PHYSICAL REVIEW B

VOLUME 13,

NUMBER 1 1 JANUARY 1976

Critical behavior of the electrical resistivity in magnetic systems*

S. Alexander,’ J. S. Helman, and 1. Balberg'
Departamento de Fisica, Centro de Investigacion del Instituto Politecnico Nacional, Ap. Postal 14-740, Mexico 14, D. F.
(Received 31 March 1975)

The effect of critical fluctuations on the resistivity near magnetic and order-disorder phase transitions is
discussed. It is shown that in all magnetic and electronic systems the asymptotic high-momentum spin
correlation functions dominate the temperature dependence of the resistivity sufficiently close to the transition.
The dependence on the parameters of the system of the critical behavior and the way in which this behavior is
approached is discussed in detail. In particular, the importance of the transition from a classical to a proper
critical behavior, for the interpretation of experimental results, is emphasized, and recent renormalization-
group results for the form of the correlation functions are utilized. For semiconductors the effects of
fluctuations on the band gap are also calculated. It is suggested that the Fisher-Langer relation between the
temperature derivative of the resistivity and the specific heat should be valid over a considerable temperature
range outside the critical region. Theoretical predictions are compared with available experimental results on the
resistivity and band gaps. It is shown that these results can all be understood, at least qualitatively, in the
Born approximation by using only the most general known properties of the system.

I. INTRODUCTION

In the last five years a substantial amount of ex-
perimental data has been accumulated concerning
resistivity anomalies in materials that exhibit mag-
netic and order-disorder second-order phase tran-
sitions.! These anomalies are usually character-
ized by the temperature derivative of the resistiv-
ity, dp/dT, in the vicinity of the critical tempera-
ture T,, and the data are fitted to a power-law be-
havior of the form dp/dT=At"*. Here, A is a con-
stant and ¢£=|T- T,|/T,. The resistivity anoma-
lies of elemental ferromagnetic metals for 7> T,
were explained by Fisher and Langer, ? while all
other systems where critical fluctuations interact
with charge carriers are not well understood, ! and
no adequate theoretical description which incor-
porates current understanding of critical fluctua-
tions is available. In particular the accepted anal-
ysis by Suezaki and Mori® of the resistivity in anti-
ferromagnetic metals involves unjustified approxi-
mations, and therefore has to be corrected. In
other cases it is sufficient to include in the accepted
expressions the correct form for the correlation
functions.

Magnetic metals and semiconductors show a
variety of behaviors. Insome cases the experimen-
tal results are consistent with existing theoretical
descriptions of the systems considered, while in
other cases the resistivity behavior is very differ-
ent from predictions. In order to demonstrate how
severe the confusion is, let us outline some ex-
perimental examples of the anomalies exhibited by
the four possible magneto-electronic systems.

a. Ferromagnetic metals, Some of the rare-
earth Laves phases* that are expected to show a
Fisher-Langer2-type behavior (A4>0, A=aq, where
a is the critical index of the specific heat) exhibit

13

this behavior while others exhibit an Ornstein-
Zernike® (or a de Gennes—Friedel®) type behavior
(e.g., dp/dT<0 for T>T,).

b. Antiferromagnetic metals. Experimental re-
sults on rare earths seem to be in accord with the
predictions of Suezaki and Mori® as far as the sign
of A is concerned, "~!° but the critical exponents
are not always in accord with this theory.” On the
other hand, for cubic antiferromagnets!!*!? such as
PrBg, GdSb, and HoSb, both the sign of A and the
critical exponents are different from those pre-
dicted by Suezaki and Mori, and fit a specific-heat-
type behavior of dp/dT.

c¢. Ferromagnetic semiconductors. Here only
the classical Ornstein-Zernike-type theory of
Hass!® exists. If only critical scattering is con-
sidered, this theory cannot account for the experi-
mental observations!#!% on CdCr,Se, and EuO that
show a peak in dp/dT at T, rather than a peak in p
at this temperature.

d. Antiferromagnetic semiconductors. For
both MnTe and FeO, an A>0 was observed!®!” and
for the latter a A= 0, 4 critical behavior was found.
This is clearly in contrast with the classical theo-
ry of Hass'® that does not predict any divergence
of dp/dT at T=T,.

In view of all this, a unified theoretical approach
that can explain, at least qualitatively, the variety
of critical behaviors described above seems to be
needed. The first attempt to examine the critical
behavior of do/dT for all four systems was carried
out by Kasuya and Kondo.!®* By using the energy
and spin sum rules, they were able to conclude that
in the critical region A = a for all four systems.
This is in contrast to expectations on the basis of
the theories mentioned above. Kasuya and Kondo
were also the first to note that a normalized Orn-
stein-Zernike function can be obtained by using the
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spin sum rule, and that this function has a qualita-
tively correct asymptotic behavior above T, and
can therefore be used to describe the fluctuations
just outside the critical region. However, since
their results were based on qualitative arguments,
they were not able to determine the critical be-
havior of antiferromagnetic metals, and in partic-
ular, to explain the discrepancy between their re-
sults and the results of Suezaki and Mori.® More-
over, the critical behavior outside the critical re-
gion, which is of prime importance in understand-
ing the experimental data, was not determined for
any system.,

In this paper we go further than Kasuya and
Kondo!® by using a similar but more uniform and
rigorous approach, and we determine in detail the
behavior of the resistivity for the above four sys-
tems. Using the recent understanding of the spin
correlation function'® we show the way in which the
t=* divergence is obtained. To determine the be-
havior of the resistivity outside the critical region,
we use our explicit normalized Ornstein-Zernike
functions.!” In particular, significant improve-
ment of the analysis of Kasuya and Kondo is
achieved here for antiferromagnetic metals and
ferromagnetic semiconductors.

In addition to this, we have used our approach
to determine, for the first time, the critical shift
of the bottom of the conduction band in semicon-
ductors. This shift can affect the number of car-
riers (and thus the critical behavior of the resis-
tivity) and the optical-absorption edge. By a de-
tailed comparison with experimental data, we show
that the present theory can explain all of them with-
out introducing any effects other than critical scat-
tering and band shifts.

The present problem is simpler than most dis-
cussions of transport coefficients near phase-
transition critical points because a static approxi-
mation for the fluctuations is usually adequate. On
the other hand, the important scattering processes
involve relatively high momentum transfers (con-
sistent with energy conservation) so that the as-
ymptotic, high-momentum, correlation function
should be important even in semiconductors. Con-
sideration of this correlation function leads to the
weak, energylike, divergence in the temperature
derivative of the resistivity. We shall show that
close enough to 7, (i.e., in the critical region) the
t-%, specific-heat-type divergence of dp/dT should
always occur. Outside the critical region a nor-
malized Ornstein-Zernike!” (OZ) type correlation
function is adequate, yielding a #-*2 type diver-
gence of dp/dT.

In Sec. II we describe the relevant properties of
the spin correlation functions which are needed for
our purposes. We discuss recent!® renormaliza-
tion-group results on the asymptotic high-momen-
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tum correlation functions. We also use the sum
rules to obtain reasonable forms for these corre-
lation functions beyond the range of validity of the
above techniques. In Sec. III the effect on the re-
sistivity of carriers scattering by critical fluctua-
tions is considered, and we show that close enough
to T, a Fisher-Langer, ¢ energylike divergence is
predicted in all cases, both above and below 7.
Outside the critical region, i.e., where scaling
does not apply, we can only use the known OZ cor-
relation function that is adequate for fluctuations
with small wave number ¢, and we account for the
large momentum transfer by normalizing this func-
tion using the spin sum rule!” which must always
be obeyed.

Since we give here the first discussion on criti-
cal resistivity in semiconductors and since in many
cases it is the critical effect of the carrier con-
centration that dominates the resistivity anomaly,
we have included a derivation of the critical be-
havior of the bottom of the conduction band. Our
findings do predict the way in which the optical-
absorption edge will shift, In the case of a ferro-
magnet, critical fluctuations will always introduce
a red shift with decreasing temperature, while in
antiferromagnets a blue shift is expected (except
for helical magnetic structures with very long pe-
riods). The critical behavior of the bottom of the
conduction band will be discussed in Sec. IV,

The experimental results mentioned above that
could not be explained before will be discussed in
Sec. V. It will be shown that within the frame-
work of the present approach these results can be
explained and that one can even get some ideas
about the magnetic interaction or the electronic
structure from the experimental observations.

I1. SPIN CORRELATION FUNCTIONS FOR CRITICAL
SCATTERING

The qualitative features of the temperature and
wave-vector dependence of the spin correlation
function I'(g, T) =<§, * S_,) have been applied to the
calculations of the resistivity in ferromagnetic
metals by Fisher and Langer? and more recently
by Kasuya and Kondo.!® Recently, detailed renor-
malization-group computations!® have also become
available. These will enable us to make the argu-
ment more quantitative and also less model depen-
dent.

For magnetic-spin models the energy is bilinear
in the spins while these have a constant magnitude.
Thus, one obtains the two sum rules:

2 T(q, T)=S(S+1), 2.1)

-2 JgT=U.

Here S is the spin magnitude, J, is the Fourier

(2.2)
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transform of the exchange interaction, Uis the in-
ternal energy, and the sum is over the Brillouin
zone. J, is, in general, a regular function of ¢
which falls off over a range k; in g. The value of
Ky is determined by the physical range of the spin
interaction. Expanding J, in ¢ and using Eq. (2.1),
one obtains a temperature-independent term
[Jo2T(g, T)] in U. It follows that close to 7,, where
the inverse correlation length « is small, i.e.,
where

K< Ky (2.3)
the temperature-dependent part of U,
SU==Y (J,~Jo)T(g, T) (2.4)

is dominated by the asymptotic high-gq correlation
functions (¢/«>1). One therefore expects the cor-
relation functions to have energylike leading di-
vergence close to the critical point.%!° This im-
plies that

T'a(g, )= Do(q) + Dy(q) sgn(T — To)t '™ - Dy(g)t ,
(2.5)

where Dy(q), Dy(q), and D,(q) are positive functions
of ¢ both below and above T,. Thus, for 7> T,
T'.s(g, T) has, at fixed ¢, a maximum at some
Tmax(q)> T.. On the other hand, since the second
term in (2, 5) is negative below T,, T'(q, T)is a
monotonic increasing function of 7. This actually
follows from Eq. (2.1) and the requirement that
the internal energy is a monotonic increasing func-
tion of T.

The energy is dominated by the true critical in-
dices only for very small {, However, condition
(2. 3) holds over a wider range, and the asymptotic
correlation function can therefore be expected to
have the same “apparent” indices as the energy
quite far from 7,. Explicitly, one expects the
Fisher-Langer? relation,

dr‘s ad—U—
dT — dT ~

G, (2.6)

where C, is the specific heat, to hold well beyond
the temperature range where the critical index «
is relevant. The only assumption is actually that
for high ¢, the temperature dependence of I" can
be approximated by a leading, g-independent, ap-
parent index. We believe that the surprising ex-
perimental confirmation of Eq. (2.6) over a wide
temperature range®*2! has probably an explanation
of this nature. Since in the following we will be
concerned with the temperature derivative of the
resistivity, we show in Fig. 1 the schematic be-
havior of dI',,/dT.

In discussing the resistivity we will need an ex-
plicit form for the correlation function. Above the
critical point when £>{;, where #; is the Ginzburg
temperature, 22 it seems reasonable to use a

dr|
dt
T>T¢
/me
0 t
Energy, = 0.2. 'Like
Like /
\v/\
/ T<T,
/
/
/
/
U

FIG. 1. Temperature dependence of the derivative of
the correlation function above and below 7.

normalized OZ form'”:
I'(q,)=C/(K®+ 4% ,

where «k =ky¢'/%. The normalization constant C is
determined from Eq. (2.1) to be

Cl=Cy-Ck,

(2.7)

(2.8)

where the exact values of C, and C; depend on the
boundary conditions (and the exact form of J,) but
the leading temperature dependence, #!/2, is not
sensitive to this. One notes that explicit diagram-
matic expansions also lead to similar corrections.
Sufficiently close to T, one can use renormaliza-
tion-group results.!® From scaling, one has

Glg, T) =Gt " D(x?) , (2.9)

where G, is a constant, ¥ is the susceptibility crit-
ical index, and x=¢g/x. Fisher and Aharony'® find
(to order €%, where € =4 —d, and d is the number
of dimensions) for the Ising model:

D(x¥)=[1+x%+0(x%]" for x«1 (2.10a)
and
D(x23)=(1/x2"")(0. 962 + 2/x =Y _ 3 /x1/¥)
for x>1, (2.10b)

where ¥, 7, v, and a are defined as usual.® As
will be shown in Appendix A, the asymptotic ex-
pression (2.10b) is valid for ¥210. Thus the
strong OZ-type infrared divergences are canceled
out in integration over this range. Only the as-
ymptotic temperature behavior (2.10b) for high ¢’s
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can show up beyond this range.

The above is important in discussing the resis-
tivity. The renormalization-group results that we
use neglect boundary effects and the interaction
between different points of instability in the Bril-
louin zone. For a ferromagnetic transition, this
implies a ¢ that is small compared to the dimen-
sion of the Brillouin zone. For antiferromagnets
or spiral structures, the separation of the points
of instability may impose even more stringent re-
strictions on the validity of Eq. (2.10). [The wave
vector of the fluctuation (k) has to be much closer
to one point of instability than to all others.] Suf-
ficiently close to T, the transition to asymptotic be-
havior does, however, occur in the region where
the renormalization-group arguments are valid.
One can then use qualitative arguments, based on
Eq. (2.2), to deduce a similar temperature depen-
dence over the rest of the Brillouin zone,

Below T, the situation is a little more subtle.
The strongly_ divergent contribution of the order
parameter (S),

r(0,¢)=S)2ct28 (2.11)

where $ is the corresponding critical index, is

somehow canceled out by the finite terms in the
sum (2.1). We have already noted in connection
with Eq. (2.5) that dU/dT>0. This implies that

dly . _dTy, g

ar <~ @t (2.12)

for T<T,.
Thus the OZ approximation has the correct qualita-
tive temperature dependence. If one tries!? to cor-
rect for the sum rule (2.1), as we did above T,,
one violates Eq. (2.12). We were not able to con-
struct a simple approximation (which could replace
the normalized OZ approximation) below 7,. For
sufficiently low temperatures one can of course use
explicit low-temperature expressions for I'. Thus,
between this low-temperature region and the crit-
ical region, only the qualitative temperature de-
pendence of the resistivity will be given.

III. CRITICAL-SCATTERING EFFECTS ON THE
RESISTIVITY

In this section we will discuss the effects on the
resistivity of carriers scattering by critical fluc-
tuations in the four magnetoelectronic systems
mentioned in Sec. I. We assume throughout that
the lowest-order Born approximation is adequate
and that the time dependence of the fluctuations is
sufficiently slow that a static approximation can be
used. In semiconductors the resistivity depends
also on the number of carriers and therefore on
the effect of fluctuations on the band gap. This
contribution will be discussed in Sec. IV. On the
other hand, for antiferromagnetic metals, the ef-
fects of the superzones below T, are only discussed

briefly.

It is convenient to write a general expression for
the resistivity in the form?®

pas= 2 | fos®OT(E, ), (3.1)
[+3

where for the isotropic part (3}ape.) and for small
wave vectors k we can make the approximation
Yo faa(K)c |K |, The limits of the integration are
determined by energy conservation. We write Kk
in Eq. (3.1) for momenta measured from the origin
(while the q’s are measured from the relevant
point of instability). We will retain this notation
below.

A. Ferromagnets

In this case, c’1=i, and for a spherical Fermi

surface we can write
2kp
pec) dg a°T(g, T), (3.2)

where kp is the Fermi wave vector. For semicon-
ductors one should replace kz by the thermal wave
vector Ry, As was first shown by Fisher and
Langer, 2 and as we show explicitly in Appendix A,
for the I given in (2.10), this always leads for
sufficiently small ¢ to

(3.3)

This assumes, however, that the asymptotic ex-
pressions (2, 10) are valid, i.e.,

2kp 210K . (3.4)

On the other hand, the classical normalized OZ
correlation function!” (2. 7) can be used in Eq. (3.2)
for ¢>¢;. This yields

p[1/(Co = Cy)] {2k - k% 1n[1 + (28 /x)?]} .
(3.5)

Several possibilities are predicted by Egs. (3.3)
and (3.5). If Eq. (3.4) is still valid at ¢;, one has
a transition from a Fisher-Langer?-type behavior
[Eq. (3.3)] to a classical behavior:;

4p o pir2 | (3.6)
This is very important experimentally, because
one expects an intermediate “apparent index,” «

S 253, in the transition region. One notes that the
specific heat depends on the same correlation func-
tion, so that the proportionality of dp/dt and C,
may still be valid beyond #;.

If By (or kyy) is relatively small, there are two
other possibilities, as can be seen from Eq. (3.5).
For large ¢ this equation leads to a de Gennes—
Friedel-type behavior,®i.e., p increases with de-
creasing ¢ as #(Inf). This predicts a maximum in
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p at some temperature £, and below ?,, ,de-
creases with decreasing ¢ as

px(Cy— C1K)-1 . (3.7)

Some values of ¢y for interesting values of kgz/A,
where A is the effective radius of the Brillouin
zone, are given in Table I. These values were de-
rived by using the dimensionless parameter 7 =(ky/
2kg)?t. For metals one expects kr= A and thus, as
can be seen from Table I, the de Gennes~Friedel-
type behavior is not expected to be observed and
the temperature dependence will be the one shown
in Fig, 2(a); however, it should be observed in
semiconductors, where ky << A, If (By/K)V" =t
<tg, requirement (3.4) does not hold at /; and this
implies a nonclassical region that has a de Gennes—
Friedel type of temperature dependence, #2“(Int).
If ¢,,>!; one expects, with increasing £, a transi-
tion from a (3. 3) type of behavior to a (3.6) type
of behavior and then a transition to a de Gennes-
Friedel type of behavior. This situation is shown
in Fig. 2(b).

We have already noted that the divergence due to
the #2® dependence of (S)2=TI'(0, ¢) is also canceled
out, at relatively small g, below T,, and it does
not affect the high-q correlation function. Thus
the indices below 7, are also energylike. A de-
tailed discussion is, however, complicated be-
cause of the possibility of transverse modes (spin
waves) and also because the correlation functions
are not as well understood. Thus the dashed
curves in Fig, 2 describe the regions where the
critical behavior of the resistivity below T, is
known, as far as their qualitative temperature de-
pendence [from consideration of the monotonic in-
crease of I'(7T)] is concerned, but not as far as
their exact critical indices are concerned.

B. Antiferromagnets

General expressions for the resistivity in anti-
ferromagnetic metals were derived by Suezaki and
Mori.® Their results were recently revised by
Kasuya and Kondo.!® These authors showed that
the critical effects of the resistivity are very sen-
sitive to the shape of the Fermi surface and the
position of the antiferromagnetic instability in the
Brillouin zone (‘3). They also use a more realistic
form for the spin correlation function. Their dis-

TABLE L. ty as a function of kg/A for xo/A=4%.

kp/A T tu
0.01 2x 10 3.2x10°°
0.1 5x 10 8x10%
0.5 4x10°2 0.16
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FIG. 2. Temperature dependence of the resistivity as
predicted by the present work for: (a) a ferromagnetic
metal, (b) a ferromagnetic semiconductor, (c) an anti-
ferromagnetic metal, and (d) an antiferromagnetic semi-
conductor. The dashed curves below T, indicate that the
qualitative behavior was predicted but not the critical in-
dex. tg corresponds to the Ginzburg temperature, and
ty is the temperature where p has its maximum value.

cussion tends to overemphasize the importance of
the shape of the Fermi surface in determining the
qualitative features of the result and can be mis-
leading below T,.

For simplicity we assume a spherical Fermi
surface and discuss here only the isotropic part of
the resistivity p;s,. The anisotropy is discussed
in Appendix B. In analogy with Eq. (3.2) one then
has

piaoociEj ]§+6‘|I“,d3q ’

where the @, are the points of instability in the
Brillouin zone. Equation (3. 8) can also be obtained
from the expression of Ref. 3 if one computes the
isotropic part of the resistivity (pyso=3Ju Puu)-

Note also that for cubic crystals there is no anisot-
ropy in p (above 7,). In Eq. (3.8) the range of in-
tegration is limited by the constraints

|§+§¢| '<‘2kF ’

(3.8)

(3.9)

|§+Q-Ql >q, (3.10)

and the requirement that §+@Q, is in the (first)
Brillouin zone., In Eq. (3.8) we have associated
the fluctuations at each point in the reciprocal an-
tiferromagnetic lattice with the nearest instability.
This is the condition described by Eq. (3.10). The
inequality (3.9) is the condition for elastic scatter-
ing and will at most exclude some corners of the
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zone when 2kp > Ié, |. For proper antiferromag-
nets, Q, is on the zone boundary, and the inequali-
ties (3.9) and (8. 10Lrestrict the integration over
q to the region ¢<|Q; I. This amounts to a re-
striction on the angular integration of §. Perform-
ing the angular integration, one can write
pe:20@ [ Fia/QTog*da, (3.11)
where p is the number of distinct points 6, and @
=1Q; |. Here the function Fo(¢/Q) describes the
angular integration and is thus given by

Fola/Q-(1/Q [ a,|&, +dl (3.12)
where dQ, is the solid-angle element.

For example, if one considers the MnO-type
magnetic structure where the 6,’5 are on the faces
of the Brillouin zone, the integration can be per-
formed over the range —1<cosf<0. A section of
the Brillouin zone for this structure is shown in
Fig. 3. Integration of Eq. (3.12) in this case
yields

Fo(x)=[(1 + 222 = (1 - x)?]/3x . (3.13)

The temperature dependence of Eq. (3.11) when
(3.13) is used can be easily seen by expanding
(3.13) around x=0,

2,3
Fox)=1-2+ 5, X 4 oY) .

2T+ g (3.14)

This expansion is quite adequate in the range of
interest (x<1), Suezaki and Mori® derived their
results by retaining only the leading term (1) in
Eq. (3.14). They then evaluated the integral (3.11)
in the OZ approximation., This is clearly inade-
quate.

(111) (111)

(111) (111)
FIG. 3. A section of the Brillouin zone of a MnO-type
magnetic structure, along the (110) plane. Q,- is one of
the magnetic reciprocal-lattice vectors.

Above T,, the leading term of (3. 14), in the in-
tegral (3.11), leads just to the spin sum rule and
is therefore temperature independent. The tem-
perature dependence of p is therefore determined
by the higher-order terms. In the present ex-
ample, and in fact whenever @ is large enough (see
below) and 2k > @, the next-to-leading term has
the de Gennes—Friedel form®

J.l"qqsdq , (3.15)
but with a negative sign. The other terms will
yield higher powers of ¢ in the integrand. As in
the ferromagnetic metals, it follows that the di-
verging small-q region in I';, does not contribute
for any interesting value of k. Thus, the resis-
tivity reflects the critical behavior of the asymp-
totic high-g correlation function. Since the leading
term (3. 15) has a negative sign for =<1, the sign
is reversed compared to the ferromagnetic cases,
in agreement with the sign of Suezaki and Mori.
The resistivity will thus be a decreasing function
of temperature, with

dicc_t'a

aT (3.16)

for T>T, .
The generalization of this result is straightfor-
ward. In general,

P | FRITE, T aR=2 [ 7@ +DT@dd,
! (8.17)
where f(K) includes both Fermi-surface and inter-
action effects. Angular integration then leads to
the form (3.11) where the only assumption is that
I'(@) can be considered isotropic, at least for small
gq. Thus, quite generally,

pmfxpf F(q/Q)T.q%dq , (3.18)
where
Fla/Q)- [ aa,f@+d, (3.19)

and the temperature dependence is always deter-
mined by the asymptotic I', sufficiently close to
T.. One notes that the sign of the divergence at
T, depends on the sign of F(x) - F(0) for x 51.
While this argument is quite general, the range
for which the exponents are those of the asymptotic
correlation function can be very small. This
would, for example, happen in the highly anisotrop-
ic case considered by Kondo and Kasuya, '® which
has features analogous to those of the ferromag-
netic semiconductor. A discussion of this case is
given in Appendix C.
The case we have considered above is that of the
“proper” antiferromagnetic metal, where @ is
close to the zone boundary and smaller than 2kg.



310 S. ALEXANDER, J. S.

There are, of course, other possibilities. When
Q> 2kg the integration in Eq. (3. 8) is restricted to
a region of relatively large g. This is the case for
semiconductors, where this region is given by
IQ+q! ~2ky,<< Q. In this region the correlation
function is a slowly varying function of ¢ and there-
fore pxTq and p has an “energylike” divergence
proportional to C,. Another case is that of a small
Q close to the center of the zone. Since Eq. (3.8)
approaches the expression for the ferromagnets as
@— 0, it is clear that the small-@ behavior is at
least qualitatively ferromagnetic. Thus dp/dT
changes its sign as a function of @ for small @’s
and as a function of k; for large @’s.

Outside the critical region we can again use the
normalized Ornstein-Zernike correlation function
[Eq. (3.5)]. The first term in Eq. (3.11), when
the expansion (3. 14) is used, leads to the spin-
sum-rule integral and gives a constant contribu-
tion to the resistivity. The next term in the re-
sistivity is proportional to

-1 Q qs 20
AL ), U FEE (8.20)

and thus yields a ( - £}/2) dependence of the resis-
tivity (see above). It should be noted that the sign
of #1/% will follow the sign of #!*® in all the cases
considered above. Thus, above T, the tempera-
ture dependence of the resistivity for “proper”
antiferromagnetic metals will be as shown in Fig.
2(c), and for antiferromagnetic semiconductors it
will be as shown in Fig. 2(d).

The behavior of the resistivity below 7, is by far
more complicated mainly because of the complica-
tions introduced by the #8 temperature dependence
of the order parameter and the appearance of new
gaps due to the reduction of translational symme-
try. Sufficiently close to the transition tempera-
ture the order parameter (§) is small and can be
treated by perturbation theory. Therefore,

’ -
px @@+ [ 1a+dIT,a%, (3.21)
where the prime indicates exclusion of the point ¢
=0 from the integral. Thus,

1 -
me((§>2+J quaq>+J(li+Q| -Q)T,d%; .
(3.22)

The first term is a constant due to the spin sum
rule, and we have already shown that the second
integral involves only the asymptotic correlation
function, The sign of this integral depends again
on the magnitude of . It is important to note that
it is always the same below and above 7,, Thus
the resistivity has a #!** continuous behavior at
T., and there is no cusp in the resistivity. This be-
havior is described in Figs. 2(c) and 2(d).

Treating the order parameter in the Born approx-
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imation is no longer legitimate when (§) becomes
large. Even though dp/dT<0 for T<T,, it is nec-
essary that p— 0 when T-0. This comes from the
monotonic temperature dependence of the correla-
tion function (see Sec. II). We could not, however,
find any simple approximation (such as the normal-
ized OZ approximation for T> T,) for I, when T

< T, which would describe this behavior. The be-
havior in this region is indicated in Figs. 2(c) and
2(d) by the solid curves in the range where (§) can
be treated as a perturbation, and by the dashed
curve where this treatment is not legitimate.

IV. CRITICAL BAND SHIFTS

In this section we deal with the effect of the crit-
ical spin fluctuations, on the conduction band in a
magnetic semiconductor. This effect has bearing
on the critical behavior of the resistivity, since
the number of carriers may depend on the position
of the bottom of the conduction band. For example,
if the donor level is not affected by the critical
fluctuations, the number of carriers is related to
the energy shift AE of the bottom of the conduction
band by

n=nyexp{[ - (E,+ AE) /2k,T]}, 4.1)

where n, is the concentration of donors and E, is
the activation energy for T< T,. Experimentally,
however, it is the temperature dependence of the
optical-absorption edge that can reveal the critical
behavior of AE,

A. Ferromagnetic semiconductors

The problem of the band shift of a ferromagnetic
semiconductor due to spin fluctuations was already
studied although without emphasizing its critical
behavior.?* Above T, and in the second Born ap-
proximation, the energy shift of the level corre-
sponding to the momentum %% is?*

(cz/m] fA s [ T, ]
[0 [ B
4(211') 0 q (E;—E;_a) ’
where E;=%%k?/2m*, m* is the carrier’s effective
mass, § is the volume per spin, and G is the de
Gennes—Friedel® interaction constant between the

carrier and the ion spin. Angular integration in
(4. 2) gives

(4.2)

_=m*G¥/9Q) f" q+2k
AE—W A dgql',1n a-2% | (4.3)

Using the spin sum rule (2. 1), this yields

_ m*G¥/9) m*(G%/Q)
AE=- =gy S8+ o
A
94 _y, | a2k )
XJ; dqq(k In 72k r,. (4.4)

Separating the integral into the two regions ¢<2k
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and ¢> 2k allows the following approximation. In
the first region, we can write

g2k | _ [_q_ l(i)a....]
In g2k =2 55 T3\35) * , (4.5)

and thus the leading term in the integral will yield
a - £ type dependence of AE, In the second re-
gion, considering that I'j o« + t'=* for finite ¢ and
that the integral is positive except for a small re-
gion around 2k, the integral is proportional to
+#"% This contribution is with a larger coefficient
than the corresponding coefficient of the first re-
gion, All this is true for #< A, which is the case
for semiconductors. Thus, in the critical region
for T> T, we obtain

d(AE) _

a7 +27% (4.6)

Outside the critical region and for 7> T, we sub-

stitute the normalized OZ correlation function
(2.7) into Eq. (4.2), obtaining

™ |
AE:—H(J. dx lenl x+2k/K
0 l+x

x-2k/K

x+2k/K
x-2k/K

), wn

b x
- dx In
fA/k 1+x2

with H=m*(G%/Q)S(S+1)/[8%%k(A - 37k)]. The first
integral is just 7 arctan(2k/x). Since A > 2k and
A/k>1, we can, for the second integral, use Eq.
(4. 5) and the expression (1 +x%)'=1/x%-1/x*

+e+es . Thus

AE =~ H[marctan(2k/k) + O(k/A) + O(K3/A%)] .

(4.8)
The power-law behavior of AE can be easily de-
duced from Eq. (4.8) for the two cases k/2k<«< 1
and k/2k> 1, Since AE is proportional to (1
+3mKk/A)(m/2 - k/2F), and in semiconductors A >k,
we will get in the first case AEx +¢'/2 and in the
second case AEx — k/koc — t™1/2,

It should be noted that the bottom of the band it-
self (k=0) is a singular point where the second
Born approximation diverges when T approaches
T,. This can be handled by a series summation, 34
For our purpose it is enough to consider a finite
k. In particular, for the resistivity, we are inter-
ested in the shift of the energy level associated
with ky,. Below T, the leading contribution to AE
comes from the first Born approximation?* and it

is proportional to the magnetization. Thus for T
< Tc’
d(AE) 81
ar <t o1, (4.9)

The temperature behavior of AE as a function of
T for the ferromagnetic semiconductor is sketched
in Fig. 4(a).

A k=2k

(a)

Y

(b)

FIG. 4. Temperature dependence of the shift of the
bottom of the conduction band in the vicinity of T,: (a)
for a ferromagnetic semiconductor, and (b) for an anti-
ferromagnetic semiconductor.

B. Antiferromagnetic semiconductors

In antiferromagnetic semiconductors the bottom
of the conduction band is not a singular point, and
so we restrict ourselves to the case £=0. Thus,
for T> T,, the energy shift in the second Born ap-
proximation is given by

AE~- - 2m*(cz/sz)z f

@5 Brq s 410

7 IQ:

The integral here is taken with the constraint

(3.10), and the condition that @Q; +§ is in the first
Brillouin zone. Thus
Q 2
AEsz dqql"qln% , (4.11)
0

where L =m*(G%/Q)p/4(27)1%Q (see Sec. IIB).
Using the spin sum rule we now get

AE=- (4m°L/Q)[S(S+1)]

Q — )2 2
+LJ; dqq(hl—z——-g-(g+g)+3q)1"q.

For ¢<Q one can use an expansion of In[(Q - q)%/
(@%+¢?)] in powers of 2¢gQ/(q%*+ Q%). This produces
negative terms of order ¢° or higher. Hence, in
the critical region the integral will be proportional

(4.12)



312 S.

to — 1", We do not have to worry about the re-
gion ¢= @ since I'y is almost a constant there and
thus the integral (4.11) does not diverge. For ¢
outside the critical region we can substitute again
the normalized OZ function into (4.11). If we keep
the leading term in the integral we now get

2 Q
AE:L(_ iﬂ_ﬁ(ﬁil_l - _g.z J‘ dqq3l-|q) s (4. 13)
Q Q" Jy
and thus
d(AE) -1/2
= o< =1 . (4.14)

Below T, in the critical region we can use the con-
siderations used in Sec. III. This yields a diver-
gence of the type d(AE)/dtcx —¢=*, It should be
noted that below 7, the sum in (4. 10) i_x.lcludes only
the specific reciprocal-lattice vector Q; which de-
scribes the actual magnetically ordered state.

The behavior of AE for an antiferromagnetic
semiconductor is sketched in Fig. 4(b).

V. COMPARISON OF THE THEORY WITH EXPERIMENTAL
DATA

As was clear throughout the paper, the theoreti-
cal predictions for the critical behavior of the re-
sistivity are practically limited to the determina-
tion of the critical exponent X and the sign of the
leading diverging term in dp/dT. The bulk of the
experimental data contains even less information.
Most of the data are concerned with a qualitative
characterization of the shape of p(7), as being of
a de Gennes—Friedel® type (dp/dT changes sign at
T,) or of a Fisher-Langer? type (dp/dT> 0 above
and below 7). In the relatively few cases where
critical indices were derived, attempts were made
to correlate them with the theoretical critical in-
dices. In view of the present analysis this proce-
dure should be questioned, since in principle any
a=X1=3 can be found, depending on the # range
over which the measurements were carried out.
Rather, it is the relation

dp
a7 C, (5.1)
that must be the criterion for comparing theory
with experiment. In this section we shall review
the experimental situation in the four magneto-
electronic systems, and discuss in particular the
“problematic” cases mentioned in the introduction.

A. Ferromagnetic metals

In the elemental ferromagnetic metals over the
range 10™*<#<10", relation (5.1) was found to be
in perfect agreement with experiment.2*? This
relation was obtained even though o was quite dif-
ferent from the common theoretical predictions.
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For example, in nickel for T< T, it was found that
a=-0.26+0, 06 rather than the theoretical value®
a=0.125, but relation (5.1) was confirmed and a
value X = - 0.3 was found.?® Thus the elemental
ferromagnets behave according to previous®!8 and
present expectations,

Among the rare-earth Laves phases®* (where the
sign of dp/dT was determined but not A) some show
a behavior expected for a ferromagnetic metal
[Fig. 2(a)], while others exhibit the behavior of a
ferromagnetic semiconductor [Fig. 2(b)]. In GdNi,,
which is the most thoroughly studied material, the
semiconductor-type behavior is very apparent, and
for £>10"! a quantitative fit to a de Gennes-Friedel
behavior was found.? The difference between the
behavior of the different phases becomes clear if
one examines Table I. Since the change of sign of
dp/dT for T> T, depends solely on kz/A (ky/A
should be practically the same for all these phases),
the above difference is just due to the difference in
the effective k5 that takes part in the critical scat-
tering process. We can thus learn from the pres-
ent analysis that in the different Laves phases stud-
ied, the dominant critical scattering. relates to -
carriers with different k. Table I explains further
why the elemental ferromagnetic metals, where kp
is large, exhibit the Fisher-Langer-type behavior,
while in the degenerate ferromagnetic semiconduc-
tor EuBg, where band effects are not important, a
behavior of the type shown in Fig. 2(b) was found. %

B. Ferromagnetic semiconductors

Apart from EuO, transport and optical studies
in ferromagnetic semiconductors so far determined
only qualitative critical behaviors of the resistivity
and the optical-absorption edge. In the many ma-
terials studied, a red shift in the absorption was
observed, ?" in accord with Fig. 4(a), and the re-
sistivity behavior was found to be in accord with
Fig. 4(a) and Eq. (4.1), or Fig. 2(b), or a com-
bination of both, 26=3!

The critical behavior was studied in more de-
tail in EuO. There, it was found®® that the red
shift above T, is proportional to £!**, Below 7T, it
was found®® that the carriers’ activation energy
varies as #° in the range 10"2<#<2x10", Since
the activation is from a tightly bound state to the
bottom of the conduction band, ** it indicates that
the optical red shift below 7, also has a #® depen-
dence. All this is in agreement with Fig. 4(a).
The experimental critical behavior of the resistiv-
ity due to variations of carrier mobility was not
studied quantitatively, but it is in accord with Fig.
2(b). The fact that it is the same for the highly
doped and the lightly doped materials, !* and the
fact that above 7, the results are in agreement®®
with relation (5.1), indicate a quantitative agree-
ment with Fig. 2(b).
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In addition to these agreements, our results can
provide the answer to the question raised by Oli-
ver et al.'® as to why the peak in the resistivity in
EuO does not move with decreasing doping for
samples with carrier concentrations of less than
2x10'® cm™® while it does move for samples with
higher carrier concentrations, Table I shows that
for this low carrier concentration the peak should
shift by less than 1072 °K (much less than the ac-
curacy of the measurements of Ref. 15), while for
the highest concentrations used, a shift of the or-
der of 10 °K should be observed. All this is indeed
in agreement with the experimental results.

In CdCr,Se, the predicted red shift was observed
and the transport measurements indicate that the
changes in transport coefficients are due to car-
rier-density variations rather than to mobility
variations.!* Preliminary measurements of the
critical resistivity®! indicate that very close (¢
<10°%) to T, the resistivity is dominated by critical
scattering, i.e., po #!** both above and below 7,
while further out from T, the critical resistivity
is dominated by the change in carrier concentra-
tion and is in agreement with the expectations from
Fig. 4(a). Thus, in accord with previous analy-
sis, 14 it can be concluded that the large changes of
the transport coefficients are due to the red shift
of the bottom of the conduction band.

C. Antiferromagnetic metals

As was pointed out in the introduction, both the
qualitative and the quantitative temperature depen-
dence of the resistivity are found to be different
for different antiferromagnetic metals. Some’°
(rare earths and Cr) exhibit the temperature de-
pendence shown in Fig. 2(c), while others!!s?
(PrBg, GaSb, HoSb) exhibit the temperature depen-
dence shown in Fig. 2(d). It is clear from the
analysis of Sec. III that the difference between the
two types of p(7) can be explained by the difference
in the effective &y of the carriers that participate
in the scattering process. Thus, it is not the de-
tails of magnetic and electronic structure that de-
termine the resistivity anomaly (at least for T
> T,) as suggested by Kasuya and Kondo, '® but rath-
er this effectiva k.

As far as the values of the critical exponents are
concerned, they have to obey relation (5.1) rather
than the relation predicted by Suezaki and Mori
(i.e., do/dTxt"'3), The apparent agreement of
the experimental results, say for Dy, ® with the
¢-1/3 dependence, must come about from a mea-
surement carried out in a transition interval be-
tween the classical and critical regions (see Sec.
III and Appendix C). That this is indeed the case
can be seen from the results obtained for Tb, where
a transition from a ¢#-'/2 to a #-* behavior was found
for dp/dT as T, was approached from above.” This

result is in quantitative agreement with the pre-
dictions of Fig. 2(c).

The behavior of p(7) for T< T, is explained in
our analysis on the basis of the general features
of the correlation function and the critical scatter-
ing without introduction of superzone effects on the
carrier concentration.® We cannot, however, ex-
clude the possibility that these effects determine
the detailed behavior of p(7) for T<7T,. Thus the
interpretation of experimental results only in
terms of carrier-concentration changes® is not
necessarily correct.

Our results for antiferromagnetic metals should
also describe the resistivity of binary alloys which
undergo order-disorder transitions. Again, for
large values of k; a behavior of the type shown in
Fig. 2(c) is expected, while for small k5 a be-
havior of the type shown in Fig. 2(d) is expected.
The order-disorder transition in Fe;Al does indeed
exhibit exactly the first type of behavior, 3* while
CuZn exhibits the second type of behavior. 3 (It
should be noted that in CuZn it is known that a
small % is formed around a H point. !¥) Thus, to
understand the behavior of these two systems there
is no need to invoke further details of the systems
as was suggested by Kasuya and Kondo'® for Fe,Al,
or to assume that there is something anomalous
about CuZn, as was suggested by Thomas et al. 3

D. Antiferromagnetic semiconductors

Of the four magnetoelectronic systems, this is
the least-studied system. The absorption edge
was found in general to exhibit a blue shift?”%® (for
example a-MnS, CoO, ZnCr,Se,). In the only case
where a red shift was found?’ (MnO) the results
were interpreted as due to excitation of localized
electrons rather than to the excitation of electrons
to the conduction band. 2’ It should be noted that
the results of Sec. IV were derived for the second
case.

The temperature dependence of the resistivity
was measured in some detail!®!7 in the vicinity of
T, only for MnTe and FeO. In both materials the
results were found to be in qualitative agreement
with the behavior shown in Fig. 2(d). In FeO it
was found that x=0.4+0,1 in the range 103 =<¢
=10 for both 7> T, and T< T,, which indicates
that this temperature range is outside the critical
region in FeO, since the above value of A is close
to the classical value (3).

APPENDIX A

In using the Fisher-Aharony!® result for the cor-
relation function (2. 9), it is convenient to use a
hybrid form G(x, y) which has the form (2. 10a) for
x<y and the form (2.10b) for x>y. To make this
consistent, y has to be chosen so that the energy
has the correct critical behavior, i.e., the leading
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divergence of dU/dT will not be stronger than -,
To do this let us first approximate the energy

sum rule

A
v-- [ 46, Dia*aq (a1)

by

K,
U=-4J, fo ° 6lg, T'g*dq . (A2)
Here we have approximated the exchange coupling
Jy, over the range 0=g=A, by a constant J; in the
interval 0=g¢=«, and by J,=0 for ¢>«,. In Eq.
(A1), A is the momentum cutoff (that can be taken
as the effective radius of the Brillouin zone). Now,
U should be of the form

U=A,+ At sgn(T - T,) - At , (A3)

where the A;’s are constants. If we choose y so
that the integral (A2) will yield the result (A3), we
can find a good approximation for G(q, T) over the
entire range of x. For this purpose consider inte-
grals of the type

Qo n
I,= fo r,q"dq (A4)
Using the

for n=2, Here @, is some finite cutoff.
approximation!® for G(g, T), we have

-7

1= [ 2 pa
")y l+x 9

% Gyt~ 2 3
+ —xnm 0.962+W—;177 q"dq .
YK
(A5)
By substituting g =x«,t”, carrying out the integra-
tion, and recalling the scaling relation® v=(2 - n)v,
one finds that

L= Ey(9)t ™" L By 4 Egt® — Byt (AB)

where E;(y) is a function of y, and E,, E;, and E,
are constants that depend on @, and x,. By re-
quiring E,(y) =0, we have determined y. We find
that y=10. 5, and that the mismatch of the two parts
of the approximate function at x=y is 7%.

From the result (A6) it becomes apparent that
for any =3 (and also for n=2 if @,>yk), the lead-
ing divergence in dI,/dt is proportional to #°°,
This is of importance in this paper since in the re-
sistivity calculations we encounter integrals of the
form (A4).

APPENDIX B

The isotropic resistivity ps, is defined by

1 - .
plso=§z puumle*'qlqzrqdq' (Bl)
[’

The proportionality follows immediately from the
expression of Suezaki and Mori?® in the static ap-
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proximation. The transverse resistivity p, is giv-
en by
43in%6
pyot f 48109 1 4qd(cosh) . (B2)
1Q+ql
Thus,
1 4
plm+-é- qT.dq , (B3)

to lowest order in q/Q. Here @ is the magnetic
reciprocal-lattice vector which describes the mag-
netic structure below 7,. On the other hand,

Piso =5(pu +20,) , (B4)

where p, is the longitudinal resistivity. From Eq.
(B4) we obtain

Pu=3p4s0 = 2p; . (B5)

From Appendix A it is immediate that the leading
divergence of p, near T, is of the form +t1‘°‘, as
was first suggested qualitatively by Suezaki and
Mori.? Thus, it follows here that p, also has a
t'-* dependence.

APPENDIX C

It is interesting to analyze the highly anisotropic
case discussed by Kasuya and Kondo!® to see how
the transition to energylike critical indices comes
about,

We consider the longitudinal resistivity p, in a
metal with a pair of flat and parallel Fermi sur-
faces where |1Q| =2(kz),. As discussed by Kasuya
and Kondo, this situation is relevant to the rare-
earth metals, where Q is in the ¢ direction of the
hep structure. The general expression of Suezaki
and Mori® for antiferromagnets will take, for the
present case, the form

p,.oc'(dﬁdlzl";kﬁf;(l- 53 0 E;-Ezz),  (C1)
where f; is the Fermi function and E;:pz/Zm*.
From the definition k= - Q, one has to lowest or-

der

*
Py < (ki,-); I dapdsqrq(qu - Q)z

Xf;(l —fs_a,;)é(zépn +qu) , (C2)

where 6p, =p, - (kg)y. The leading term in Eq.
(C2) is

Py < Iél .[ daﬁdqu dq, q;l"qf((kﬁ)u 8pu)

X[l _f(( = kp)(qu + 5?..))]5(25Pn +qu) N

and thus

(c3)
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pc %Q J bLadp, q dq, danqf( = (kpan)

x[l -f(- (kz-')u%)] .

The Fermi function imposes a width on the ¢, in-
tegration:

(C4)

au S 2m*kg T/ (kg ), = k%h/(kr)ll ’ (C5)

where kg is the Boltzmann constant,
Thus the integration on § is effectively three-
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dimensional, and the integral has energylike di-
vergence for

K<k€h/(k1r)u . (C6)

This defines a much narrower energylike region
than the one we encountered for ferromagnetic
semiconductors. When Eq. (C6) does not hold, the
integral of  in Eq. (C4) is essentially two dimen-
sional, and therefore p, will be proportional to #¥.
Previous authors!® only consider this regime and
disregard the transition to energylike indices.
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