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In a spiral magnetic structure an aspherical magnetic moment distribution around the ions gives rise to a new
set of diffraction lines indexed as third-order satellites. Neutron-diffraction measurements have been made on
single crystals of holmium and a Ho,4Sc,; alloy to determine the magnetic structures as a function of
temperature, and measure the intensities of the third-order satellites. From these intensities the experimental
asphericity of the magnetization density is compared to that calculated with a single-ion model. The
agreement between theory and experiment is qualitative; the experimental intensities being larger by a factor of
~ 1.5. The temperature dependence of the third-order satellite is in good agreement with a simple model
proposing exchange splitting of the free-ion multiplet, with a negligible crystal-field interaction.

I. INTRODUCTION

Most of the magnetic properties of the heavy-
rare-earth metals are well accounted for by as-
suming that the 4f electrons are shielded from
the neighboring atoms, and that their large spin-
orbit interaction leads to Russell-Saunders cou-
pling. Following Hund’s rule the ground state for
holmium should therefore be described by the
spectroscopic state °I;, with an ordered moment
of 10.0py. The strong spin-orbit coupling means
that the unique axis of the magnetization distri-
bution is usually defined by the moment direction
J rather than by the crystal field. In contrast,
the aspherical spin densities in the transition
series are determined primarily by the crystal
field. The measurement of the asphericity of the
moment distribution of the rare earths in a solid
can provide a test of the validity of this “atomic”
picture.

As is well known, the asphericity of the mag-
netization can be investigated by measuring the
magnetic scattering amplitudes as a function of
K, the scattering vector. In general, these am-
plitudes are sensitive to both the spherical and
aspherical parts of the magnetization density, the
aspherical part usually being the smaller of the
two. In this paper we report an alternative meth-
od, first suggested for spiral structures by Blume,*
that measures only the aspherical contribution to
the magnetization density. As a consequence of
the spin-orbit interaction, both the charge and
magnetization density associated with the 4f elec-
trons are aspherical. The charge asphericity has
been the subject of a very careful x-ray experi-
ment by Keating.? In a sense the present experi-
ment is a complementary one, but, because the
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theory is less complex and the effects much lar-
ger in the neutron case, a more quantitative com-
parison can be made with theory.

In Sec. II of this paper, an account is given of
how the asphericity gives rise to new set of co-
herent diffraction lines from a spiral magnetic
structure. In Sec. III, the magnetic structure of
Ho and Ho, ¢Sc,_ , is reviewed. In Sec. IV, the
experimental results obtained for the asphericity
of the magnetization density are presented and
discussed.

II. ASPHERICITY AND THE SPIRAL STRUCTURE

Using the tensor approach® the magnetic form
factor of a rare-earth ion in a given |SLJM ) state
can be written as

P60 [T o Ko CannlTm) +Cnlizn)

(1)
where B is the angle between the direction of the
magnetic moment I and the scattering vector K.
The magnetic form factor is expressed in Eq. (1)
in terms of the Bessel transforms of the spin-
density distribution:

Gand = [ UGjlir)ar, @

where U(7) is the radial spin-density distribution
of the 4f electrons, and j,,(k7) is the spherical
Bessel function. The terms (j,,) have been calcu-
lated by the Hartree- Fock method® for the com-
plete 4f series and are presented for holmium in
Fig. 1. The coefficients ¢, appearing in Eq. (1)
are constants, characteristic of the |SLJM) state.
They have been reported® for all rare earths for
M=J and are given for all states of the lowest
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FIG. 1. (jy,) functions of holmium as given by Blume
et al. Ref. 4). (The (jg) function is less than § of (j,)
in this range of sinfg/A.)

multiplet of holmium in Table I. The coefficients
X,, in Eq. (1) indicate the angular dependence of
the magnetic form factor, as expressed by

1/2
X,,=2 ((2—71%-(%-——;”2) > [P,,(cosB) = P,,,,(cosp)],

3)

where P,, are Legendre polynomials. Both the
coefficients ¢, and the transforms (j,) rapidly de-
crease in magnitude with the increase of their or-
der; the lowest term represents the main portion
of the spherically averaged form factor and higher
terms describe the asphericity of the magnetiza-
tion cloud.

The terms in Eq. (1) may be rearranged to dem-

onstrate the dependence of the form factor on the
angle B. By expanding the Legendre polynomials
in Eq. (3), we obtain from Eq. (1).

£ (%, 8= 3 Ay () cos(@ng), (4)

where the coefficients A,, are linear functions of
the ¢, and (j,), with the leading contribution given
by €.y and (j,,) (Table II). The A,, terms also
rapidly decrease with increase of order n.

In Eq. (4) the spherical (»=0) and the aspherical
contributions to the form factor are well sepa-
rated. If each of the terms A, could be measured
independently a considerable amount of informa-
tion about the electronic state of the system could
be obtained. Such a separation is indeed possible
if the magnetic moments are arranged in a spiral
structure.! In such a magnetic structure the mag-
nitude cross section is proportional to

dG - _ R .
as Oc(zux—zlﬂlf('(,ﬁr,)ew"
L

- - ) 2
+ T Bt et ) (5)
L

All the magnetic moments lie in a plane; the
structure consists of ferromagnetic layers, with
the moments on the Lth layer at an angle ¢; from
a projection of ¥, the scattering vector, on the
ferromagnetic layers. The form factor in Eq. (5)
can also be expressed in terms of ¢;, by using the
simple transformation property

cosp, =cosé cosgy, (6)

where 0 is the azimuth of the scattering vector
from the plane of the spiral; see Fig. 2. (Note
that we use 65 for the Bragg angle to avoid con-
fusion.) Equation (4) then takes the form

@B =3 Bonlk, 6) cos(@ndy), )
n=0
where the terms B,, are obtained from the coeffi-
cients A, by a simple geometrical transformation
(Table II). The coefficients B,, retain the main

TABLE I. Coefficients ¢, for holmium in the magnetic state 518‘ (To compare with Table II

of Ref. 5 multiply by V6 .)

M ¢y cy cy Cq Cg cq

8 4.0825 2.5039 -0.3055 -0.2777 +0.1251 +0.1463 -0.1126
7 3.5722 2.1909 -0.0764 —0.0694 -0.1095 -0.1280 +0.2815
6 3.0618 1.8779 +0.0764 +0.0694 -0.1251 -0.1463 -0.0338
5 2.5515 1.5649 +0.1637 +0.1488 -0.0469 -0.0549 -0.2139
4 2.0412 1.2519 +0.1964 +0.1785 +0.0433 +0.0506 -0.1291
3 1.5309 0.9390 +0.1855 +0.1686 +0.0999 +0.1167 +0.0650
2 1.0206 0.6260 +0.1418 +0.1290 +0.1059 +0.1238 +0.1862
1 0.5103 0.3130 +0.0764 +0.0694 +0.0662 +0.0774 +0.1516
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TABLE II. Coefficients Ay, and B,y,.

Ay=(2.450¢,) (Jo) +(2.450C,+3.435€3) (Jy) +(3.435¢4+4.256C) (Jy) +(4.256C;+4.954¢) (Jg)

Ay= (5.725€3) {Jp) +(5.725¢+7.945¢;) (jg) +(7.945¢¢+9.552¢7) (Jg)
A= (5.960C;) (jy) +(5.960C¢+5.386C) (jg)
Ag= (6.070¢,) (g

By=A,— A, sin®0 + A,(24 cos’0 — 4 cos?0 + 1) + Ay(136 cos®d — 144 cos?0 +9 cos?0 — 1)

B,= A, cos?0 — Ay(4 sin0) cos?o +Ag(15 cos’d — 24 cos?0 +9) cos?o
B,= A, cos'd — Ag(6 5in%0) cos’y
Bg= Agcosbo

properties of the A,,; i.e., their leading contribu-
tion is given by c,,,, and (j,,). Approximately, B,
represents the spherical component of the form
factor and is isotropic. The term B, represents

B

2 2

- - m —'i_. i - B i
rof (&, BL)=———M’ £ <Boe Ly -?ze Ly 22t e

+(complex conjugate terms).

the leading aspherical term and is proportional
to cos®d. Substituting Eq. (7) in Eq. (5), the mag-
netic moments of the Lth layer of a spiral struc-
ture can be expressed as

3i B . B, ... B, a;
e ’°L+ 24 es:¢>1,+ 2() 651°L+ 26 ezoL>

®)

The spiral is simple when ¢, =7+ ﬁL, with T the propagation vector of the spiral (normal to the plane of
the magnetic moment) and ﬁL the position of the Lth cell. The structure factor for the system can be ob-
tained from Eq. (8) by calculating the magnetic scattering amplitude associated with each magnetic mo-
ment, summing over all magnetic moments, and averaging over the neutron states. The final expression

for the square of the structure factor, in barns, is

B3

B;

1+sin%0 B? B2 B B?
| F=0.0725 “2—7—[@5*'4—)%%,*;.;* (& +—f>56hk,wm+<7“ * ‘f)"’% 2557 +(Tﬁ)6ahkm;,;],

where ém is a general reciprocal-lattice vector.
The first term on the right-hand side of Eq. (9)
represents the diffraction lines (satellites) that
are present even if the distribution of magnetiza-
tion around each atom is spherically symmetric.
The additional diffraction lines are due to the as-
pherical terms of the magnetization density. The
intensity of these terms is small compared to the
leading one; even for the most aspherical ions in
the ground state the ratio I,,,,,/I11-1 is of the or-
der of 107°-10"*, depending upon the magnitude of
k. However, the intensities of the third-order
satellites appearing at éhk, +37 can be detected and
have characteristics that determine their origin
as the asphericity of the ion. First, the leading
Bessel transform contained in these terms is (j,),
which goes to zero for k-0, whereas for structur-
al satellites (as we shall refer to satellites arising
from the spherical components of the magnetiza-
tion) the leading term is (j,), which increases as

(9)

r

k—0. Second, the intensities of the third-order
satellites drop to zero when the scattering vector
is normal to the plane of the spiral, 6 =7/2. Again,
this is in contrast with the behavior of the struc-
tural satellites.

So far, we have discussed the diffraction effects
from ideal spiral structures. In practice, mag-
netic spiral structures are seldom so simple,
usually exhibiting higher-order modulations that
result in additional diffraction effects. Such mod-
ulations, which can arise from crystal-field or
other anisotropic two-ion interactions, may give
rise to additional structural satellites which may
coincide with the third-order satellites arising
from the intrinsic single-ion asphericity. Of
course, associated with every modulation of the
spiral structure will be further satellites arising
from the single-ion asphericity. As discussed
previously these will be much weaker (by factors
of 102-10"%) than the structural satellites, so they



FIG. 2. Transformation of the angle 3, between the
scattering vector k and the moment direction 7 in
terms of the azimuthal angle 9 and the turn angle ¢ ; of
the spiral at the Lth layer.

may be extremely difficult to observe. The suc-
cessive complications that may arise in the dif-
fraction pattern are illustrated schematically in
Fig. 3. To study the asphericity of the 4f mag-
netization distribution, the magnetic ions must
not be spherically symmetric and the magnetic
moments must be arranged in a spiral configura-
tion. These conditions are best fulfilled for pure
holmium. At low temperatures, however, the
magnetic structure of holmium is not a simple
spiral.® Initially we had hoped that by diluting
holmium with scandium a simple spiral could be
obtained. As we shall see, this hope was unful-
filled. Most of the experiment was done on a Ho, g
Sc,,, alloy, with a few checks on pure holmium.

In view of the importance of the magnetic struc-
ture on the determination of the asphericity param-
eters, the magnetic structures of Ho and Ho, ,
Sc,,, are reviewed in Sec. IIL

III. MAGNETIC STRUCTURE

A. Previous work

The magnetic structure of holmium has been
the subject of extensive research by Koehler et al.®
Holmium has the hexagonal-close-packed atomic
structure and is antiferromagnetic below 133 K.
The magnetic structure is a simple spiral down
to ~50 K, with the propagation vector along the
c axis. Between 133 and ~50 K only first-order
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FIG. 3. Representation of some magnetic satellites
along the c* line of reciprocal space. In (a) first-order
satellites from the spiral structure appear at + 7 and
— 7 from the nuclear positions (denoted by 0 and 1). In
{(b) the aspherical magnetization density leads to third-,
fifth-, and seventh-order satellites. In (c) the effects
of bunching in the basal plane lead to fifth- and seventh-
order satellites. In (d) the total effects are represented.

satellites were observed, Below 50 K weak addi-
tional fifth- and seventh-order satellites were ob-
served. At 4.2 K the intensity of these satellites
was about 1072 times the intensity of the main sat-
ellites. Their presence was interpreted as due to
a bunching of the magnetic moments in the hexa-
gonal plane, a torque effect from the term P§ of
the hexagonal anisotropy (Fig. 4). In the bunched
structure, the angle of the Lth magnetic moment
with the hard hexagonal axes is given by

¢p=¢%+ ysinbdl ++« ¢, (10)
where ¢}, =7+R, with 7 the propagation vector of

the unmodulated spiral. The Lth magnetic moment
is given, approximately, by
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(a) (b)

(c)

FIG. 4. Projections of (a) simple spiral, (b) bunched
spiral, and (c) a bunched spiral with a moment modula-
tion.

IIL= u'x-zi-liz (ei‘l"'ﬂL_ % e-5?.§L

+%e”?'n"+'--)+c.c. (11)
This modulation of the magnetic moment directions
gives rise, by a procedure similar to that used to
obtain Eq. (9) from Eq. (8), to fifth- and seventh-
order satellites with intensities proportional to
¥%/4. Below 20 K the magnetic structure changes
from a spiral to a shallow cone with a ferromag-
netic component along the ¢ axis. The projection
of the cone in the hexagonal plane still retains the
characteristics of the bunched structure.

Much less work has been done on the alloy Ho, o
Sc,,,, previously available only in powder form,
although the magnetic structure is known to be a
spiral.”

B. Experiments

The experiments on Ho, ¢Sc, , were performed
with a single crystal cut in the shape of a paral-
lelepiped with dimensions 0.7 X1.4X 12 mm?®. The
longest dimension was parallel to a [10.0] axis,
the shortest parallel to a [11.0]. The crystal was
mounted with the longest axis perpendicular to the
scattering plane, measurements being limited to
(hh.l)-type reflections. The scandium content was
analyzed as 9.2 at. %, with no other major impuri-
ties present. The intensity measurements were
made with the neutron diffractometer at the Ames
Laboratory Research Reactor. The incident wave-
length was 1.18 A, obtained from the (103) planes
of a beryllium monochromator, with a collimation
of 10-min arc before the sample.

SINHA, AND SPEDDING 13

The sample of holmium was cut from the large
single crystal used by Keating.? Its dimensions
were 0.8 X0.8 X8 mm?, again with the longest axis
parallel to [10.0] axis, and the other two parallel
to the [11.0] and the [00.1] directions. Experi-
ments on pure holmium were performed at the
CP-5 reactor at Argonne National Laboratory.
The wavelength was 1.059 fk, obtained from the
(002) plane of a beryllium monochromator. The
initial sample was not magnetically homogeneous,
since at 4.2 K two series of magnetic satellites
with different pitch parameter were observed.

The inhomogeneity was removed by annealing for
one day at 600 °C.

Absorption, Debye-Waller, and extinction cor-
rections were made to the integrated intensities.
The absorption corrections calculated with the
standard Busing and Levy program® were small,
with transmission factors ~90%. At 4.2 K the
Debye-Waller correction is also small (~5%),
and a value of B=0.1 A? has been used to calculate
the temperature factor. The extinction correc-
tions are considerably more uncertain, and were
estimated from the variation of the nuclear inten-
sities and from the temperature dependence of the
magnetic intensities. For example, the 00.2° and
22.0" reflections both arise from the main spiral
component, so that the ratio of their intensities
(approximately 30) should be independent of tem-
perature. However, as the ordered moment in-
creases both reflections increase in intensity and
will be disproportionately affected by extinction.
Using the Zachariasen approach® the intensity is
reduced by the factor y =1/(1 +2gQ¢)'/?, where @
is the crystal reflectivity, ¢ the path length, and
g the extinction factor. The extinction factors y
were found in the most severe cases to be ~0.8.
The magnetic intensities have been placed on an
absolute scale by using mean nuclear coherent
scattering lengths of b=0.88 X 10~!2 and 0.85 x 10°!2
cm for Ho, ¢Sc,,, and Ho, respectively. Multiple
scattering effects were examined very carefully,
since triple scattering of the fundamental mag-
netic satellites can give rise to spurious satellites
of third order. The double scattering effects were
calculated, and fitted semiquantitatively to the very
weak experimental intensities appearing at the re-
quired positions. From these the triple scattering
was calculated and found to be negligible. A novel
diffraction effect, stemming from the intrinsic
multiple scattering of the innermost satellites,
was also found.'

C. Results

The magnetic structure of both holmium and
Ho,, ¢Sc,, , can be well described by the model pro-
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TABLE III. Magnetic properties of Ho and Hog ¢Sc, ;.

Description Hoy ¢Scy,1 Ho (annealed) Ho (sample B, Koehler)

Transition temperatures:

T et (K) 115 133

TBunching 2 (K) 35 ~42 ~42

T perromagnet (K) 15 1 20 1 19.0%1
Parameters at 4.2 K:

w, turn angle (deg) 41.6 0.2 33.3 £0.2 30.0

up, ferromagnetic 1.6 £0.1 1.7 £0.1 1.7

component (1p)

0, cone angle (deg) 9.2 +£0.5 9.8 =*0.5 9.8

Y (bunching) 0.15+0.01 0.144+0.003 0.16

Aup/w (moment defect) 0.03+0.01 0.019+0.003

2 Tgunching is the temperature at which the bunching starts to be visible in the diffraction
pattern, and does not correspond to a transition point.

posed by Koehler.® We give a summary of the
magnetic structural properties of the two samples
in Table III. Some of the low-temperature param-
eters of our sample of holmium, notably the pitch
of the spiral, do not agree with those given by
Koehler, presumably because these parameters
are sample dependent.®

In the analysis of the magnetic intensities, some
features were found that suggest a further refine-
ment of the Koehler’s model. The “reduced in-
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FIG. 5. Reduced intensities |F|2/[(0.2695f )2(1 +cos?%0))

of the fifth- and seventh-order satellites in Ho as a func-
tion of temperature.

tensities”—as we call the quantities |F [/
[(0.2695/)%(1 + cos?6)]—of the fifth and the seventh
satellites are not equal, but I, ~2I, as shown in
Fig. 5 for the pure-Ho sample. Very similar re-
sults were obtained for the Ho, Sc, , alloy. Ac-
cording to the description of the bunching given in
Egs. (10) and (11), and in Ref. 6, the reduced in-
tensities for both satellites should be equal to y%/4
in the first approximation. The introduction of
higher-order terms in the expression can indeed
make the reduced intensities of the two satellites
slightly different; however, such higher-order
effects cannot produce a factor of 2.

The bunching illustrated in Fig. 4(b) is a result
of the crystal-field interaction that produces easy
and hard axes in the hexagonal basal plane. One
might argue that a secondary effect, in which the
projection of the moment in the hard direction is
reduced in intensity, could also occur. Such an
effect is illustrated in Fig. 4(c). Empirically this
reduction in the magnetic moment may be repre-
sented by a simple modification of Eq. (11):

¢, =¢7 + ysinb¢) +i(Ap/p) cos6d. (12)

The intensities of the fifth and seventh satellites
are thenproportionalto (y + Ap/u)? and (y - Ap/p)?,
respectively. The new term has a sixfold sym-
metry like the bunching; the imaginary character
indicates that the size of the magnetic moment
ordered in the plane is modulated as in Fig. 4(c).
The question arises as to whether the empirical
expression (12) is unique in explaining the differ-
ence in the reduced intensities of the fifth- and
seventh-order satellites, or if phase modulations
in the plane of the spiral could yield the same re-
sult. Even if Eq. (12) is valid, it simply states
that the projection of the magnetic moments in the
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plane of the spiral is not equal for all directions.
Assuming that all the holmium magnetic moments
are equal to their maximum value at low tempera-
ture, new modulations of the magnetic structure
should appear along the ¢ axis. In Appendix A

we discuss the diffraction consequences of the re-
quired structural modulations which would give
rise to additional satellites of sufficient intensity
to be readily observable. Indeed the spiral struc-
ture, with its sensitivity to perturbative forces,
constitutes a crystallographer’s delight.

The outcome of the crystallographic exercise
is that no evidence for the missing moments of
Eq. (12) is found in the diffraction pattern, and
we conclude that the fluctuation Au/p of the mag-
netic moments is a real effect. The origin of the
moment defect could be attributed to the crystal
field. However, the difference in the size of the
moments, pointing along the easy and hard axes
of the hexagonal plane is a third-order effect in
the crystal field. Instead, the observed moment
defect can be understood in terms of the zero-
point motion. A recent calculation, using ap-
proximate values for the exchange and anisotropy
constants, yields a moment defect of the same or-
der of magnitude as that observed experimentally.
(A tilted spiral structure has been proposed as a
stable configuration between the spiral and conical
phases of holmium.!? We examine the neutron-
diffraction evidence for such a phase in Appendix
B.)

To calculate the magnetic form factor with Eq.
(1) numerical values for the (j,,) integrals are
needed. Three evaluations of U(r) in Eq. (2) are
presently available. The first values for the (j,,)
integrals obtained from Hartree-Fock nonrelati-
vistic wave functions* are shown in Fig. 1. The
second set of values may be derived self-consis-
tently from the intensities of the structural satel-
lites,'® ' and uses the same basis functions as
used for the Hartree-Fock scheme. The third set
is based on relativistic Dirac-Fock wave func-
tions." All three sets of ( j,,) integrals are very
similar, especially for sin6/x<0.6 A"!, and we
have used the Dirac-Fock values. The quantum
effect of the zero-point motion, if introduced rig-
orously, would require the complete reanalysis of
the form factor. Even then, an adequate knowledge
of the amplitude of vibration of the spin both in,
and normal to, the hexagonal plane would be nec-
essary.' Stringfellow et al.'® have pointed out
that the stability conditions for the spiral-to-cone
transition requires K,, the axial anisotropy, to
change sign. At some point, therefore, the value
of K, must be small and the motion of the spins is
presumably mainly out of the basal plane.!” In our
model of the magnetic structure, we have assumed
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TABLE IV. Observed and calculated |F|? values (in
units of 10724 ¢cm? for Hoy gSc, 4 at 5 K. The observed
values are averaged over equivalent reflections. [They
are corrected for extinction and absorption and normal-
ized to the nuclear reflections by taking 5=0.88 x10712
cm.] The calculated values are given by assuming
u=9.Tup, Mp=1.5Tpg, ¥ =0.15, Ap/p=0.03, and the
relativistic Dirac-Fock form factor.

Reflection [F12s [F
(00.2) 0 %0.05 0
(11.0) 0.30 *0.02 0.30
(00.2)"1 8.26 +0.37 8.95
(00.2)*1 7.65 +0.23 8.04
(00.4)"1 4.67 +0.22 4.88
(00.4)*1 3.83 +0.24 4.08
(00.6)"1 1.98 +0.10 2.07
(00.6)*1 1.57 £0.08 1.66
(11.0)*1 2.90 +0.06 2.99
(11.2)~1 3.04 =0.07 3.12
(11.2)*1 3.01 %0.07 3.05
(22.0)*1 0.72 £0.10 0.74
(00.4)~° 0.060=0.005 0.057
(00.2)*5 0.046%0.005 0.052
(00.6)~° 0.029+0.003 0.028
(00.4)*5 0.018%0.003 0.025
(11.2)~° 0.023£0.002 0.025
(11.0)*° 0.026 % 0.002 0.025
(22.2)7% 0.007+0.001 0.007
(22.0)*° 0.006% 0.001 0.006
(00.2)*7 0.019% 0.002 0.017
(00.6)"7 0.016=0.003 0.012
(00.4)*7 0.009%0.002 0.006
(11.2)77 0.010%0.001 0.011
(11.0)*7 0.011+0.001 0.011
(11.4)77 0.011%0.001 0.011
(11.2)*7 0.007+0.001 0.009

such a motion is responsible for producing the
moment defect, although the effect of the zero-
point motion on the intensities of the third-order
satellites is very small.

We are now in a position to calculate the mag-
netic intensities and compare these quantitatively
with the experimental results. The effects of
bunching and the moment reduction are incorpora-
ted by using Eq. (12). In practice it is easier to
treat these complications within the framework of
a commensurate lattice. Such a procedure is al-
ways possible by representing the periodicity of
the spiral as the ratio of two integers (5/27 for Ho
at low temperature and 3/13 for Ho, 4Sc, ;). The
calculation then requires that the direction of the
first magnetic moment be fixed, thus lifting the
degeneracy of the spiral. However, as expected,
arbitrary variations of the phase angle do not
change the intensities of the diffraction lines. The
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FIG. 6. Experimental form factor, as derived from
the intensities of the main satellites at 5K, and the
relativistic Dirac-Fock form factor (Ref. 15) derived
for reflections along c*, i.e., f=7/2.

calculated intensities of the structural satellites
from Ho, Sc, , are compared with experiment in
Table IV. In Fig. 6 we present an experimental
form factor derived from the intensities of the
structural satellites, together with the theoretical
Dirac-Fock form factor. The over-all agreement
is good, except for the first two reflections, which
have the largest extinction corrections.

IV. EXPERIMENTAL ASPHERICITY

In Table V we present the experimental values
of |F [ for the third-order satellites, which arise
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from the aspherical magnetization density, for
Ho, ¢Sc, , and Ho. They are compared with values
calculated in Sec. II, but with the structural model
described in Sec. III. The (j,,) functions are those
of Freeman and Desclaux,'® and the angular factors
¢; are for the lowest state of holmium, M =8:°I,.
The experimental |F [ values are approximately
50-100% greater than the calculated.

To display the data visually we reduce the ex-
perimental data to an effective (j,,) and compare
with the theoretical {j,) function. The structure
factor can be written

|F Byss =5l - $)%sin%0 + (2 + 29)?]
X [0.54c cos20 X 1.749(( j,) ++++)J?

X 1072 cm), (13)

where ¢ is the holmium concentration and 6 is the
inclination of the scattering vector from the basal
plane. In Eq. (13), the small effects of the moment
reduction are neglected, although the entries in
Table V take this into consideration. Equation (13)
contains terms in (j,) and (j,), although they do
not contribute more than ~5% of the contribution
from (j,). As an approximation, therefore, we
look on the third-order satellite as arising from
the (j,) function only, and a comparison with the
theoretical (j,) function is presented in Fig. 7.
(The entries in Table V do not use this approxima-
tion.) The over-all k dependence of the data is in
agreement with theory and is drastically different
from that of the structural satellites (see Fig. 6).
However, the intensities of the third-order satel-
lites (Table V) of holmium and, even more of

Ho, ¢Sc,,,, are larger than those predicted by the
single-ion theory.

The most trivial explanation for the discrepancy
is that the third-order satellites arise partially
from structural modulations. Summarizing the
results of Appendix A, a third-order modulation
of the magnetic moments in the hexagonal plane
would give rise to 00I** satellites, which are defi-

TABLE V. Observed and calculated |F|? values of the third (asphericity) satellites at 5 K,

expressed in units of 10727 cm?. Note the change of scale of 10~ compared to Table IV.
Ho ¢Scy,q Ho
. sing, |
Reflection —TE- [F |2, |F |2 |F %, |Fl2.
(00.0)*3 0.062 0 *0.05 0 0 +0.005 0
(11.0)+3 0.289 2.0+0.2 0.82 1.7+£0.2 1.01
(11.2)73 0.306 2.1£0.2 0.80 1.4%0.2 0.97
(11.2)*3 0.372 1.6+0.2 0.66 1.6+0.2 0.85
(11.4)_3 0.409 1.7+0.4 0.59 0.7+0.3 0.72
(11.4)*3 0.506 0.6%0.3 0.40
(22.0)+3 0.569 4.8+ 0.3 3.02 4.4+0.3 3.71
(22.2)73 0.577 4.3+0.3 2.93
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FIG. 7. Relativistic Dirac-Fock (j,) term compared
with the effective (j,), as given by Eq. (13), derived
from the intensities of the third-order satellites. The
open points refer to Ho; the closed to Hoj ¢Scy ;.

nitely not present. A third-order modulation of the
magnetic moments along the ¢ axis is less easy to
reject, since the intensities generated would have
a dependence on the azimuthal angle 6 very simi-
lar to that of the satellites arising from the as-
phericity. However, the form factor of such
structural satellites would be similar to that in
Fig. 6. As shown in Fig. 7 the discrepancy be-
tween theory and experiment is essentially inde-
pendent of k¥ and cannot be accounted for by a sim-
ple structural modulation.

An alternative explanation of the discrepancy in
Fig. 7 is that the incorrect form factor has been
used. This, too, is very unlikely. The (j,,) in-
tegrals are all transforms of the same radial spin
density, Eq. (2), and any large change in the (j,)
transform also changes (j,), etc. Figure 6 shows
that the structural satellites agree with the form
factor calculated from relativistic Dirac-Fock
wave functions, and this agreement implies that
the single-electron radial density is in good agree-
ment with theory. Because Fig. 6 basically rep-
resents the (large) spherical contribution to the
magnetization density, it does not, of course, say
very much about the higher-order c; coefficients,
which reflect the (small) aspherical contribution.

A further test of whether the third-order satel-
lites arise entirely from the aspherical magneti-
zation density is to measure their temperature
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FIG. 8. Temperature dependence of the (220)*3
satellite for Ho, ¢Scy, ;. The curve drawn through the
experimental points represents the behavior pre-
dicted on the basis of the molecular-field theory, using
the intensity of the first satellite to derive the magneti-
zation.

dependence. In Fig. 8 we show the temperature
dependence (normalized to the value at 5 K) of

the 22.0*® satellite. The intensity of the third-or-
der satellites decreases much more rapidly than
the first because the latter varies as (M/M,)?,
whereas the third-order satellite has a tempera-
ture dependence approximately represented by
(M/M,)®. The asphericity of the magnetization
density is also related to the bulk anisotropy con-
stants, since both are functions of the electronic
multipoles of the 4f electrons. To calculate the
temperature dependence of the third-order satel-
lite we have assumed a free-ion model witha crys-
tal-field interaction which is negligible compared
to the exchange interaction. In this simple mole-
cular-field model the magnetic moment stems
from the thermal population of the M, multiplet,
which is split into 17 nondegenerate levels by the
internal exchange field. The lowest level has M,
=8, giving u=gM; =10, per holmium ion, and
the next level has M; =7, etc. The magnetization,
or dipole moment, may be derived from the first-
order satellite and used to fix the internal exchange
field at a given temperature. The resultant as-
phericity, which is related to higher-order elec-
tronic multipoles, is then readily calculated. The
temperature dependence is shown in Fig. 8 and is
in excellent agreement with experiment. This
agreement does not prove necessarily that the c;
coefficients are indeed those of the single-ion
theory of holmium (a conclusion which would be

in conflict with our findings for the absolute value
of the intensities at low temperature); the ¢; coef-
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ficients simply represent terms in the symmetry
of the ion, irrespective of their origin.

V. SUMMARY

In spiral magnetic structures containing aspher-
ical ions, additional satellites, which arise solely
from the aspherical contributions to the magneti-
zation density, are found. Such satellites, of which
only the third-order are observable, have been
measured for Ho and a Ho, 4Sc,_, alloy. The in-
tensities have the correct xk dependence but are
stronger than predicted. In investigating this dis-
crepancy, we have made a very careful investiga-
tion of the magnetic structures of these materials,
leading to some small (but important) modifica-
tions of the model proposed by Koehler et al.®* We
do not believe the discrepancies in Fig. 7 arise
from modulations in the magnetic structure, but
are instead a real indication that the magnetiza-
tion density is more aspherical than predicted by
the single-ion model. If crystal-field interactions
are included, the first-order effect is to reduce
the asphericity of the magnetization cloud (because
of wave-function admixture) and modify the tem-
perature dependence predicted by the free-ion
model. The generally accepted models for the
rare-earth metals contain a large exchange term
and a relatively weak crystal-field interaction.
The agreement in Fig. 8 is consistent with this
model.

The discrepancy between the absolute magnitude
of the third-order satellite and the theoretical
predictions is not surprising in view of our use of
such a simple single-ion model. Certainly a more
sophisticated approach is needed. For example,
in a recent calculation'® of the spin-density distri-
bution in gadolinium, which is usually considered
a spherically symmetric ion, small aspherical
terms are predicted. The role of conduction elec-
trons'? has also been completely neglected in our
calculations. We may speculate, for example, that
the interaction between the conduction electrons
and the localized 4f moments might lead to an in-
crease in the asphericity. Quite apart from the
conduction-electron effects we must also consider
multipole interactions between the 4f electrons.
Such interactions may change the magnetization
density, although a quantitative calculation of such
effects represents a formidable task.
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APPENDIX A: A CRYSTALLOGRAPHER’S DELIGHT

Modulations in the plane of the spival. The mag-
netic spiral structure has a period . In general,
we may consider any type of modulation with peri-
od T as commensurate with the lattice, inthe sense
that it is experimentally impossible to distinguish
a truly incommensurate magnetic structure from
one for which n, magnetic periods are exactly con-
tained in n, crystal cells. (In the case of the hcp
crystals and structures we are considering here,
with ‘THE, n, crystal cells imply 2nr, layers.) For
example, at low temperature, for Ho (annealed)
ny=27,m,=5, and for Ho, oSc, ,, n,=13,m,=3,
within our resolution. Let us now consider re-
flections only along the c* axis, and indexthem as
00! relative to the large unit cell of 2n, layers.

Let us consider the origin of the cell to lie at
(0,0,-c/4). Then the structure factor for the
magnetic 00/ reflection is

- 2ng-1 1
—- . 1y ¢
Fo f ; u"exp2m<(n+2)2no >, (A1)
where f is the form factor, and [i, is the moment
in the nth layer, given by

0,= _“_rlzi‘ﬁy_ exp21n‘<(n +%)2"i + 6,,)+c.c. (A2)
Mo
Ty ';Iy are unit vectors along the x and y axes, re-
spectively, and 275, represents the deviation (in
the plane of the spiral) from the pure spiral ar-
rangement. Taking into account the symmetry
property, 6,=0,,_,.,, Egs. (Al) and (A2) can be
combined to give

- N =iy my+1
Focf[(px_wy) cos2n<(n+%) 2‘;20 +5n>

n=

- G e 1\ My =1
+ (T, +iM,) cos27r<(n +3) 20 +6,,>].
Mo

=

(A3)
It is now possible to determine the relations be-
tween the squares of the structure factors for
peaks with different I. Writing I=(F + F¥)/f2, we
obtain

I,=P(my+1) +P(m,-1), (A4)
where
RS 1\ Mg+l 2
P(m0+l)-':; cos21r<(n+2) o, +6n>}
and

no=1

P(my-1)= [ :(; cos2n<(n +3) mé”;;l + 6,,)]2.
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We also have

P(my+1)=P(my+ 1 +2n,)
and

P(my+1)=P(-= my-1).

Now, a satellite of order 7 in the conventional
notation may be related to its index ! with respect
to our large unit cell, by

l=rmy,+2sn, (r,s both integers).

Using this and the above relations, it may be
shown that

I =P(6m,) + P(4m,)
and
Ly =P(8m,) + P(6m,). (A5)

All the terms in Eq. (A5) are positive. Hence I,
=2l only if P(4m,) is greater than both P(6m,)
and P(8m,). But the term P(4m,) appears in the
expression for the third-order satellites along
007, and such satellites were absent for both Ho,
Sc,,, and Ho.

Modulations novmal to the plane of the spival.
The conservation of the magnetic moment requires
that

pi=p® pl, (A6)
where u, and i, are moments parallel and per-

pendicular to the ¢ axis, respectively. From Eq.
(12)

gy = (1= (Ap/p)(1+cos6od)]. (A7)

Equation (A6) has two solutions approximately
given by

p,=2(uAp) 2 cos3epl, (A8)

1, =2(nAp)'*cos3el |

1/2
=é-(—“A1Tu—)(1+%c056¢o+-”). (A9)

The magnetic structures corresponding to the two
models have the shape of corrugated roofs; in the
model given by Eq. (A8) the concavities are alter-
natively up and down, and the solution is antiferro-
magnetic. The oscillation of the moments along
the z axis has a period 37, and the maxima of the
oscillations occurs for the moments along the hard
directions in the hexagonal plane. The second so-
lution, Eq. (A9) corresponds to a corrugated roof
with the concavities in one direction only and gives
a ferromagnetic component, with 6nth-order sat-
ellites.

To conserve the magnetic moment of ~10uz with
the moment defect observed in the plane [(0.2-0.3)
,uB], we should observe satellites with amplitudes
proportional to ~2u, [see Eq. (A6)]. These satel-
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lites should be at least as large as the fifth satel-
lites. However, no additional satellites were ob-
served by us or by Koehler et al.®

One of the modulations proposed, Eq. (A8), has
the same periodicity (37) as the main asphericity
satellites. If even a small modulation of such
character were present, the intensities of the as-
phericity satellites would be greatly perturbed.
The angular dependence of the intensity of the sin-
usoidal modulation along the ¢ axis is cos®0,
whereas the angular dependence of the intensity
of the third-order satellite, due to the asphericity
of the magnetization density, is approximately
cos*9, and thus the two types of satellites are not
readily distinguishable by their dependence on the
azimuthal angle 6. However, the form factor for
the two types of effects are completely different
so that to distinguish between them one must col-
lect data over a range of k values.

APPENDIX B: IS THE HOLMIUM SPIRAL TILTED?

The model presented in this paper, that the mag-
netic structure at 4.2 K of holmium and Ho,_¢Sc,_,
is a cone, with its axis parallel to the ¢ axis, is
commonly accepted in the literature. However, a
simple conical structure cannot pass continuously
to a spiral structure.?® Sherrington'? has shown
that if the single-ion anisotropy parameter K,
varies smoothly with the temperature, the transi-
tion between the cone and spiral structure occurs
via an intermediate phase, in which the direction
of propagation of the spiral remains parallel to
the ¢ axis, but the plane containing the magnetic
moments is no longer perpendicular to the ¢ axis.
Sherrington'? discussed several modulations of
such a tilted spiral structure, one of which gives
rise to third-order satellites along the ¢ axis.
Support for such a model has been inferred from
the results of recent ultrasonic experiments on
holmium.?* At 24 K a peak in the absorption was
found that was well separated from the peakat20 K
associated with the ferromagnetic transition. The
absorption peak at 24 K was interpreted as due to
the softening of a magnon that occurs when K,=0,
the extreme for the region of the spiral structure.
Hence Tachiki ef al.?* concluded that holmium ex-
hibits a tilted magnetic spiral structure between
20 and 24 K.

Neutron-diffraction experiments are capable of
determining the tilt of the spiral directly. Since
the neutron detects only the component of the mag-
netic moment normal to the scattering vector, a
tilt of the spiral would decrease the intensity of,
say, the (002)*! satellites, and would increase the
intensity of the (110)*! satellites. The ratio be-
tween the intensities of these two satellites is thus
sensitive to the tilt of the spiral. For both
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FIG. 9. Variation of the period of the spiral of Ho and
Hog 98¢y y with the temperature.

Hog,¢Scy,; and Howe did not observe any variation of
the ratio Iy,,+/I,,,+. However, this ratio varies
quadratically with the tilt angle, with a variation
of ~3% for a tilt angle of 10°. This is approxi-
mately the precision of our measurements. For
pure holmium, we have a single experimental
measurement (at 22 K) in the temperature region
of interest. Hence we conclude that any tilt of the
spiral is less than 10°.

Also of interest is the variation of the spiral
periodicity with temperature, as shown in Fig. 9.
The temperature dependence for Ho is similar to
that given by Koehler et al.,® except that a low
temperature our sample does not become com-
mensurate. A small discontinuity occurs in the
periodicity around 25 K, approximately at the
same temperature at which the absorption of an
ultrasonic shear wave exhibited a maximum.*
Are the two phenomena connected? Is a spiral—
with its infinite phase degeneracy, and a no-gap
magnon spectrum?®—really the magnetic structure
that is stable at low temperature?

*Based on work performed under the auspices of the

U.S. Energy Research and Development Administration.

TPresent address: Istituto di Fisica, Universitd di
Genova, Genova, Italy.

iPresent address: Argonne National Laboratory,
Argonne, I11. 60439.
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