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Results are presented for the computer simulation of the time-dependent behavior of the Ising model on a
100 X 100 lattice. Groups of particles are regarded as samples from an infinite lattice and ihe interactions
between the sample particles and those outside are expressed through new boundary conditions based on

extending the concept of mean field in a self-consistent way. These new boundary conditions are explored
analytically for a few small samples and a sharp critical point is found in contrast to periodic boundary
conditions. The relaxation times for long-range order and nearest-neighbor correlation (energy) for the
100 X 100 system have been computed and the corresponding critical exponents estimated. The results are

5» ——2.30 + 0.30 and 6~3 ——0.38 ~ 0.04; these are compared with other recent results from computer
simulations and series calculations.

I. INTRODUCTION

In recent years computer simulation using Monte
Carlo techniques has been used to examine various
aspects of the behavior of time-dependent statis-
tical-mechanics models for order-disorder phe-
nomena and many useful results have been obtain-
ed. Reviews of Monte Carlo investigation in these
areas have recently been given by Binder. " In
the present paper ere give the results of computer
simulation of the time-dependent relaxation to-
vrards equilibrium of a bvo-dimensional Ising
system. The primary aim of this rvork has been to
obtain the values of the critical exponents of the
relaxation times for the long-range order (mag-
netization) n, ~& and for the nearest-neighbor cor-
1'elatloll fullc'tlo11 (energy) 6g~. We llave found

Az&= 2.3+ 0.30 in agreement vrith other authors and

A~~= 0.38+ 0.04 which is a new result.
The simulation process as generally used in

statistical mechanics is simulated sampling vrhere
"computer observation" of a finite group or sample
of particles from an infinite system provides es-
timates of the parameters describing the behavior
of an infinite system, In the simulation of an
isolated system, for example, a cluster of parti-
cles, the entire system can be "observed" direct-
ly and there is usually no need to consider vrhat
happens outside the cluster. In the infinite sys-
tem, however, the sample particles (the inner
particles) interact with the particles outside (the
outer particles) and some means must be found for
simulating this interaction. %ith Ising systems
the particles are usually set at node points of a

lattice and the simplest means of allorving for the
inner-particle-outer-particle interaction is to
consider the sample to be replicated to fill all
space. The particles at or near the boundary of
the system interact vrith the particles of the ad-
jacent replicated samples and for the purpose of
computing this interaction„ these outer particles
may be taken as the equivalent inner particles of
the actual sample. For computing the interactions
in Ising systems this representation of the infinite
system is adequate since these interactions involve
nearest neighbors and perhaps next nearest neigh-
bors. For other systems, this representation may
not be adequate. By imposing this periodic struc-
ture on the infinite system ere have in fact re-
placed that part of the infinite system outside the
sample by boundary conditions on the surface of
the sample. These are referred to as periodic
boundary conditions (PBC) and it is hoped that they
&vill satisfactorily mimic the sample-population
interaction.

Most of the numerical computations vrith Ising
systems have been made using PBC. However,
there is a meakness in these results in that the
long-range order does not display a temperature
(the critical temperature) at which it falls sharply
to zero so that there is no sharp transition and the
computed anomalies at the critical temperature
are all rounded instead of being singular. This
eras first noted by Ehrman et at. and by Yang.
These rounded anomalies ln the speclflc heat of
the Ising model have been studied by Ferdinand
and Fisher' using the Onsager solution and they
showed the extent of the rounding region for an
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n xn square lattice to be defined by the tempera-
ture-dependent coherence length. This turns out
to be O(n) in lattice units and implies the width
of the rounding region about the true critical tem-
perature to be O(1/n).

On the other hand, the familiar mean-field ap-
proximation (MFA), which is a one-site approxi-
mation, gives a sharply defined critical tempera-
ture below which the long-range order is nonzero
and above which it is identically zero. However,
MFA has the disadvantage that it does not give
good values for critical exponents, either for equi-
librium or time-dependent quantities (Suzuki and
Kubo'). We are thus led to consider extending
the concept of mean field beyond its familiar use
for one site to set up boundary conditions which
represent the sample-population interaction in a
more satisfactory manner. In the present paper
we introduce two types of boundary condition based
on this extended concept which lead to sharp crit-
ical regions. We have explored them analytically
for small samples and have used simulation to
examine the more important of the two for a sam-
ple of 100x 100 particles. We call these boundary
conditions extended mean-f ield boundary conditions
(EMFBC) and we shall distinguish them later by
adding a further Letter. Binder" has already dis-
cussed one of these boundary conditions although
only for the case of equilibrium and then for the
Heisenberg model.

The structure of the present paper is as follows.
In Secs. II and III we briefly discuss the usual
interpretation of MFA and show how it can be ex-
tended to various samples. Of course the usual
way of improving MFA is to use the Bethe-Peierls
method and in the present context of time-depen-
dent solutions Huang' has given the solution for a
Bethe cluster of five spins on the two-dimensional
Ising lattice. Our philosophy differs from this be-
cause we wish to appIy the new boundary conditions
to a sufficiently large n xn sample of the infinite
lattice and to perform a computer simulation of
the Markov process associated with the master
equation. In Sec. IV, we describe the simulation
and in Sec. V, we present the results for a
100x 100 system.

H= —4Js,g, (2.1)

assuming nearest-neighbor interaction only. J is
the exchange coupling constant. The partition
function is then given by

q P e aH-
sj=kl

(2.2)

where P = 1/kT, k being Boltzmann's constant and
T the absolute temperature. The ensemble aver-
age of s, is identified as p and is given by

g = tanh4Kg, K = PJ, (2.3)

which is the MFA expression and shows a sharp
transition at K, = ~ so that T, = 4 in units of J/k.
This is now extended to larger samples by en-
larging the sample window. Thus, for the 2x 2
sample assuming that the eight boundary spins are
given the value of cr, we find that

2 sinh4Kg + e~ sinh8KO
2+ 4 cosh4Kp + e ~+ e~ cosh8K0

(2.4)

The transition temperature of the 2x 2 sample is
given by

square and is just large enough for us to see one
site. We recognize that the particle on this site
(the inner particle) interacts with its (outer)
neighbors, but we know nothing of this interaction
and we must estimate it in some way. We note
that the boundary between the inner and the outer
spins lies between the sites: Since we are consid-
ering only nearest-neighbor interactions we may
regard the nearest outer particles as boundary
particles in the conventional way; if we were to
admit longer-range interactions, we should then
have to speak of a boundary region containing more
than one line of particles.

The simplest assumption that we can make about
the boundary particles is that each particle has an
effective spin value of g, —1 ~ o & 1, which has to
be determined in a self-consistent manner. If the
spin variable for the inner particle be s, = + 1, the
Hamiltonian for the inner particle is then given
by

II. MEAN-FIELD APPROXIMATION AND ITS EXTENSION
TO EQUILIBRIUM CONFIGURATIONS

K, = —,'e '«~(3+ cosh4K, )/cosh2K, ,

which yields

(2.5)

In order to present the extensions we shall first
define precisely MFA itself. The basic approxi-
mation consists essentially in isolating a sample
of one particle out of the whole lattice by screen-
ing out the rest of the lattice. It is as if we were
sampling the entire lattice by looking through a
window in an opaque screen. The window is

K, =0.28574, T, = 3.49962

in units of J/k. The Onsager solution is
T, = 2.269. . . . The functions on the right-hand
side of Eqs. (2.3) and (2.4) can be expanded as
power series in (K-K, ) and this yields —,

' for the
critical exponent for the order, instead of the
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correct value 8 which is known to hold for the
infinite lattice. We return to this point later.
Since we are extending MFA using a self-consis-
tent value for the order, which is the ensemble
average of the inner spins, we shall call this
boundary condition extended MFA using the aver-
age and shall denote it by EMFBCA or EA for
short. The nearest-neighbor correlation function

p, for the 2&2 sample is given by

E(s„l,l, l, l)p (+ 1)+E(si; —1,1,1, 1)4p (+ 1)p(- 1)

+E(s» —1, —l, l, l}6p'(+ l)p (- 1)

+E(s„—1, —1, —1,1)4p(+ 1)p'(- 1)

+E(s„—1, —1, —1, —1)P (-1).

It is then straightforward to obtain for the sample
of one spin, that

e cosh8Kg —e ~
2+ 4 cosh4Kg+ e ~+ e~ cosh8Kg

The critical value of p, is

(2.6)

o= (X', —F,')/(X', + Y,'),

where

X,= 1+g tanhK

(2.9)

p(s, =* 1) = —,'(1*v), . (2.8)

where g must be identified self-consistently as the
ensemble average of the long-range order. This
is in fact the basis of the simulation process which
we describe later. We will call this boundary
condition the extended MFA boundary conditions
using probability and shall denote it by EMFBCP
or EP for short.

We can now give the analytic solutions for a
sample of one spin and for a sample of 2&& 2 spins.
For the one-particle sample, where the four bound-
ary spins are instantaneously s, , s, , s, , and s~,
any term E(s„s„s,s„s~ ) is replaced by

g,(T, ) = sinh4K, /(3+ cosh4K, ) = 0.29. . . . (2.7)

The exact value for the infinite lattice is 1/W2
= 0.70. . . .

The existence of the nonzero value of g at suffi-
ciently low temperatures is a consequence of the
symmetry-breaking term in the Hamiltonian aris-
ing from the interactions between the inner and
outer particles. Gallavotti' discusses the boundary
conditions in which the outer spins are, respec-
tively, all up or all down. These also break the
symmetry of the Ising Hamiltonian and yield a
nonzero value for the long-range order for suffi-
ciently low temperatures. With PBC the symmetry
of the Hamiltonian is maintained and accordingly
the long-range order is always identically zero.

There is however a much more realistic way of
representing these unknown boundary spins. Each
of the outer spins, like the inner ones, can have
only one of two state values ~ 1 and these are the
values which must be used in the calculations.
We can only make remarks in probability concern-
ing the states of the outer spins and the best we
can say about the outer spins considering them
one at a time, is that they take the values + 1 with
probabilities such that their average is g. We
thus def ine the one-particle probability distribution
function p(s,.),

F = 1 —g tanhK.

This yields the critical temperature at tanhK, = —,',
so that

K~ = 0.25541

T = 3.91523,

which is a slight improvement on the result using
EA.

For the 2x2 sample we have for g, in EP

(X', —Y',)e"+ 2X', Y„„(X,'- F,')
(X,' —Y,)e' + 4X, Y,(X,'+ Y,)+ 4X,'F,'+ 2X', F,'e '

(2.10}

The critical temperature is given by tanhK, =E(K, ),
where E(K, ) is the right-hand side of (2.5). This
yields K, =0.29096, T, = 3.4368. We also get for
the nearest-neighbor correlation function

(X', + Y„)e'r —2X,'F,'e 'r
(Xo+ Y',)e' +4X', Yo(X,'+ F,')+4X,'F,'+2X,'Y',e 'r'

(2.11)
which yields

y, (T, ) =8'(1+e ~)'= 0.30374.

The two examples using our boundary conditions
are the first two of a sequence which extends to
n&&n samples. The step from 1~1 to 2x2 involv-
ing the self-consistency in the order is somewhat
arbitrary since all the sites are equivalent: the
smallest sample with nonequivalent sites is the
3&& 3 system. The analysis can be continued to
these larger samples, but naturally becomes very
involved, and in any case the analysis of the
1X 1 and 2X 2 samples is sufficient to establish
the general pattern of the solutions.

III. NONEQUILIBRIUM BEHAVIOR OF SMALL SAMPLES

We now extend the ideas developed in Sec. II to
consider the time-dependent nonequilibrium behav-
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ior of smaB samples. The infinite system of parti-
cles is assumed to interact with a heat bath at a
given temperature for instance through a spin-pho-
non interaction which induces transitions in the
particle states, no two transitions occurring simul-
taneously. Assuming a knowledge of the transition
probabilities we investigate the behavior of the
infinite system by observing a finite sample of
neighboring particles.

Consider firstly a sample of one inner particle
P. I et the spin variable associated with P be s,
with values + 1. The values of the variables for
the nearest neighbors of P are unknown and must
be estimated from the observed behavior of P. As
before, the simplest assumption is to take these
spin variables all equal to s -=s (I) = (s,(I)), this
mean being defined with respect to the probability
distribution function for the state of P; this is
the boundary condition EA. If P(s, ;I) is the prob-
ability that P is in the state s, the mean value is
defined by

ting coefficients of the variables 1, s, we find that
c(o} satisfies

n=c(a) (3.5)

This is an equation for 0 which refers to equilib-
rium and must be identical 'to (2.3). Thus

c(s) —tanh4Ka, as s —&y. (3.8)

+ W(- s,- s,)P(- s„f),

which on using (3.3) yields

(3.7)

Detailed balance does not imply any restriction
on a(s). This must come from a consideration of
the nature of the coupling between the Ising system
and the heat bath.

Using the form (3.3) we may now examine the
nonequilibrium behavior of P and hence of the
infinite system. The probability function P(s„f)
satisfies the master equation

dP
(s„f)= —. W(s, — )sP(s,—;I)

s= p s,P(s„.f)=P(+1;f) -P(-1;I), (3 1)
n —= -a(s)[s -c(s)].dk

dt
(3.8)

and using the normalization P(+ 1;I)+P(-1;I)= 1
we may write generally

Equilibrium occurs when ds/dt= 0, and this im-
plies

P(s„f)=-,'(1+s,s), s, =+ 1, (3.2) s=a, s —c(s}=0. (3.9)

which reduces to (2.8) when s = n.
That is, the distribution function P(s„t) can be

represented in linear form in terms of the basis
variables (1,sJ, the coefficients being functions
of the sample variable s which is also to be taken
as the mean of the infinite system. We might
expect therefore to be able to write the transition
probabilities for P in the same form. Thus, if
W(s, - —s,) is the probability per unit time that P
being in state s, will pass to state -s„ then we
should have

W(s, - —s,) = (1/2n)a(s)[l-s, c(s)]. (3.3)

The coefficients a(s), c(s) must also depend on the
temperature of the heat bath since the transition
probabilities derive from the interaction of the
heat bath with the Ising system. The parameter
n is related to the mean time between transitions.
The most important restrictions on a(s) and c(s)
come from a consideration of the behavior of P
under equilibrium conditions. At equilibrium the
condition of detailed balance must hold and we
have

We now examine the solutions to the master
equations using EP. To do this we need to express
the transition probability in a form similar to
(3.3). We begin by fixing the four outer spine
s, , g, s, , s„and writing

W(q- —s,}= (1/2n)A(s„q, g,q )[1—s,c(s„q,s„q }].
(3.10)

We now average over each of the outer spins with
respect to the one-particle distribution function
(3.2) written as

P(s„;f)= —,"(1+s„s), n= a,b,c,d.

We can be more explicit about the form of lV. In
fact, from detailed balance we know that in equilib-
rium, and in simplest terms,

W(s, ——s,) = (1/2n) exp(-Ks, 4a), (3.12)

and we extend this to nonequilibrium by writing

W(s, —-s) = (1/2n) exp[-Ks (s, +s, +g+q)].
(3.13)

W(s, ——s,)P,(s,) = W(- s,- s,)P,(- s,), (3.4)
Since s, can only take the values ~ 1, Eq. (3.12) can
be written as the linear form

where Po(s, ) = —,'(1+ s~a) and a is the equilibrium
value of (s(t)) .

Using the representation (3.3) in (3.4) and equa-

W(s, ——s,) =(1/2n)coshK(s, +q+s, +q)
x [1—s tanhK(s, + s + g+ q) ] . (3.14)
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Using (3.14) in the master equation (3.7), aver-
aging over the outer spins first, then averaging
over the inner spin s, we readily obtain

W(s„s,- —s,) = (1/2n) [a (s) + s,b (s)

-~(s) -s,s, d(s)], (3.19)

—=—{X'+Y') s-ds 4 4 X —F'
dt n X4+ Y4 (3.15)

where s= —,'((s, ) +(s,)). These two expressions,
(3.18) and (3.19) satisfy detailed balance and in
equilibrium y ield

X = 1+s tanhK, F= I —s tanhK.

a = [b(o) + c (o)]/2a(o),

P(&
= d(a)/a (o).

(3.20)

(3.21)

We note that X, I' are the time-dependent values
of X,F, defined in (2.9).

We can now give an analytic expression for the
relaxation towards an equilibrium value. We
choose an experiment similar to that of Collins
and Teh" who measured the relaxation of the
long-range order in Ni, Mn by neutron diffraction
The temperature was changed discontinuously from
7+AT to T. We expand s about the equilibrium
order o writing s=@ +r.
We find

r =r, exp f- (f/o. )[1—4K(1 —g')] cosh4Ka),

(3.16)

which shows that the relaxation time is such that
its critical exponent is unity. The same result
is obtained using EA. This agrees with the result
obtained by Collins and Teh experimentally, but
there is still doubt about the interpretation of the
experiment, which is concerned with a first-order
rather than a second-order effect.

We now construct the time-dependent solution
to the master equation for two spins. Defining
the two-spin correlation function p(t) =(s,s,) and

using (s,) and (s,) we have, in the same way that
(3.2) was obtained

P(s„s„f) = (1/2 )(1+si(s, )

It is important to realize that there is an arbitrari-
ness in the forms (3.18) and (3.19) because detailed
balance would still be satisfied if an arbitrary fac-
tor Iz(s) appeared on the right-hand sides, similar
to (3.3). We have in effect taken b(s) = 1 and this
sets the time scale. The forms of a, b, c, d can
readily be obtained from the partition function
using the basis-f unction expansion. Equations
(3.20) and (3.21) reduce to

o = sinh6Ko/(cosh6Ko+ e ~)
and

(3.22)

y, = (cosh6Ko —e ~)/(cosh6Ko + e ). (3.23)

On substituting (3.17), (3.18), and (3.19) in the
bvo-spin master equation we obtain three coupled
equations for (s,), (s,), and (s,s) = y. From sym-
metry (s,) = (s,) = s and so these equations reduce
to

—= [-sa(s) + sd{s)+b(s) —b(s)(})],
ds
dt

(3.24)

dy
dt

= 2[d(s) -a(s)(b].

We have absorbed z and numerical factors into t.
These equations (3.24) and (3.25) are equivalent to

to the equation of motion for any operator
A(s, ~ ~ s,' ~ ~ s), namely,

+ s,(s,) + s,s, (s,g&). (3.1'I)

Glauber~' derived (3.2) and (3.17) and similar
expressions by a different method using an identity
which involved basis functions. Thus, for one
particle the basis functions are (1,s, ] and for two
particles, the basis functions are fl,s„s„s)s,).
There is a similar construction for more particles.
It is worth noting that these sets. of basis functions
form groups with respect to multiplication and in
particular we recognize the two-particle group as
the Klein four group.

We may assume that the transition probabilities
W have the convenient form

W(s, ——s„s,) = (1/2a}[a(s) —sp{s)

+~ (s) —s,~(s)], (3.18)

x[A(s . ~ s' ~ ~ s t)

-A(s ~ ~ ~ —s ~ ~ ~ s f)])

given by Binder' and Abe. "
For two nearest-neighbor spins on a square

Ising lattice in EA, we derive from the partition
function the following expressions:

a (a) = cosh 3Ko coshK+ sinh23K&y sinhK,

b (o ) = sinh3Ko cosh3Ko (coshK+ sinhK), (3.26)

d(a) = cosh'3K@ sinhK+ sinh'3Ko coshK.

Because the spin-phonon coupling, which is ex-
pressed by the transition probabilities, is the
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same in both equilibrium and nonequilibrium we

may replace 0 by s and use these formulas in the
master equation and in particular in (3.24) and

(3.25). Expanding the functions to the first order
about equilibrium

s(t) =o+x(t),

y(t) = y. +y(t),

a(s) =a(o)+ (s -o)a„
b(s}=b(o)+(s -o)b„
d(s) = d(o) + (s —o)d~,

where a, -=[da(s)/ds], etc. , we get

(3.2 7)

a»= a(o) ayo+d(o)+dgo+bg bg'po,

a„=-b(o),

a21 2dl 2alpOy

(3.28)

a„= —2a(o).

Writing the time dependence ln x and g as 8
then X is given by the xoots of the determinantal
equation

~a„+X a„

, a21 a~~+A.

IV. COMPUTER SIMULATION

The essential steps in the computer simulation
of the relaxation of the present ferromagnetic
Ising system are as follows:

The critical properties are given by noting that
at T, , a=b(o')/a(cr) =0 so that a»=0; a» is finite,
but

a„=-a(0)[1-b,/a(0)][1 —y, (0)]= 0,

since a(0) = coshK, , b, = 3K,ex~, and because of the

equation deflnlng K~, a&&
= 0. This condition ex-

presses the critical slowing down, and both x and

y will have the same relaxation time with a critical
exponent of unity. This is to be expected for the
mean-field condition; for a finite sample of exn
sites, estimates of the critical properties of the in-
finite lattice are not given by considerations within
1/n of the critical temperature of the sample.

(a) The par ttcles on the 100x 100 sguare array
are set in the well-ordered configuration with all
spins up, that is, all s,.=+ 1. This is the lowest-
energy configuration and is the configuration to be
expected at absolute zero.

(b} Using the single-spin-flip strategy the sys-
tem is allowed to relax to a partially ordered con-
figuration at the nominal high temyerature of 10.0.
This configuration is not necessarily consistent
with equilibrium at temyex"ature 10.0 and is par-
tially disordered to the extent that the number of
configurations, counted with multiylieities, which
the system is allowed to pass through is
10000= 100X 100. Thus, at this high temperature
we might expect each particle, on the average,
to have suffered at most one spin flip. Since we
are yroceeding to the critical temperature froIn
above, the configuration resulting from this se-
quence provides a convenient standard initial state
for the relaxation study.

(c) The temperature of the system is then fixed
at the relaxation value and the sequence of con-
figurations corresponding to x"elaxation at this
temperature is then generated using the single-
spin-flip strategy. The energy (that is, the short-
range order} and the long-range order are record-
ed as the sequence develops. The number of con-
figurations in the sequence is sufficient for the
system to reach equllibx'luxn, which ls recognized
by the fluctuations about zero in the long-range
order.

The single-syin-flip strategy for generating the
sequence of configurations operates with the follow-
ing steps.

(I) Using a random-number generator with a
uniform distx ibution select one of the particles of
the array. This point mill be either an inner point
or a boundary point.

(2) Inner point. The four nearest neighbors
interacting with the chosen particle all lie within
the array and we may simply calculate the energy
change due to reversing the spin of this particle.

(3) Boundary point. Here one or two of the

neighbors of the chosen yaxticle will lie outside the
array (an outer point) and the others will lie within
the array. The values for the states of the innex

particles axe known and we must estimate the
value for the outer particles. %Pith periodic bound-
ary conditions each value is that of the corx esyon-
ding particle on the opposite boundary of the array.
With EP the value is chosen according to the one-
partiele probability mean-field distribution function
discussed in Sec. III. In each case we may xeadily
calculate the energy change on reversing the spin
of the centx al particle.

(4} From the single-flip energy change we com-
pute the transition probability. If this transition



probability value is greater than another uniform-
ly distributed I andom nuIQbel the co11flguration
resulting from the spin reversal is accepted, oth-
erwise it is rejected.

The random number used in the present simula-
tion was based on a pair of linear congruences
with modulus 2~ and was especially written in
assembly code for the Control Data CYBEH 76
computer used for the present computations. One
congruence was used to set up a table of integer
numbers and the other used to access the table
to provide the number to be used, the table entry
being replaced from the first congruence. This
method gives a very long sequence of uncorrelated
uniformly distributed integer numbers whose sub-
sequences appear to have the same properties
(Knuth"); these integers are packed into a float-
ing-point format in the interval (0, 1) when used
in the computations.

V. ANALYSIS OF THE RESULTS OF THE SIMULATION

106

Relaxation
Time

~5K

0.1 1.0

FIG. 2. Calculated temperature dependence of the
energy relaxation time ~&& as a function of & = (T, -T~)/
T, for the plane square lattice, using periodic boundary
conditions.

For the nxn system, the order s(f)=+&=,s, /n' and
the nearest-neighbor correlation P(f) = ~ @&g&q/2n'

were computedfor a series of temperatures lying be-
tween T = 10and T = 2.35. Generating the sequences of
configurations through to equilibrium as described
in Sec. IV, we estimated the relaxation time on the
approach to equilibrium for s and p by fitting a
single exponential to the data. The usual method
in this field of fitting the exponential y = y,e

' to
a set of data pairs (t„y,), k = 1 through N is to
integrate over the values of y. %e used one of the
Prony least-squares methods. " Taking t, = kL t

Relaxation
Time

~5@

(5.1)

Using EP the equilibrium long-range order is
identically zero above the critical temperature and
in (5.1) the values of the y„are taken as the instan-
taneous values of the order s . The equilibrium
value p, is nonzero and to find the relaxation time
for p we take y„= p, —p, . 'fhe numerical value of

P, is obtained by taking the average over several
equilibrium sequences.

Using the notation of Binder' we call gz„ the
relaxation time for s and gz~ that for p. Because
of the fluctuations we were unable to get satis-
factory estimates of 7&„,. a great deal more com-
puting time would have been needed. The nearest-

+0.04
107-

RELAXATION

TIME

106-

GE ORDER

.30

0.01 0.1 1.0

I

0.1 1.0

FIG. 1. Calculated temperature dependence of the
energy relaxation time ~&z as a function of ~ = (T -T,)/
T, for the plane square lattice, using extended mean-
field boundary conditions using probability.

FIG. 3. Calculated temperature dependence of the
order-parameter relaxation time ~~& as a function of
~ = (T -T, )/T, for the plane square lattice, using peri-
odic boundary conditions.
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TABLE I. Relaxation times and exponents in the kinetic two-dimensional Ising model.

Relaxation (4 —d) 1/n Ogita~ ~ Stoll22

ime Exponent Kawasaki ~ Yahata 8 expansion2oexpansion20 Su~u
Present

investigations

1.75 2.0 2.18 2.0 2.00+ 0.05 1.85+ 0.10

2.0 1.75 1.85+ 0.10 2.30+ 0.30

0 25+0 05 --- 2 00+0 10

0.40+ 0.04 (EP)
0.36+ 0.04 (PBC)

neighbor correlation function p however exhibited
the slowing down more clearly Rnd we were able
to measure q~~ more readily. The plot of z«
against e= (T T, )/T, -is given in Fig. 1, and fit-
ting the points in this figure by least squares yield-
ed 6 ~~= 0.40~ 0.04. It should be emphasized that
this is the exponent that characterizes the approach
to thermal equilibrium in contradistinction to the
critical exponent Azzz~ characterizing the decay
of fluctuations in thermal equilibrium. Some the-
oretical predictions of these exponents have been
given by a number of authors. Thus, from Suzuki"
we have (i) s, „~„=s~» (ii) n, ~z~z -—h~z, and (iii)
6 z~z~ = 6 z „z„=y+ e, while from Racz"
Az„=A~„~„—P. Our value for 4~ of 0.40 may be
consistent with that of Racz, 0.3. No comparison
can be made with the Suzuki estimates since
Yahata" has shown that Suzuki's analysis for (iii)
is incorrect. At present there is no theory which
predicts our value of 0.4 for A~~. It is worthwhile
pointing out that both Suzuki Rnd Racz call the
exponent ~~~ "nonlinear'*, meaning that the equi-
librium is approached from a state with a mean
value different from the equilibrium value.

We repeated the calculations using periodic
boundary conditions and obtained 6 ~z-—0.36~ 0.04.
The order parameter now yielded a z„=-2.30+ 0.30.
The results are presented in Figs. 2 Rnd 3. The
errors in the exponents were estimated from the
goodness of fit of the least-squares line and were
found to be consistent with the error observed in

computing the ensemble averages for the configura-
tion sequence values at each temperature. We
collect the values in Table I, which complements
a similar table ln Stoll et al."

VI. CONCLUSIONS

In introducing the extended mean-f ield boundary
conditions it was hoped that the simulation of Ising
systems with these conditions might take into
account the physics of the problem more explicitly
than would simulation with periodic boundary condi-
tions. However, statistical fluctuations in the
simulation and the slow convergence of the order
toward its equilibrium VRlue Rllow us to obtain Rt

best only bounds on the critical exponents. Ana-
lytical investigations, such as we have made, of
the behavior of small clusters, possibly extending
the form of the boundary conditions to include
higher-order correlation effects, may prt vide a
means of sharpening these estimates. Also, fur-
ther computation with larger samples would prob-
ably allow the effects of fluctuations to be consider-
ably reduced.
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