure,
such as yttrium iron garnet (YIG). It has long
been known' that the propagation of surface mag-
netostatic waves on a magnetic medium can be
nonreciprocal, i.e., that the properties of forward-
and backward-traveling waves can differ. Sim-
ilarly, magnetoelastic waves need not be re-
ciprocal if the magnetization is at an angle to the
direction of propagation of the waves, or if the
magnetization and the propagation direction are
parallel and are not normal to a mirror plane of
the system. Nonreciprocal attenuation has been
reported by Lewis and Patterson' for the case
of waves traveling at right angles to the field on
a, thin film of YIQ.

In the following inquiry it is taken that the waves
go parallel with the field along a (111) axis in the
crystal; the theoretical results can be used also
for a (100) direction, and in this case the cal-
culated attenuation is similar to that computed by
parekh and Bertoni" for Ga-doped YIG. The (111)
direction is, however, more interesting than a
(100) direction since the (111}plane is not a mir-
ror plane in cubic crystals, and nonreciprocal
propagation occur s.

It will be found that the attenuation of Rayleigh
waves is very different from that of bulk waves.
In the latter case it is possible to find spin waves
and bulk waves that have the same frequency and

spatial dependence; at resonance the two con-
tribute equally to the total motion, so the strong
damping of spin waves results in a strong attenu-
ation of the bulk wave. For Rayleigh waves, by
contrast, the boundary conditions prohibit the
buildup of any large spin wave, and resonance
damping is small. However, for frequencies
above the resonant frequency, u =yH, spin waves

can travel away from the surface, and the Ray-
leigh wave is attenuated through radiation of spin
waves into the magnetic medium.

H =H ext +H anis —H demag . (2)

In a cubic crystal H, „;,= 2K, /M for fields along the
(100) axis, or H.n;. = —4K, /SM for fields along the
(111)axis, K, being the anisotropy constant.

When e and H are such that 8 is real, spin waves
can propagate away from the surface; these waves
are the only magnetic waves admissible in con-
structing the surface waves, and they extract en-
ergy from the neighborhood of the surface. The
surface wave is therefore leaky in the range

y'H'«u'& y'H(H +4@M} .

II. THEORY

A. Preamble

We start by showing that the attenuation comes
primarily from the radiation of spin waves into
the medium rather than from magnetic resonance.
A surface wave on a magnetic material must in
general be constructed from four modes, three
predominantly elastic modes and one predomi-
nantly magnetic mode, or spin wave. If, say,
one satisfied the three elastic boundary conditions
with the elastic modes alone, then the magneto-
elastic coupling would result in a field and flux
within the medium; this forced magnetization
need not fit the magnetic boundary conditions at
the surface, so a spin wave must be added to take
care of the extra boundary condition.

The frequency ~ of a spin wave traveling at an
angle 8 to the direction of the magnetization M
is given by'

&u'=y'H(H +4aM sin'9},

wherein y is the gyromagnetic ratio and H is the
total internal field, being the sum of external,
demagnetizing, and anisotropy fields
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Exchange effects must be taken into account if
higher frequencies (or lower fields) are to be con-
sidered; i.e., the spin wave now travels almost
vertically into the material and its wavelength be-
comes so small that exchange effects serve to
increase its frequency. It will be found that the
attenuation is low when the angle of the spin wave

is steep, so these effects will be ignored.
At low frequencies, e&yH, the spin wave has

the spatial form

m exp(ik3& —g ~ x), (4)

R= U exp ik,z -q x,
where R is the displacement and n denotes the
elastic mode; a stands for longitudinal or trans-
verse. The forced magnetization has the same
form as R so the mode cv is associated with a
magnetization whose natural frequency is

&u' =y'H(H —4' sinh'P ), tanhg„=q„/k, . (7)

Resonance occurs when the forced frequency of
the driven wave approaches its natural frequency,

from Eqs. (5) and ('I) one then has q„- q .
When this occurs, the magnetization associated
with mode a diverges as (u' —&u'„) '. However,
neither the forced magnetization nor the spin wave
can by itself satisfy the magnetic boundary con-
ditions, and since they have now the same form,
q =q, nocombinationof them can fit the boundary
conditions. The divergence in the first term must
therefore be cancelled by an opposite divergence
in the second term, so that the total magnetization
remains small; this point is demonstrated at the
end of the next section. It follows that no magnetic
resonance occurs at any frequency. Therefore, the
magnetoelastic interaction, which is weak, can
always be treated as a perturbation and the theory
can be developed to successive orders in this in-
teraction.

propagation being along the z axis with the x axis
the inward normal to the surface. Such a wave

may be regarded as traveling at an imaginary
angle iP to the surface, and its frequency is given

by

a' =y'H(H —4nM sinh'P ), tanhP =4 /k, . (5)

The spin wave is now localized on the surface, as
are the elastic waves, and no loss can occur. We
expect losses through radiation of spin waves only
in the range of frequencies given in Eq. (3).

It will be seen a magnetic resonance appears to
occur in the low-frequency range, (d&yH, when

the elastic wave can have an envelope similar to
that of the magnetic wave. The elastic wave is a
superposition of terms localized near the surface,

The magnetoelastic energy in a cubic crystal
ls

E,„, = —', (M„'S, „+M,'S, , +M,'S, , )

+M,,M„,&z,„,) &

where x„y„and z, are the crystal coordinates,
5, and $, are the magnetoelastie coupling con-
stants, M„, etc., are the components of theXg 7

magnetization M, and $„„,etc., are the com-
ponents of the strains. The strains are defined
through the displacement R by

We shall consider surface waves traveling along
a (111)direction on a (110) face, and must there-
fore transform the above expression to new co-
ordinates sketched in Fig. 1 with x, Y, and z de-
fined as follows: z is parallel with [111]; x, the
inward normal to the surface, is parallel with

[1 10], and y is parallel with [112]. In trans-
forming Eq. (8) we take it that the magnetization
is predominantly along the new z axis, M, =M'
-M' -M'=M'. To first order in M and M, one
finds

yl
E;„, = 2 —(M,S„,+M,S,.)

hatt

+ —[M,(S„„-S„,) + 2M,S„,],M

'k=-,'( 2k+ h), h"=-,'v2 (f, -b,).
In crystal coordinates an equivalent result holds
with 5'=$2 and 5"=0.

Finally, we remark on the magnetic boundary
conditions, which will be introduced through a
surface permeability p, „. the method is analogous
to Ingebrigtsen's' introduction of an effective di-
electric constant in his discussion of the propa-
gation of surface waves on piezoelectric media.
The external field, x&0, may be represented as
the gradient of a potential of the type

P-exp(ik, z —isn't+ ~k, ~x) .

If the external Inedium has permeability Ij,„ then
just above the surface at x= -0 one has

. k, H, (-0)" ='[k,
] H. ( 0)

Within the medium let B and H be found for some
values of w and k, ; a surface dielectric constant
p. , can then be defined through
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. k, 8, (+0)
ik, i H. (+ 0)

'

The magnetic boundary conditions are H, (+0)
=ff, ( 0), and 8,(+0}=8„(-0). These conditions
are satisfied if

tr. ,(&d, k) = -p, .

B. Surface wave propagation

The calculation is carried out for a noncon-
ducting magnetic medium in which exchange ef-
fects can be ignored. The material is taken to
be elastically isotropic for the first part of the
calculation, and elastic anisotropy is inserted as
a correction at the end. This procedure is justi-
fied in YIG by the small elastic anisotropy' c»
-c» —2c« = 26.9 —10.77 —15.28 =0.85x 10" dyn/
cm .

The equations of motion are developed in the
manner of Kittel' and Sehl6man. ' Let the mag-
netization M(r) and field H(r) be

M(r) = M+ me'"', H(r) = H+he'" ' ',
where the unperturbed fields H and M are along
the z axis. The small field h is determined from
the conditions curlH(r) =divlH(r) +4rrM(r)] =0, and

is

~ y (1121

~~» k ~/~
~/// i ~

/ ////~~~~X 'xX& N// /

X

[110)

FIG. 1. Coordinates used in the calculation.

%'hen R„ is zero, there are three solutions to Eqs.
(i3) giving the three modes n for a given ru and

k, . Two modes are predominantly elastic, n = l
or t (longitudinal or transverse), and one is pre-
dominantly magnetic, a =m. %hen u&yH the
magnetic mode is localized near the surface, Eq.
(5), and q,„ is real; when &u &yH the spin wave
travels away from the surface, Eq. (3), and q
is imaginary (small corrections to the spin-wave
spectrum through the magnetoelastic coupling,
which were taken into account by Parekh and
Bertoni, "are ignored here).

A surface wave is a linear superposition of the
three modes of Eq. (14) such that the mechanical
and magnetic boundary conditions are satisfied.
The mechanical boundary conditions are

h = —4mk(k- m)/k'. (12) T»=T„=0. (15)
If all quantities are independent of y and the dis-
placement at r is R(r), then from the magneto-
elastic interaction of Eq. (9) the equations of mo-
tion are B„—ipse, =0. (16)

The magnetic boundary condition is used to define
a surface permeability rr, , Eq. (10),

, ~R, „~R,in„= -y Hm, -Mh, +5' ' +&"

X It~, =y IIm„-Mh„+b' '+ " +5"
Bg Bz ~X

R„=s', V R„+(s, -s, ) —(V ~ R) (13)

In terms of the displacements and magnetizations,
the quantities that enter the boundary conditions
are

~ &R„2 2 "dR,
Trr=rr sr +(sr —2s } ' +—m9g Bz

(R, m) = (R, m") exp(tk, z -q „x—i&at) . (14)

&m„b" ~m3,+ +-
pM ~z pM

f

R, =s', O'R, +(s,' -s,') —(V ~ R}+
Bz pM Bx

Here s, and s, are the velocities of transverse and
of longitudinal modes, respectively, and p is the
density of the material. The equation of R, has
been omitted, since R, can be dropped when the
material is isotropie, provided that the calcula-
tion is taken only to first order in Q .

To construct a surface wave we seek those so-
lutions to Eris. (13) that are localized near the
surface, i.e., that are of the form

~R~ ~R~ 5"+ +—~
Bz &x M

8, =4rrm, —4rrk, (k ~ rn)/k

8, = —4rrk, (k ~ m)/k',

where k, = iq .
Choose, say, as variables the components 0', ,

R,' of the elastic waves, and m„of the magnetic
wave, and find the stresses and fields associated
with each mode. The first boundary condition has
the form

T»Rg+T„R, +T„m„—0,
and so on for the others. The three boundary con-
ditions give
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=0. (18)

g' -ip O' 8' -ipH 8 -ipH

Ã2 = —i~s/~s ~

where 4~ and A„are determinants that contain the
8" and the H alone.

%hen the magnetostrictive coupling is zero,
T„, T,3, 8', O', H', and H' are all zero; Eq.
(18) is then just the Rayleigh determinant. When
there is a finite magnetostriction the determinants
4~ and 4& have the form

tenuation is derived. It was shown by Parekh
and Bertoni~ that R„ though small at the sur-
face, need not be very small. The other trans-
verse mode t' involves R, alone; when it is
included, the extra boundary condition T„=O
must also be included. Equation (&8) then be-
comes a fourth-order determinant; the new di-
agonal term ls of order unity, while T„, T'„, T
and T,', are of order Q'. The correction due to
R, is therefore of order 5', and has little effect.

The approach to resonance occurs at frequencies
a&aH; consider, for example, the neighborhood
of the frequency &u, defined in Eq. (I). It is readily
found, from the above prescription, that the xnag-
netization rn„' associated with the transverse mode
diverges as

m,'- (a)2 —(u,') '-(sinh2y, -sinh2y„) '.
&g =~ &a+&gy &0 =H &~+&e ~ (2o)

where 58 Rnd 5„are of second order in the mag-
netoelastic coupling, and h~ is the Bayleigh de-
terminant. The boundary condition at a free
surface„p, , = —I, 18 then SRtisf led by'

The magnetization associated with the spin wave
can be found from the boundary condition preced-
ing Eq. (21); it contains a variety of finite terms
and a divergent term proportional to ng„'. The
ratio of the 'two divergent terms ls -tanh/2/tanht/l~;
th t tal d g

. th g

((), +if, )/(a +2ff ). . t»hp, -tanhy.

On expanding about the Rayleigh velocity &&~, de-
fined by A„(vs) =0, one obtains which remains finite as P - g, . Magnetic res-

onance therefore does not occur in surface waves.

v —v„= —(5s +io„)/(8 +iff )
9 'L)

(21)

C. Attenoa~~on

This expression 18 lntx'ln81cRlly of second ox'der
in the magnetoelastic coupling, since 8, H,
and 4& are of zero order. It follows that the
magnetoelasticity cRn be dropped ln flndlng the
fundamental modes l, f, and m from Eqs. (13).
For example, in the elastic modes one chooses
some e, k„and sets Q' =Q" =0 in the last two
members of Eqs. (13); the displacements R"
and the wave number q are then found from these
two equations alone, n =E or t. The displace-
ment so found is then treated as a source term
in the first two members of Eqs. (13), which yield
the magnetization associated with the elastic
waves.

Ignoring R, and appx'oaching the magnetic res-
onance will be discussed briefly before the at-

We have used Eq. (21) to find the attenuation of
Rayleigh waves; before giving the result some
quantities xnust be defined. The inward decay of
the elastic modes is written as a fraction P„of
the wave number, q =P k„ then

p2 1 v2/s2 82 1 v2/s2

A dimensionless fol m fox' the RRylelgh detex'-
minant is

D. =I- (2 —v'/sl)'/4f} 3, .

The Rttenuatlon 18 then given by

[a -C cos'8+ (~/1 a}(h"/b')(D —E cos'8)]'
v 4sps', M2 [1 —(v2/sP cos28]2[1 —(v2/s f) cos'8]'
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wherein 8 is the angle at which spin waves go into
the bulk, Eq. (1), and A, H, C, D and E are num-

bers of order unity. These numbers are

H =Pili P-t),Bv

C =P i(tii -8g)(I +(I i)(I +8t),

1 v2 3 v2
D =a(8& -ting)+ ——(I+Pg) —— (1+8(), (25)48) ' 28)

Z =p(I+ti, )(1+J1,),8, —,3, + ——, (1 -8, )
1 v

wherein e is the Rayleigh velocity throughout. In
YIG, whereas)/s2, =2.5, one has e2/s', =0.86, and
hence: 4 = 1.55, 8 =0.431, Q = J.'106, D =0.335,
and F. =0.512.

At small angles 8 the attenuation is governed by
the term sine/[1 —{+/s',)cos'8]' in Eq. (24). The
ratio v'/s', is not much less than unity, about 0.86
in YIG, so this factor reaches a maximum when
8 is small; the maximum of the attenuation occurs
when sing=0. 2. From Eq. (1) it follows that the
peak attenuation occurs when ~ is slightly greater
than yH.

Nonreciprocal propagation comes from the term
proportional to &v/yH in square brackets in the
numerator of Eq. (24). If either the field or the
sound direction is reversed (&a or H negative), the
term in question reverses sign; if both are re-
versed, the term retains its sign. Near the peak
attenuation, cos'8 = 1, this part of the numerator
is

The numbers (8 -C) and (D E) are both ne-gative;
if the ratio 6"/6' is positive the attenuation is
greatest when the field and the sound have the
same direction. This conclusion holds for sound
propagating along the [111]axis when the [110]
axis is the inward directed normal to the surface;
when the [110]axis is the outward normal the be-
havior is reversed, and the attenuation is great-
est when the field and sound are oppositely di-
rected. %'e see that one can change attenuations
by reversing the field, or the direction of the
sound, or by interchanging top and bottom of the
sample.

It can be shown that the choice of a (110) plane
gives the greatest possible nonreciprocity for
waves traveling along the [111]axis; if the plane
on which the waves travel is rotated through an
angle @ about the [111]axis, then Eq. (24) holds
with a factor cos3$ multiplying the term con-

taining ~/yH. Propagation is therefore reciprocal
on the (112) plane.

The dependence of attenuation on field at con-
stant frequency is shown in Fig. 2 for some val-
ues of 6,/6, . The frequency chosen is e =0.2
x 4myM, which corresponds to about 1 0Hz in

YIG; the elastic contants are related through s$
=3.5s'„as in YIG, but the nature of the results
is insensitive to reasonable alterations in this
ratio. It mill be noted that propagation is recipro-
cal in the cases 5, =Q, and 5, = —0.552; the first
of these corresponds to magnetoelastic isotropy,
5" = 0, and the second to 5' = 0. %hen 5" is not
zero, there is a pronounced structure in the low-
field part of the attenuation as well as at the main
peak near resonance; this structure comes from
the factor ~/yH, which multiplies terms involving
5" and is large at low fields.

It is easy to obtain the attenuation when Tt and H

are along the [001] axle from the above calcula-
tion: one simply sets 5' =5, and 5" =0; the at-
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FIG. 2. Attenuation vs magnetic field at a frequency
=0.2x4~M, for various ratios b&. b2. To obtain u

Imv, the ordinate Inust be multipliml by the coupling con-
stant (b*~/47FM2c44), where for curves (a), (b), and (d)
b~=b'=3(2b&+b&), and for curve (c) b*=b'= 3~2(b~
-b, )
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tenuation is then reciprocal. The effect of dif-
ferent boundary conditions is not too difficult to
find in this ease. %hen the extex ior permeability
is p.„the term in square bx'ackets in the nu-
merator of Eq. (24) is modified as follows:

[ ]'- [p.,(B -C' cos'8) -C" cos'8]'/(cos'8+g, 'sin'8)

face wave. The equation of motion of Z, ls

&~'R, = [{.„+,' 0c)k,'+ {c„+-',~c)k.']R,

+-,'v 2 k,k,5cR, +(I/3i~2)k,'5cR,

for a wave with wave number (k„O, k,). If R„' and

R, are the displacements associated with a longi-
tudinal wave, then to first ox'der in 5c one obtains

C' =Pr(P& -Pt)(1+0~8&), C" =8iQ& f)'g-)

%'hen s,' = 3.5s2, one finds C' = 0.571, C" = 0.535.
Parekh Rnd Hertoni have compQted the depen-

dence of attenuation on frequency for the [100]
dlrectloQ ln Ga-doped YIG where the RttenQRtlon

is about ten times stronger than in YIG; the com-
putation considered both a free surface, p., = &,

and a surface covered with a thin layer of a per-
fect conductor, p, =0. The dependence of the com-
puted attenuation on freqQency 18 lndlstlngulshRble
from that given by Eq. (24). For Ga-doped YIG
the coupling constant h,'/4vps', M' is 1.51 x10 ';
setting this in Eq. (24) one finds a peak attenuation
given by v 'ImI'=0. 98@ 10, cf. the computed
value of l.0& I0 '. The attenuation neax' the peak
is reduced on a metallized surface; fxom Eq. (26)
the peak attenuation then falls to 0.69 of its value
on a free surface, cf. a computed ratio of 0.67.
This level of agreement with I arekh Rnd Bertonl's
COIQPutRtlon 18 Vex'y SRtlsfRCtox'y.

D. Contributions to nonreciprocal propagation

IQ IQRny cRses the IQRgQetoelRstlc Rnlsotx'opy,
h"/k', is rather large and can be expected to dom-
inate the nonreciprocal nature of the waves. %hen
this is not the ease me must consider also the ef-
fects of elastic anisotropy, and of tilting the field
Rt an angle to the direction of propagation; both
effects mill be px'esumed SmaH.

Elastic Rnlsotxopy cRQ be taken into account by
including a dlsplRceIQent R~ iQ the elRstlc sux'fRce
wave. %e presume

R, =(R„e '~*+R,'e '") expi(k, z —art) .
In the coordinates (ryan) the stress T» at the sur-
fRce ls

T,2
= (2c«+ 35c)S,2+ 3v 2 bc', 3,

where 5c =c» -c» —2c«=0 ln an isotropic matexi-
al. To zero order in 5c one has S» =0 on the sur-
face; to first order in 5c, therefore, the condition
T1o = 0 18 satisfied by SI2 = 0, i.e.~ one hRs

The displacement R,' can be regarded as being
forced by the longitudinal component of the sur-

c«1-sf/s, 2k~~

where It,'„' and R,' are the displaeements in the lon-
gitudinal component of the surface mave on an
elastically isotx'opie medium, with k, = iq, .

The displacement R, can be found from Eqs.
(27)-(29) and plays the major role in altering the
attenuation of the surface mave; other terms enter
to order (hc/c«) . The total correction is shown

below in Eqs. (31) and (32).
A fur'hex'' effect coIQes when the fleM 18 Rt Rn

angle to the direction of propagation. This has
been taken into account only for the ease when the
field remains in the plane of the surface and is
rotated eounterelockmise through a small angle p
relative to the [111]axis. The spin waves now

travel at an angle 8 into the surface mhen the
frequency v is given by

u' =y'ff[H +4vM (sin'$ + sin'8 cos'g)] .
The cRlculatloQ of this effect 18 tedious ln even
the simplest case; only the effect on the non-
reciprocal terms has been found, and that only
to lowest order in $. The result is given below.

On eolleeting the corrections together the fol-
lowing result 18 obtained: the term ln square
brackets, [ ], in the numerator of Eq. (24) be-
comes

[ ]- {B-C cos'8) — —,(B, -C, cos'8)
c 5'

+ — — —, (D-Bcos 8)- —{D,+&, cos 8)
&c

yH

—sing(D, E,cos'8)—
in which B, C, D, and E are give»n Eq (25), and

C, =(1 (1,)(+I (i,)B+„D,=B,/8 0„
B,= (I +3,)(1+3,)(3, +P, 1)B,/(1, -
Dp= i+Pi(1 —2&~ -&'t)/(I+Pg),

&, = (I P~)(+I P~)[+1 (1 I 2PP t-(I Pi-)/(I+0~)-1.
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—0.44 —,—
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The ratio of attenuations is clearly greatest when

~f ~
is close to unity. It can be seen that the effect

of the elastic anisotropy, 6c/c«, is about five
times stronger than that of the magnetoelastic an-
isotropy, 5"/b'.

The dependence of attenuation on magnetic field
in YIG is shown in Fig. 3 for a frequency of 1

6Hz, assuming H parallel with k; the field is the
total internal field, including the anisotropy field.

YIG, f=

k, H//&

I

100

Total Magnetic Beld 6

)

300

In the above the elastic anisotropy 6c/c«and the
angle of the field to the [111]axis g must be small
if the result is to hold; the magnetoelastic anisot-
ropy h" /b' may however be large. The quantities
B„etc.are numbers; for a material with s',
= 3.5s'„ as in YIG, one has B, = 0.187, C, = 0.481,
D, =0.576, Z, =0.359, O, = 1.086, and E, = 1.417.

Consider the attenuation in the neighborhood of
its maximum when s', =3.5s'„ the nature of the re-
sults is little changed by alteration of the elastic
constants. In most cases the attenuation reaches
its greatest maximum when cos'9=0.96, though
this need not be the case for the lesser attenuation
when nonreciprocal effects are strong. At this
maximum the ratio of forward to backward at-
tenuations is

[1 + ((o/yH)f ]'
[1 —(~/rH)f]' '

where ~/yH is somewhat greater than unity, and

g
(I 5gf =(0.28 —, 1.46 ——0.484sin

&44

Material parameters used in the calculation a,re'
6c /c « = 0.11 l and9 h, = 3.5 x 106 erg/cm', h, = 6.4
x10' erg/cm', and hence b" /b' = —0.306; also
c« = 7.64 @10"dyn/cm and M = 140 Oe. For the co-
ordinates shown in Fig. 1 the attenuation is greater
when H is positive; this results from the elastic
anisotropy, which has an effect about twice as
strong as the magnetoelastic anisotropy and in the

opposite direction.
This result is somewhat unexpected. The elastic

anisotropy in YIQ is small and often ignored; it
happens however that the magnetoelastic an-
isotropy is also unusually small in this material,
so the elastic anisotropy is not ignorable. Most
of the rare-earth garnets have large magneto-
elastic anisotropies, and the difference between
the forward and backward attenuations will be
governed by this quantity.

III. CONCLUSION

The attenuation of Rayleigh surface waves on
an insulating magnetic medium has been dis-
cussed and shown to result primarily from the
radiation of spin waves into the bulk; the effect
of magnetic resonance is weak, prima. rily be-
cause of the strength of the surface boundary con-
ditions.

When the field and direction of propagation are
parallel along a [111]axis in a cubic material,
the propagation can be nonreciprocal; i.e., the
attenuation can have one of two values depending
on whether the field is positive or negative. The
attenuation is switched from one value to the other
by reversing the field, or the direction of pro-
pagation, or by interchanging top and bottom of
the sample. This effect is of interest in con-
structing acoustic surface wave isolators. '

The calculation of nonreciprocal propagation is
given for arbitrary magnetoelastie anisotropy, and
also when a small elastic anisotropy and a small
rotation of the field are taken into aeeount. In the
case of YIQ it is found that the elastic anisotropy,
though small, is dominant.

Note added in manuscxiPt: In a recent calcu-
lation for a magnetically isotropic medium Scott
and Mills" find that spin damping smoothes the
sharp changes in v 'Imv shown in Fig. 2(a), and
also reduces the strength of the peak attenuation.
The effect, though small in YIQ, can be large in
materials with a broad magnetic resonance.

FIG. 3. Attenuation vs magnetic field at 1 0Hz in

YIG; note that the ordinate should be multiplied by 10 4

to obtain v Imv. The coordinates of Fig. 1 must be
used: if the [110]axis points out of the surface, the
curves for 0=+ ve and for h'=-ve are interchanged.
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