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Excitation spectra for spin-3/2 systems with high-degree pair interactions~
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%e studied the excitation spectra of a spin-3/2 system with both dipolar and quadrupolar pair interactions.
To study the thermal variations of the spectra we calculated the spectral-weight functions by using finite-

temperature two-time Green's functions. These functions were evaluated by using the equation-of-motion

method and by applying the random-phase decoupling approximation. At low temperatures when the system

is ferromagnetica11y ordered we find for small wave vectors k that the excitation spectra have a quadratic
dependence on k. If the dipolar coupling is small compared to the quadrupolar, the system loses its magnetic

ordering at a temperature T„but retains quadrupolar order up to a higher temperature T~. As one increases

the temperature from absolute zero, the excitation spectra for small wave vectors gradually change and

become linearly dependent on k when Td is reached. In the phase with only quadrupolar order, the excitation

spectra remain linear in k. The amplitudes of the excitations are shown to satisfy sum rules and we discuss

how these excitations may be observed by inelastic neutron scattering experiments.

I. INTRODUCTION

Hare-earth ions retain, in large part, their
orbital angular momentum when they form solids.
For this reason it has been found that high-degree
pair interactions between these ions are compara-
ble to or even stronger than the dipolar coupling.
The generic Hamiltonian for spin systems with di-
polar and quadrupolar pair interactions is

(V) &&/)

where the operators 6,' are in the spherical tensor
form given by Judd, ' and the summation is over
pairs of nearest neighbors.

In a previous paper3 me studied the influence of
quadrupolar pair interactions on the elementary
excitation of a spin-1 ferromagnet I'"'&0. For
tI' 'I ~ jI' 'I spin-1 systems have magnetic or-
der. However, for II'+)

I ) II'"'I these systems
are anomalous in that they do not possess a mag-
netic phase transition. Systems with s~-,' do have
magnetic (dipoiar) phase transitions no matter
how large I' ' is, as long as I'"' is nonzero. '
Qf course the transition temperature Td is pro-
portional to I' ' and appxoaches T=O'K as I'"'
goes to zero. As one lowers the temperature of
a system with quadrupolar coupling I'3'»I'") &0
the system first undergoes a transition to a phase
with only quadrupolar order at a temperature T, .
As the temperature is further lowered the system
undergoes a second transition at Td to a phase
with both dipolar and quadrupolar order. If the
dipolax and quadrupolar coupling are comparable
the transition temperatures T„and T, approach
one another. For the ratio n=—F' '/1@' greater
than some number which depends on the magnitude
of the spin s, there is only one phase tx"ansition.

The elementary exeitations of spin- —,
' systems

have been studied with only quadrupolar coupling. '

In this paper me consider spin--,' systems which
have both dipolar and quadrupolar pair interac-
tions. We mill be particularly interested in
studying the vax iation with temperature of the ex-
citation spectra for systems which have two suc-
cessive phase transitions. Also, we will be pri-
marily interested in the ratios a much less than

The excitation spectra of systems with only
quadrupolar pair interactions have dispersion re-
lations which are linear for small values of the
wave vector 4. 4' On the contrary, for ferromag-
nets the spin-wave spectrum is quadratic fox"

small, 0, i. e. , proportional to k3. We will. show
how for our system, Eq. (1), with spin- —,

' these
disparate excitation spectra change from a quadrat-
j.c k dependence in the magnetic phase when T& T~
to a linear form in the quadrupolar phase T~~ T

Because these changes in the dispersion curves
take place as me vary the temperature we will use
finite-temperature two-time Green's functions to
determine the spectral weight function for the
system. To determine these Green's functions
we use the equation-of-motion method, and apply
the random-phase decoupling scheme of Haley and
Frd5s. 6 Our results apply, at least qualitatively,
to all systems with spin s~ —,

' which have only
dipolar and quadrupolar coupling. When one con-
siders still higher-degree pair interactions there
may be additional phase transitions, 7 and we ex-
pect new features to the excitation spectra for
systems with such interactions. Although the pair
interactions between ions in solids are anisotropie,
we have considered only isotropic interactions in
this paper. In this may we can separate the ef-
fects on the excitation spectra due to high-degree
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pair interactions from those due to anisotropy of
the pair interactions.

In Sec. II we calculate the spectral weight func-
tion for the excitations of a spin--,' system with
dipolar and quadrupolar pair interactions. We
evaluate the dynamical susceptibility for several
ratios 0, of the dipolar to quadrupolar coupling in
Sec. III. From the imaginary part of this func-
tion we obtain the spectral-weight function. We
follow the variation of the excitation spectra as the
temperature goes from T =0 K through the dipole
transition T~ and up to the quadrupole transition
temperature T, . In Sec. IV we discuss our re-
sults and point out those qualitative features which
change when one considers systems with spin
greater than —, and w'hen one uses a decoupl, ing ap-
proximation better than the random phase.

while octopolar like excitations m = 3 are excited
by the operator

The susceptibility can be determined from the
following two-time temperature-dependent retarded
Green's function:

G„,„,„,„,(k, t) =- —te(t) ([X„„,(k, t), X„,„,(k, 0)])
= —t e(t) ([xJ,„,(k, t), x.,„,(k, 0)]),

(7)
where the operators X„„aredefined by their ma;
trix elementsv'

From this definition it immediately follows that

II. CALCULATION

To find the excitation spectra of the spin system
described by the Hamiltonian Eq. (1) we will
calculate the spectral-weight function A(k, &o}.

This is related to the dynamical susceptibility as
follows

4(k, (~) = —(1/v) fm)t(k, (u),

)t(k, ro) = —i ~ e'"'/ft([B (k, t), B(k, 0)])e(t),
4 a@0

(3)

B(k t) sjm't/k
+shak i'/B(~) s-.Ixt/k

e(t} is the unit step function, and the angular
brackets denote a thermal average of the commuta-
tor. The wave vector k is a vector quantity but
we will for the most part omit the arrow above k.
In order to determine the excitation spectra the
operator B(j) must have transition matrix ele-
ments that connect two states of the system. We
will be interested in three types of operators which
are categorized according to the change of the z
component of the angular momentum S. If we as-
sume the ground state of our system is given as
(3,),=-¹,where l ),-=i- s, —s, —s, . . . ), then
the excitations are characterized by the number of
spin deviations m —= (Sg+¹.Excitations with one
spin deviation m =1 are created by the operator

(Bi) = s'(i):

These are called spin-wave excitations. Those
with two spin deviations m = 2 are called quadru-
polar like excitations and are excited by the opera-
tor

[x„,„,, x„„,]=~„,„,x„,„,—&„,„,x„,„, . (9)

The relation of these operators to 6' is given by
Judd. ' If we label the eigenstates of our Hamil-
tonian Eq. (1) by the eigenvalues of the operator
8, then it follows that the difference between the
states is just the number of spin deviations, i.e. ,

(10)

We will show how we determined the susceptibility
for m=1 excitations by determining the appropriate
Green's functions. The determination of the excita-
tion spectra for m =2 and 3 follows the same pro-
cedure and we present these results at the end of
Sec. III.

The m = 1 excitations can be measured by in-
elastic neutron scattering experiments. The
cross section for this scattering is given in terms
of a spectral weight functionk A(k, ~). For ~ = 1
excitations of a system with the ground state

I
—s, —s, —s, . . . ) this function is the imaginary

part of the susceptibility Eq. (3) with B=g t/, sS', —

l, e, y

)ti(» ~) = —t(gus)'

8'"'&t([& (k, t), s'(k, 0)])e(t) .
~ 00

(3a)
As we have introduced the factor (ggs)k, the spec-
tral weight function is related to this definition of
the susceptibility as fol.lows:

1
A, (k, (o)=-,. fm)(, (k, &o) .

~(g// sP

For spin —,
' the indices p and v take on the values

+ 3~ and + ~, and the spin-raising operator is re-
lated to the standard basis operators X in the
following way:



~3+-1/ P.~ 3 / P. + 2X1 /'3, -1 /2 + ~3 X3 /P„1 /3

where we use the following contracted index nota-
tion: a =— (p, , v) = 1, 2, 3; 1 = (- 2, —&), 2 =- (k, —2),
3=-(—'„-,'); h, =h, =MS; and ha=2. With this rela-
tion and a similar one for the adjoint operator 8,
we find

r CO

G~a(kp QP) 8 dt Gg ~ g ~ (ki t)

The Green's functions in the susceptibility are
determined by finding the solutions to their equa-
tions of motion. The method we used to find the
solutions follows that of Haley and Erdos. e The
equRtlon of motion sRtlsf led by the Green~s func
tion Eq. (7) is

i —G„,„,„„(k,t) =&[X„„,(k, 0), X „(k,0)]&5(t)

}(,(k, (g) = (gps)2 Q h~ hq G q(k, (u), (13)

[S-(k, t), S (k, 0)]= gh h, [X'(k, t), X,(k, 0)] .
(12)

Thus, we can write the dynamical susceptibility
Eq. (Sa) in terms of the Fourier transform of the
Green's functions defined by Eq. (7) for p —v = 1,

x X„„(k,0)]&8(t), (15)

where 5(t) is a Dirac 5 function and the Hamiltonian
for our system is given by Eq. (1). By using Eq.
(1), the commutator relation Eq. (9), and the rela-
tion1 between the operators 6' and X„„,we find
that the Green's functions obey the following equa-
tion:

' —G„...,.,(k, t) = ((X...&
—&X.„,)) 6(t) 6...,6...,

+t g pa, „",.„.(k')([x„...(k', t)x„,„"(k-k', t}, x, „(k, 0)]&e(t)
ts P pP pP t

(16)

and we have assumed I""'&0 [see Eq. (1)] so that
the system orders uniformly, i.e. ,

&x..(k)& = &x.,(0)& 6 o=- &x-& .
The expression in large parentheses is a 3j sym-
bol where m' = v' —p' = p" —g" and [l) =2l+ 1. The
Fouriex' transform of the nearest-neighbor pair
coupling [see Eq. (1)] is given as

r&'&(k') =zr '"~,, ,

From Eq. (16) we see that the equation for a
Green's function involves those of a higher order.
To find them one has to solve yet another equation
which contains Green's functions of even higher
order. This leRds to a hierarchy of equRtlons
which are not x'eadily soluble. Therefore, to find
the solution of G„„„„wehave used a decoupling1'1"1"g"a
scheme which is based on the random-phase ap-
proximation; that is to say, we make the following
approximation ' ln Eq. (16) ~

W, =(1/s)Q e*""

and the sum is over the z nearest neighbors. By
relating the operators X„„and X„„to the ct' (see
Judd'}, their thermal averages can be expressed
in terms of the dipolar, quadrupolar, and octopolar
order pax'ameters,

6, -=&st&

([X„.„.(k', t)X„"„"(k—k', t), X„„(k,0)] &

—= &x„...(k', t)& ([x„„„„(k-k', t), x„„(k,0)])

&x„"„„(k- k', t)&([x„,„,(k', t), x„„(k,0) ]&

+([x„,„,.(k, t), x.„(k, o)])6„,„„
—([x„-„.(k, t), x„„(k, .. . , 0)j&6,~, .

By assuming unlaxMl ox'del"lng, the thermal ex-
pectation value of the operator X„„ is
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(X„,„,(k', f)) = (X„,„.(k')) &„,.,
For a system that orders in a translationally in-
variant mode, this reduces to

(23)(X,.„,(k', f)) =(X„...) 6„...5,,0 .
By using this expectation value and the decoupling
approximation Eq. (21}we find that the equation of
motion for the Qreen's function Eq. (16) reduces to

+ ((X...,)
—(X...,)) g a...,, ;(k) G, .„.,(k, t), (24)

a„„,(0) =- Q (X„.„.) [a„,„,„...(0) —a„„„,„,(0)]
pP

= g [I]'"s I'"(0) (-)"' ' -(-)' '
i=1~2

—v& 0 v& —]Lt. ~ 0

Finally, by taking the Fourier time transform of
these equations and by using the definition Eq. (14)
of the time-transformed Qreen's function, we find

g [M „(k)—u&5 „]G„8(k, ~a) = e (25)

M„„(k)=-e.a.„(k)+a.(0) 5.„=M„„„.(k)

(26)

(27)

Equation (25) is identical in form to the one ob-
tained by Haley and Erdos. The only difference
is that the matrix iV „here refers to our Hamilto-
nian Fq. (1), which contains quadrupolar as well
as dipolar pair interactions ~

The matrix equation (25) represents a system of
(2s+ 1 —m)~ coupled equations for the excitations
n~ = p. —p. For spin —,

' and for the yv =1 excitations,
Eq. (25) represents nine equations for the nine-
unknown Green's function G 8(k, ~). The solution
to the matrix equation is found by multiplying both
sides of Eq. (25) by the inverse of the matrix
(M- ~); we find

G 8(k, ~~) = (M- ~~)J~e, = e8 c8 (k, ~)/D(k, ur),

(28)
where D is the determinant of the matrix (M- &u)

and ea is a cofactor of the determinant. When we
calculate the matrix elements M „and ez for
(a, p) =(--.', ——',), (-,', ——.'), (-', , —,') we obtain the
Green's functions that give us the dynamical
susceptibility for m = 1 excitations, Eq. (13).

We have evaluated the matrix elements M „
for spin- —'„~=1 excitations and find

1
M» = ——,[a(l —y,) e, + ee, + be, ],
M2g — 2 [2 (a+ b) (e, + e~) + e (1 —y ) ez]

1M„= —a[beg+ ee~+ a(1 —y, ) e,],
1 (1)M» =m» =-, PS~I' &e2y, ,

1W„=-,&3zl'"& e, y, ,
1m„=-, ~sz I'"~e, ~, ,
1

Msi= & bes&a
1M„=-, be, y, ,

where the indices 1, 2, 3 refer to the transitions
( 2p ~2)p (2)i 2)p (pt 2), and a = &"'/I' ' (this
n should not be confused with the index n). The
y~ is defined in Eq. (19), and the remaining con-
stants are defined as follows:

and

a = (1+ —', a) z I' "',
b = (- 1+ —,

'
u)z I'@-', (30)

The coefficients e defined by Eq. (27) are

eg = s W5(6g+ v 58g+ 20')

e, = 5 &5(G, —3e,), (31)

e, =-,' v 5(o, —v 5o, + 2e, ) .
The 0, are the parameters Eq. (20) that describe
the ordered phase when T&T, or T&T„. They can
be determined self-consistently by taking appro-
priate combinations of the Green's functions Eq.
(28). ' However, in Sec. III we resort to the
simpler procedure of using order parameters cal-
culated in the mean-field approximation. For
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spin ~ the dipolar and quadrupolar order parame-
ters have already been calculated by Sivardiere
and Blurne.

The general solution to the susceptibility 1,(k, &u),

Eq. (13), is rather complicated, as it involves a
cubic equation in the frequency ~. However, for
special cases of interest to us this equation can
be factored and the solutions are simpler.

III. EXCITATION SPECTRA

The excitation spectra, for a spin--,' system with
only quadrupolar interactions, I' "'= 0, have been
determined previously. '5 Let us now determine
the effects of dipolar pair interactions n 40 on the
spectra. In general, there are no simple rela-
tions between the order parameters 6, , 6z, and

63, and the expression for the susceptibility of
Eq. (13) is formidable. However, in the limit of
weak dipolar interactions where a «1, i. e. ,
I ««I «2~, and for low temperatures T&T„«T„
we find in the mean-fiel. d approximation that"

FIG. 1. Thermal variation of the order parameter s M
=&58& and Q=—28& for spin & and for I' ) &&1"' ) &0 in the
mean-field approximation (see Sivardiere and Blume,
Ref. 3). Note that Tz, is much less than T,.

for m =1 excitations for T& T~ is given as

A, (k) A (k)

where

A, (k) = —v 5e, +3[—,'(e, )'(1 ——,
' a) y, +2(n, )'(1 —y,)]/(), ,

~,(k) =-,'ar")f-,'&5t, [(1+f o)~, 5 o]+~),
81 —363, (32)

where o, = —,W5 (3,)= 5)( 5M is given as the solution
the following self-consistent equation12:

= [9 (f)i)'(1 —5 ~)'&a

I= —,'ta.nh(-,' Pr "'M)

and P—= 1/kT As pointe. d out by Sivardiere and

Blume, ~ the quadrupole moment is constant at
these low temperature, T&T~«T;:

(33)

(34)

+ 4(t)2)'(1 —x,)(1 —s oy,)]'"
The spectral weight function A, (k, (()), Eq.

(2a), is found by taking the imaginary part of the
susceptibility Eq. (37). Since we have used re-
tarded Green's functions the complex frequency
is w+ i& with e =0+. By using the identity

Therefore, for e «1 and T & T~ we find from Eqs.
(31), (32), and (34) that

(39)

e1+ e3 —g &5 61 q

e1 —e3 —2 ~g ~

(35)
for x = ~ —&, we find that the spectral weight fune-
tlon Ay(k) (()) ls

A, (k, (u) = A, (k) &((u —(u, )+ A (k) &((u —(u ) . (40)

In Fig. 1 we show the variation with temperature
of the order parameters for spin- —' as determined
by Sivardiere and Blume3 in the mean-field ap-
pr oxima, tion.

As the coefficient e~ is approximately zero, it
follows immediately from Eq. (28) that

6 2(k, ur)-0

and that the matrix elements M&1 and 3423 are zero.
The expression for the susceptibility is considera-
bly simpler because of these cancellations. By
inserting Eqs. (29), (30), and the values of e
Eq. (35), in Eq. (28) we have evaluated the Green's
unctlons G11 & ~33 & ~13 &

and ~31 ~ By using them
in Eq. (13) we find that the dynamical susceptibility

We evaluate A, (k) and ~, by using the mean-field
values for the 6, ; we find that A„~,~ 0 while
A, cu ~0 for all temperatures. Therefore the
first term in Eq. (40) represents energy 8~, ab
sorted by the spin system from inelastieally scat-
tered neutrons with a probability proportional to'3

[A,(k)/(1 —e 6"+)]5(m —&u,). The second term cor-
responds to energy 8 I ~ I emitted by the system or
absorbed by the inelastieally scattered neutrons
with a probability proportional to [ I A (k) I /
(e 8 - —1)]&(&u —co ).

The sum of the two amplitudes satisfies the fol-
lowing sum rule:

= &[&-,(0), a;(0)])
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(41)

(t) (0)
Q(T&T) - T=Tg

(d)
- TpT&T

where we have used the definitions of A& and y, ,
Eqs. (2a) and (3a), and the commutator [st, sf]
=2s„5,~. From the expressions for A, (k) [see
Eq. (37)] we readily ascertain that Eq. (41) is
satisfied by our amplitudes

-0.5-
A, (k)+ A (k) = —2v 56~ . (42)

Since we have chosen our ground state to be I
——,',

6, is negative and the sum of the ampli-
tudes is positive.

To gain further insight into the response of our
system to m = 1 excitations let us trace the varia-
tion of the spectra with temperature. At T = 0 K

so that from Eq. (37)

A, =3, 4 =0,
~.= ~~F"'(1+f o,)(1 —y,),

(43)

Since we derived Eq. (37) on the assumption that
«&1, we note that in fact (d. is negative. The rn

=1 excitation spectra at T =0 K consist of only
one mode w, (k) which goes as k2 in the limit of
long wavelengths. This corresponds to a spin-
wave excitation from the ferromagnetically aligned
g~o~~d ~tate i-2, --,', . . .). As the temperature is
raised, 0& T & T„, the excited states of the Hamil-

gC] = IT/2

-1.0
0 re n 07t/Z7t OrVZ rt 0 W27t

ka ka ka ka

FIG. 3. Spectra of m =1 excitations for o. =—I' )/I'"'
=O. 1 for several temperatures: (a) T=0'K (b) a tem-
perature T in the range O& T& T& such that &~ (T)/&~ (O)

(c) T = Tz, and (d) a temperature T in the range Tz
& T & T, such that g~ (T)/o q (0) = ~,

tonian Eq. (1) become thermally populated Th.en
the system can emit m =1 excitations as well as
absorb them, and we find A is nonhero.

As we approach the second-order dipolar tran-
sition at T„, 6, approaches zero and we find the
amplitudes and frequencies of the spectral-weight
function Eq. (40) become equal in magnitude and
remain opposite in sign,

,=+l T"'[(1—~.)(1 —-' x)]"'.
We note that at T„ the dispersion curve is linear in
k in the long-wavelength limit for n&-. In Fig. 2
we show the variation of the amplitudes A, with
tempera, ture for k = v/2a. We note that A, de-
creases while A increa. ses (in a negative sense),
until T = Td, when they become equal in magnitude.
Since 6, =0 for T = T~ it follows from the sum rule
Eq. (41) that the amplitudes A, must be equal and
opposite if they are nonzero. We have also shown
in Fig. 3 the excitation spectra &u, (k) at T =0 'K,
T =T~, and an intermediate temperature such that
o, (T) = —,

' 6~(T =0 'K). We take particular note of
the change of the cosinelike dispersion curve at T
=0'K jnto a sjnebke curve as we approach the dx-
polar phase transition at T„.

In the temperature range T, —T —T, we have
only quadrupolar ordering and it follows that 6j
= 8, =0. Therefore, we find from Eqs. (31) that

ez+es =0, ez —es =2 F562,

FIG. 2. Thermal variation of the spectral weights for
m=1 excitations A, (A;) and A (k) at 0=7t/2a. By inserting these values in Eq. (29) we find Mzz



=M» =M» =0. As before, we find from EII. (28)
that C ~ =O. The remaining Green's functions are
found by placing the appropriate matrix elements
in Eq (.28) and we find the dynamical susceptibility
fol m = 1 excltRtlons fol T& & T & T is

susceptibility we calculate from EBLIS. (3) and (5} is
given as

}t,(f, ~) = -I 8'"df([8 '(I, f), s'(~, 0)]&e(f),

(46) s'(a) =+8'"'* [s (f)]'

[S+(i)] = 2v 3 [X I (&) +X Ix, Iyx(I')]

=2 W3 PX.(I},

(u. = O,zl'"'[ (1 —»)(1 ——', Ix»)]'" .
At T =T~, 8~ =——,

' and these expressions agree with
tllose foullli ill EXI. (44) fox' T = T~, I.8. ,'tile spec-
tra do not have Rny dlscontlnultles Rt T~. The var 1-
ation of 6~ with temperature for spin ~ has been
given by Sivardilre and Blume and we see from
Flg 1 thRt Rs T approaches T the quRdx'upolRx' ox'-

der parameter goes to zero continuously. There-
fore, both the amplitude A and frequency &, go to
zero as we approach T, . The variation of the
amplitude A is shown in Fig. 2, The excitation
spectrum Ido(k) is of the form shown in Fig. 3(d)
for T„&T &T,. Because the bandwidth of the curve
is proportional to 6x [see EII. (47)] this goes to
zex'o as we approach the second-order quadrupolar
phase transition at T, .

As dipolax' pair interactions increase and become
comparable in size to the quadrupolar interactions,
the two phase transitions approach one another,
and finally there is but one transition to an ordered
phase for which all three order parametexs are
nonzero. %hen & is not small the approximations
for the order parameters, EIIS. (32), (33), and

(34), are no longer valid. In particular, ex and
thus M2, „M&3 wiQ be nonzero so that the excitation
X»2»3 mixes with the other two, and the dynami-
cal susceptibility EII. (13) involves R, cubic ellua-
tion in the frequency w. The partial-fraction de-
composition of this susceptibility into simple poles
is difficult and we will not present the cumbersome
exp x'e 8810ns.

Finally, in the limit of only dipolar interactions,
i. e. , I"'~' =0, all three order parameters are non-
zero. The three m =1 excitations mix, and the de-
composition of the dynamical susceptibility in par-
tial fractions, i. e. , simple poles, leads to a very
cumbersome expression. The Eoge-Ey&g m =1 ex-
citations for general spin s have been previously
studied by Tahir-Kheli, ter Haar, and Callen. '4

and now Ix=(p., I) =1, 2; 1-=(-,', ——,'); 2=-(a, ——,').
tex'ms of tile Gl'8811 s fullctlolls EXI. (7) this sllsceP-
tibility is given as

g, (k, &u) =12 +G„(k, Id),

wllex'8 G~II Is glveII by EII. (14) Rlld Ix, P Rx'8 glveII
above. By uslllg EIIs. (26)-(28) Rlld by deconlpos-
ing oux result into partial fractions, we find the
susceptibility for m = 2 excitations is

a,(f ) A (a)

4 e/g, +e63

~.=«'"].l e» —» &l ~ [(l e»)'+ (&x)'(I —»)]"'],
(62)

The spectral weight function for the m = 2 excita-
tions follows from its definition EII. (2) in terms of
the above susceptibility,

A, (k, ~) =A..&(Id —Id.)+A 6(Id-Id ) .
%e xeadily find that the sum rule for this function,
l~ ei)

is satisfied by the amplitudes given by Eg. (51).
In the limit of no quadrupole interactions I"' '

=0, we find the m =2 excitation spectrum is dis-
pel 8lonless,

(d~ ———2 gag I

In the same way we determined the m =1 excita-
tion spectra for our system, EII. (1), we have also
found these spectra for m =2 excitations. The

X,(a) = —68 .
The lack of di.spex'sion in this limit is due to our
decoupling approximation. %here we include the
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(u, =+ o,zl "'(1 —y,)"' . (56)

This agrees with the xesults obtained previously. 4'5

%6 note for spin-& pure quadrupolar systems that
the m =2, k =0 mode is a Goldstone mode, i.e. ,
the spectrum is gapless. The amplitudes when
I"'=0 are

contributions of two m =1 excitations at different
sites to the susceptibility Eq. (49), we find that the
energies Eq. (55) are complex and depend on the
wave vector k. If we set the dipolax coupling equal
to zero, we find

x,():, )=-i I ~"&)([&'()', ))&',I):, 0)))e()),
(59)

~' =6X3ga, -3&2 ~
+3

By evaluating the appropriate Green's function we
find

The spectral weight function is readily found to be

W, (a) =+ 12o,/(1 —y,)"', A, (k, (d) =A, 5((u —(d.), (61)

and we note as k tends to zero that this amplitude
becomes infinite. This behavior is to be expected
fol R Goldstone Diode.

In the case when both dipolar and quadx'upolar
pair interactions are present, we find the ng =2
excitation spectra have gaps as long as there is
diyolar order, i.e. , 6110. At T=0'K, the ex-
pectation values e and e [see Eq. (52)] in the ground
state I

—&, —-„...) are e = —1 and e = 1, so that
Eqs. (50) and {51)become

A, = —36(301+C),') and ~, = —3C),'zI'" .
Since 6,' and 6,' are negative for our ground state,
both the amplitude A and frequency & Rl'6 posi-
tive. %6 ve1lfy thRt this Rmplitude satisfies the
SUHl x'ule

(56)
) 1 (2)(1 ~ +6 (1)

——,'zf'"'(1-'-, ~) .
We note that one of the spectra goes as k in the
long-wavelength limit and that they axe not gapless.
The excitation corxesponding to A, h{d is not ob-
served at zero temperature, as it coxresponds to
a ~n = 2 deexcitation from an excited state.

For finite temperatures e goes from —1 to zero
as one approaches the dipole phase transition at
T = T„and the amplitude A (A;) increases in mag-
nitude. If n is small then T~ & T, and one finds fox
T~ ~ T & T, that the amplitudes a,re the same as for
l ' ' =0, i. e. , they are equal and opposite. How-
ever, the magnitude of A(k) depends on the wave-
length of the excitation and may be very large, i.e.,
as k 0, A~(k) ))). Tile exclta'tloll spectl'u111 Ul

the region T ~ T, is given by Eq. (56) and we note
that it is linear in 0 in the long-wavelength limit.
Therefore, for m =2 as for m =1 excitations, we
find that the quadratic dispersion relation at zero
temperature gradually goes over to a linear one
for small k, as one approaches the dipole yhase-
transition temperature.

C. m=3

The spectrum fox' w = 3 excitatlons fx'om the
ground state [ ——„—z, . . .} is found from the sus-
ceptibility [see Eqs. (3) and (6)]

As this excitation corresponds to the transition
X„~ »~ we find that its amplitude and frequency go
to zero as T approaches T~. If a is small so that
T~ & T„ then A3 is zero in the quadrupolar phase,
l. e. , fox' Tg —T —T

y Rs well Rs fo1 T —Tq.
To arrive at these results we have used a de-

coupling approximation which neglects the possi-
bility that one can obtain m =3 excitations fx'om
three m =1 excitations at diffex"ent sites or from a
rn =1 excitation at one site combining with a m =2
excitation at another site. For this reason, we
find that the m =3 excitation spectrum is flat. If
one considers these two- and three-step processes
in calculating the susceptibility Eq. (60) one finds
the spectrum is k dependent a,nd that the energies
are comylex, i.e. , the m =3 excitations have finite
lifetimes.

IV. MSCUSSION OF RESULTS

We have used a random-phase approximation to
decouple the equations of motion of the Green's
functions. By using this apyroximation we ne-
glected multiple excitation processes which are
responsible for the finite lifetime of these excita-
tions and in some cases for their dispersion. When
one includes these processes one finds that the 6
functions in the spectral-weight functions are
broadened. In the case of m =2 and 3 excitations,
one finds these functions spread over a whole con-
tinuum of enexgies, i. e. , two and three spin-wave
bands. The random-phase approximation is most
drastic for these excitations as it neglects multi-
excitation px ocesses.
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In spite of these shortcomings inherent in the
random-phase approximation, we have found a com-
plete qualitative description of the variation of the
excitation spectra with temperature from T =0 K
through the dipole ordering temperature T~ to the
quadrupole ordering temperature T,. The excita-
tions given by A, (k) and w, are predominantly

Xp 3/p excitations from the ground state, w ith p.

=m --,'; these travel through the crystal with wave
vector k and energy Su&, (k). The excitations given

by A (k) and tu are from excited states of the sys-
tem p, to other states v with p, —v=m. When the

dipolar pair interaction is small compared to the
quadrupolar pair interactions, the single-ion pic-
ture of the level scheme is such that the levels

I —,') and I
—~) lie below the level I —,'), with I

——,') ly-
ing lowest of all. ' Therefore, in these cases the
excitations given by A (k) and ~ (k) correspond to
energy deexcitations, i. e. , u (k) is negative, even
though m is still positive. These excitations are
observed as inelastic scattering events in which
neutrons gain energy hi v I rather than lose it.

The m =1 excitations can be measured on real
systems by inelastic neutron scattering experi-
ments. The scattering cross sections are related
to the transition probability of flipping a neutron's
spin and this in turn is related to the spectral-
weight function as follows":

(63)

where o,'P=+ is spin up or down of the neutron and

A, '(k, ~) corresponds to the spectral-weight func-
tion we have calculated, Eq. (40). Since we as-
sumed our ground state was I

—s, —s, . . .), one ha, s
to scatter neutrons with spin up (+) off the system
to produce an m =+1 excitation at T =0 'K. From
Eq. (63) we note that at T =0 'K, the transition for
the m =1 excitation corresponding to ~ (k) &0 is
not seen even if A (k, ~) w0, because the term e "-t'r
in the denominator is infinite. At finite tempera-
tures, neutrons with down spin as well as up spin
are inelastically scattered from thermally excited
states.

The m =2 excitations can also be measured from
inelastic neutron scattering experiments. How-
ever, it is the spin-independent part of the cross
section that one should look at. Through their
mass-interaction term neutrons create phonons

which, through the orbit-lattice interaction, create
m =2 quadrupolar excitations. ' Thus, one should
repeat our calculations with the orbit-lattice cou-
pling included to determine the m =2 susceptibility
which yields the proper spectral-weight function for
the spin-indePendent neutron scattering cross sec-
tion. The m =3 excitations are still harder to ob-
serve.

In real systems the pair interactions are not
isotropic. However, from previous work ' it is
not difficult to determine how the spectra we have
found are changed when one considers the effects
of anisotropy. Finally, we have presented results
for a system with spin —, with only dipolar and quad-
rupolar pair interactions. The presence of still
higher-degree pair interactions can alter our re-
sults. For example, if the octopolar pair inter-
action is sufficiently large, one finds that the
system undergoes a transition from a paramagnetic
phase to an ordered phase in which there is no di-
polar or quadrupolar order but only octopolar or-
der.

Also, we have specifically considered the ratio
of dipolar to quadrupolar interactions so that both
phase transitions are second order. However, at
first-order phase transitions the excitation spectra
and the spectral weights change discontinuously.
This is readily seen as these quantities depend on
the order parameters 6, which are discontinuous
at first-order phase transitions. For spin —,

' it is
possible that the dipolar phase transition is first
order. ' For spin greater than —,', both dipolar and
quadrupolar phase transitions can be first-order. '
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