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A theory of phase transitions fox systems of weakly coupled layers with an isotropic order
parameter is developed. The properties of the two-dimensional (2D) system are assumed to
be known, and the interlayer coupling is treated by a mean-field or random-phase type ap-
proximation leading to an appropriate Landau-Ginzburg free-energy functional for the 3D sys-
tem. The assumption that the pure 2D system has a phase transition and that it satisfies scal-
ing is shown to lead to a number of measurable consequences. The 3D ordering temperature,
the 2D-3D crossover region, the 3D critical region, and mean-field specific-heat jump as
well as other mean-field properties are obtained as functions of the interlayer coupling. Com-
parison with existing experimental results for almost isotropic layered ferromagnets sup-
ports the existence of a finite transition temperature in 2D. However, the non-symmetry-
broken low-temperature phase is found within our approximation to be unattainable owing to
the finite interlayer fields.

I. INTRODUCTION

The effect of fluctuations on a phase transition
in a two-dimensional (2D) system where the order
parameter has a continuous symmetry group (and
is therefore isotropic in an appropriately chosen
space) is a challenging theoretical question. It
has been proven' that spontaneous symmetry
breaking (i.e. , a nonzero average of the order
parameter for zero external field) is impossible
at nonzero temperatures. Gn the other ha, nd, there
exist theoretical indications' ' for the existence
of an unusual. kind of phase transition where, al-
though the order parameter vanishes, its suscep-
tibility diverges in the low-temperature phase.
Experimentally, one may only consider approxi-
mRtlon8 to 2D systems conslstlng of, for example
layered systems where the ordering interactions
among the l.ayers are rnueh weaker than those
within the layers. Examples of such systems are
intercalated supereonductors, anisotropic lattices,
and layered magnets where a beautiful systematic
study of the phase transitions as the interlayer
coupling is made weaker was recently done' 'o

in the system (C„H,„„NH,),CuX„where X=Cl
(Br) and n =1, 2, 3, 4, 5, 6, 10. Even an extremely
weak interlayer coupling causes a 3D ordering
below a well-defined transition temperature; thus
it is important to understand the effect of the
interlayer coupling in order to reach conclusions
on the behavior of the pure 2D systems.

In this paper we shall use an appI'oximation
which assumes that the properties of a pure 2D
system are known and treats the interlayer coup-
ling in a mean-field way. " By comparing the
ensuing measurable resul. ts with experiment, one

ean get valuable information on the 2D propeI'ties.
%e shall present theoretical results on the

thermodynamic properties, correlation functions,
and susceptibilities, and obtain some indications
concerning the properties of the 2D systems. %e
shall show that our approximation is excellent
in the sense that the appropriate critical regions,
which indicate the breakdown of our modified
mean-field theory, become small for weak inter-
layer couplings. The results of our approximation
are consistent with the exact crossover results of
Liu and Stanley, '~ but we obtain further approxi-
mate predictions. %e shall also derive an ef-
fective Landau-Ginzburg-% ilson free-energy
functional that can be used in the 3D critical re-
gime. An analogous treatment for weakly coupled
chains was recently given in Ref. 11.

Compa. rison with existing experimental results
appears to favor the existence of the 2D transition.
However, a perhaps disappointing but in fact quite
an obvious conclusion of our approximation is that
the low-temperature non-symmetry-broken phase
of the pure 2D system, which is of great theoreti-
cal interest, is physically unreal. izable for a finite,
however weak, interlayer coupl. ing. This con-
clusion depends, however, on our mean-field
approximation for the interlayer coupling, and 1t
may or may not follow from a more accurate pic-
ture.

In See. II we describe the model and derive its
thermodynamics and susceptibility. In Sec. III
we derive the correlation function and obtain the
Ginzburg criterion and the appropriate Ginzburg-
Landau functional for the 3D regime. Measurable
predictions are summarized in Sec. IV, along
with R bI'lef compRI'lson with existing expeI'lmentRl
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results. We conclude by discussing the fluctu-
ation-induced shift in the 3D ordering transition
temperature T, .

II. THE MODEL AND ITS THERMODYNAMICS

Let us start from a general model of the fol-
lowing form:

a[Pe„(T, h)]
8(ph)

(5)

where m is (it) or ( s) (in the direction of h). The
interlayer mean-field approximation consists of
taking in (4) and (5)

J =4c or J =4J

where the variable i characterizes the ith layer,
K,o is the Hamiltonian of a single layer, and the
second term, in which the summation is on near-
est-neighbor planes, is an interlayer interaction.
Possible forms for Xz~ and V are 1 =Jy, „(T,, 0), (8)

for the Landau-Ginzburg and the spin cases, re-
spectively. We find that m is zero above T, and
is nonzero and starts to grow below the 3D phase
transition temperature T, given by

or

or

X,3~ — d x c(] Vg. +gg. +Q g. )

X~n= Q —J()5(K;) S(K;+5„)-h 5(Z, ), (2b)

)'(, ))=2~. f d* (;(*)(;(~)

where y» is the 2D susceptibility defined by

sm(T, h)
x, o T, h —,(h)

The thermodynamics of the model for h,„,=0
is given above T, by the pure 2D result (4); below

T, we have to take the mean field into account.
In order to do that we have to know the linear
and nonlinear susceptibilities of the pure 2D sys-
tems, which we shall obtain from the expansion
of the free energy in powers of Ph,

for the cases of Landau-Ginzburg fields and spin
Hamiltonians, respectively. Where a =a(T —T,')/
T,'; a, 6, c]~, c„J~], and J, are positive con-
stants (the case of antiferromagnetic interactions,
on a cubic lattice and in the classical approxi-
mation, can be described by modifying the def-
initions of alternate spins). K,. are the lattice
vectors in the ith plane, 4~) are nearest-neighbor
lattice vectors in the plane, and 6, are nearest-
neighbor lattice vectors connecting nearest-
neighbor planes [the ith to the jth plane, in

E(l. (2)]. (t);(x) is the Landau-Ginzburg field [having
in general n components; P is understood to be
the length of this &~-dimensional vector, (V(t), )'
has a sum over the components of (, , and the
products of g 3nd h are scalar products in the
n-dimensional t) space]. S(K,) is the spin operator
on the site A„and %. is an external ("magnetic" )
field.

We shall start with the case of zero external
field and will treat the interlayer coupling by a
mean-field approximation, assuming that we know

the solution for the 2D problem:

(T Ti) = —h Tin Tre

a~ =24(l+PJG, ) = ~4(l-ZXz ),

b~=~G2p J (12)

Close to T, , b~ can be approximated by a con-
stant, and a~ can be written as

az =at with t =(T —T, )/T, .

Thus the order parameter builds up below T,
in a mean-field fashion

m' = —(a/2b)t . (14)

The specific heat has a mean-field-type discon-
tinuity at T, given by

P~,.(T, h) =f(T) —.'G, (T) (Ph)" -'G, (T)(Ph)', (»
where G, is proportional to the linear suscepti-
bility [ pG~(T) = —

X (2Tn, 0)] and G2 to the next
order nonlinear one.

By doing the appropriate thermodynamic man-
ipulations we find that the Landau free energy
which corresponds to our interlayer mean-field
approximation is, for h,„,=0,

FI (T) m) = 2 Jm + I'qn(T, h =8m)

=f (T)+a~m'+ b~m',

where the Landau coefficients a~ and b~ are given

by

leading to the 2D order parameter [P=(h~T) '] b.c =a'/2b~T, . (15)
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We shall find that for weak interlayer couplings
the coefficient of I in (14}and Ec of (15) will

typically be much larger and much smaller than
the respective quantities in the spatially isotropie
case (in which the interlayer and intralayer coup-
lings are comparable'.

Et is now of great interest to find out how spe-
cific properties of the 2D system show up in our
approximate picture of the layered system. Let
us start by making the mild assumption that the
2D system has a phase transition at T', (T', " =0
is included! ) and that the susceptibility diverges
as T is decreased towards T', . This assumption

probably holds always. Even in the l.east favorable
case" of the spherical. model (n =~) or the ideal
Bose gas at a constant density, it can easily be
shown that T', =0 and that g~e 0 . It is then

clear that even for an arbitrarily weak interlayer
coupling, Eq. (8) will be satisfied at a finite
T, & T', . We start with the case of a nonzero7". and a power-law divergence of g, o,

(18)

A is a dimensionless constant which may be ex-
pected in many cases to be of order unity. We
find from (8) that

y2J y2J
2(Jp g)l/'f 2 2+

(18)

T -T"

(20)zD for t »T
2DX

1/2af =(I/y, j)r, /I for I «lo,

(21)

i.e., g, is 2D-like for t »70 and 3D mean-field-
like for t «vo. Thus 7, determines the crossover
between 2D and 3D behaviors. Interestingly [Eq.
(19)], &, is also the relative shift between the 2D

and 3D T, . It will turn out that 7o is also of the
same order of magnitude as the 3D Ginzburg cri-
tical region. "

We now make a further, rather conservative
assumption on the 2D system, namely, that it
satisfies the usual. scaling or homogeneity in the
var iab les

We ean also easily obtain the magnetic suseep-
tibil. ity y. In our modified mean-field approxima-
tion it is given by the random-phase-approximation
expression [cf. Eq. (30}1

(T —T' )/T' =(AP, J) (17) (T T2D)/T2D

For an exponential divergence of g2D, a logarith-
mic dependence will be obtained in the right-hand
side of Eq. (17).

Two important remarks can be made on Eq.
(17):

(a) The physical meaning of the condition (17)
is the following: Close to T', , strong correla-
tions are developed within each layer and each
spin is strongly correlated with —((2D/5, ~

}' neigh-
boring spins. Here F» is the 2D correlation
length and kaTg, D-(),D/&, ~)' (we ignore the criti-
cal exponent li in this rough qualitative argument).
The energy required to flip a spin (which in the
mean-field theory is of the same order of mag-
nitude as T, ) is not just of the order of 2Z . Owing
to the strong 2D correlations, we have to fl.ip
on the order of (t»/&„)' spins together; thus the
relevant coupling constant is of the order of
2 cIg ks Tg& D wlllc h is coils lstellt with (17).

(b) The result (17) for T, also follows from the
exact result of Liu and Stanley" for the cross-
over behavior as a function of the anisotropy para-
meter A. This is also consistent with "strong
scaling" of the thermodynamic functions with A.
However, our approximate treatment can be used
to obtain further (approximate) specific relations.

Let us first estimate n [of Eq. (13)]. From
(12) a,nd (8) we find

5,(T, ) =zB/72 "2 l'2 =-JB/-7 ","2, (24)

where B is a dimensionless constant (which will
be of order unity if indeed A. is a constant of the
same order of magnitude with an analogous as-
sumption on the amplitude of g"); we have used
the usual scaling law y, =(2 —q, )v„where q and
v are the correlation function critical indices.

Using az and b~ [Eqs. (18) and (24)] we find
the behavior of the order parameter below T, ,
in our approximation, to be

m' = (const)r, "'2 "2 7.

For reasonable values of q and v, v 0""2"»&1,
and the rise of the order parameter below T, is
extremely sharp. We also obtain the specific-
heat jump [Eq. (15)]

and h. This is a property that most systems
seem to have at least approximately. Let us thus

assume that there exist constants a, and a„such
that for any value of ~

F„(~"7, ~"Il ) = ~F„(~,Il).
From this we find that if G, diverges as 7 ~&,

then G, has to diverge l.ike 7 '&~" 2' where

n, is the specific-heat critical exponent of the
2D system, from which it follows using (8) and

(12) that
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ac =ka(const)~t2 ""2'2

= ka (const) 7", " " (26)

interactions

(j ) 2J (etQJIIJ. +e tPJllJ .
)

Since v is expected to be larger than unity, ' b,c
will be significantly less here than for a spatially
isotropic model. The numerical constants in (25)
and (26) will be of order unity provided the amp-
litudes of X and X" are of the orders of magnitude
mentioned above.

It is straightforward to repeat the same pro-
cedure for the case T', =0. We replace k~T, in

the above analysis by J~~ and the variable 7 by

ka T/JII, where JII is the relevant 2D coupling
constant, and make the same considerations as
those made for T', +0. The results are of course
radically different in that T, -O with J. We shall
see that the experimental results do not appear
to support this possibility.

It is also straightforward to consider the case
where the external field h, „, is nonzero. All that
one has to do is to replace Eq. (6) by

=4J~cosq, d, =Jcosq d~. (30)

Since D, =k, „„X,D(q„), we find that the response
to the external magnetic field is

X(q) = X, D(qII )/[1 —~.„X,D(qIiI )J

I Eqs. (20) and (21) are the q =0 cases of this Eq.
(31).] Let us analyze X(q) for small q and t

(qII '1/4D, q. 1/d. , t 7.):

(31)

X2P
x(q) =

2&r. /~ + 2 d i q j. + q II h2 D
1 2 2 2 2

X2P

y, t /~, +~2d J.q', +qII $2D'
(32)

VI =gD, /, 6=a '7,/t. (33)

This defines two new characteristic length scales
(() and (,

h =J m+h„, „,

and repeat the above analysis.

(6') On the other hand, for t » Tp

x(q) = x, o(qII), (34)

III. CORRELATION FUNCTIONS, 3D GINZBURG-LANDAU

FUNCTIONAL, AND 3D CRITICAL REGION

mq = X(q)$.q, (27)

Let us consider the response of our system to
a spatial. ly varying external field. For a given
Fourier component h~, q = (qII, q ), where q„and
q are the components of q in the plane of the
layer and perpendicular to that plane, respective-
ly, we are interested in the susceptibility x(q)
defined by a2

2b d„ d
(35)

i.e. , the interlayer correlations vanish. This
is why 7p defines the crossover from 2D to 3D
behavior.

Using our results for the correlation lengths
and the Landau free energy, it is easy to estimate
the Ginzburg" critical region t, signaling the
breakdown of our mean-field approximation. This
is given by requiring at t, (we display the equa-
tion for the spin model)

where m-, is the qth component of the order para-
meter. We shall take both hq and mq to point
in an arbitrary direction in the order-parameter
space. Let us first write the q~~ -dependent sus-
ceptibil. ity of a single layer in the simple form
for small q~~'.

It follows, using the fact that

x,o(T.) =&ti, &. " """,
that (again assuming that A is of order unity)

t - 7p. (36)

X2D(qlt ) X2 D(0)/( 1 + 52D q II ) (28)

where X, D(0) = X, D and ),D is the 2D correlation
length assumed to diverge with an exponent v2

as T- T,'More soph. isticated forms for X,D(q)
are possible, involving the critical index g„but
we shall not consider them here. By our inter-
layer mean-field (or RPA-type) approximation,
generalized to deal with X, , the effective field
on each spin is the external field plus the mean
field owing to the neighboring layers,

(29)

where (J,)„is the q~ transform of the interlayer

This result provides some justification for our
mean-field approximation, since the size of the
critical region will vanish with J/T2 . However,
our results in the 3D regime are quantitatively
incorrect, because it follows from (36) that once
the system goes into the 3D regime, it also enters
the critical region. One thus would expect three-
dimensional critical behavior for t «&p. What
this means is that the various singularities for
T —T„. will have the usual 3D critical indices, not
the mean-field indices, as in Eqs. (14), (15), (20),
(21), and (33). To convince ourselves that the
problem for t «Tp is indeed equivalent to the usual
problem of the critical behavior in an isotropic
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3D system, we shal. l exhibit the I andau-Ginzburg
free-energy functional, built from our approxi-
mation, in an isotropic 3D form. Using (2) and

(33) we can write for f «r,

(37)

where ~i( and ~& are the gradient operators in the
plane and perpendicular to the plane, respectively.
Here g(x) is a field which can be thought of as being ob-
tained by a par tial trace over the Fourier components
of thefield [Ij(AI)] withqI&1/)», q~&1/d~, orbya
partial trace over the Fourier components of 5, for
qI zl/(2o, q~ 2'1/dg. Tllus I't Is very reasonable
that all of the static properties of the system will.

be obtained by the appropriate functional integrals
over g; e.g. , the partition function is
z = J5ge ~'-'Li~i. By scaling distances in the plane
and perpendicular to the plane by $,n and d~/J2,
respectively, we may obtain the above functional
in the fol, lowing isotropic form:

x dx alp

which is just the usual 3D form as used extensively
in the theory of critical phenomena. ~~

IV. CONCLUSIONS AND COMPARISON VfITH

EXISTING EXPERIMENTS

Gur results for the effects of a weak intex layer
coupling'~ on the isotropic 2D systems are sum-
mar l,z ed as follows:

(a) 3D ordering is achieved at a temperature
slightly above T', given by Eq. (8). The quantity
(TIo —T', o)/T', defines a small parameter ro
There may be a small. shift owing to 3D fluctuations
in T, ; this shift is further discussed towards the
end of this section.

(b) ln a temperature region determined by 7,
above T, , 3D correlations start to be felt. For
~ »&0 the behavior is 2D; for t «to the behavior
is 3D critical.

(c) Below T, the order parameter should rise
with a 3D exponent and with an enhanced amplitude
of the kind appearing in Eq. (25).

(d) ff measurements of C(T) are not accurate
enough to display the true 3D anomaly, the specific
heat will appear to have a mean-field-l. ike jump. "
The magnitude of the jump is given by (26), and
it goes to zero in a weH. -defined way with the
inter layer couplings.

%e hope that these results will constitute guide

I I I I I I I I I I I ll

i.Q

Q. l

Q.Qi I IIII
iQ'

I I I I I I III I

Q
2

J~
Jg

FIG. 1. Log-log plots of k Tc /'J,
(
[curve ~a)I and k Tc

—0.44 [curve g)j versus J~/Vi). Line (a) appears to have
a definite curvature, while line g) is approximately a
straight line with a slope of 0.35 to 0.55.

l.ines for the interpretation of experiments on

these systems which will completely reveal. the
pure 2D properties. A set of systematic experi-
ments was already reported in Refs. 8-10 as a
function of the interlayer coupling. As we shall
see below, the results are in at least a qualitative

agreement with the theory, which further supports
the tentative conclusion that 7, ~0. Let us dis-
cuss the agreement of existing experimental re-
sults with our above predictions (a)-(d).

(a) ft was found in Refs. 8-10 that ks T, tends

to a finite fraction of Jii when J~ -0. In Fig. 1

we have attempted to fit their results with Eq.
(1'7). Assuming kT2 /JI =—0.44 as in Ref. 10, the

log-log plot of T, /J„-0.44 as a function of J~/J „

appears to be a straight line with a slope of 1/y„
where y, - 2-3. This is in agreement with the
direct measurement of y, in Refs. 10 and 16 as
well as with theoretical estimates. ' This rather
high value of y2, allowing for the experimental
errors, may be also consistent with an exponen-
tial. divergence of the susceptibility in 2D.4'"
Gn the other hand, taking T, =0 and plotting
T,/JI as a function of J /Jq on a, log-log scale
gives a definite large curvature. Thus the as-
sumption T2C =0 with a power-law divergence of

y, n seems to be unjustified. A similar plot (riot

shown) of T,/J, ~
as a function of ln(Jj /J;, ) like-

wise reveals a substantial curvature, so that the
assumption T2 = 0 with an exponential divergence
of g, o also appears to be inconsistent with ex-
periment.

(b) The temperature regions where g starts to
deviate from the 2D result (see Fig. 4 of Ref. 10)
for varying J~/JI are in a qualitative agreement
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with this prediction.
(c) Experimental results on the buildup of the

order parameter below T, as a function of 4, /Z, ~

will be of a great relevance.
(d) The area under the specific-heat peak does

go to zero with Z, /Z~~. However, more quantitative
results are needed to check the theoretical pre-
diction. The anomaly does visually appear to be
closer to the mean-field one for weaker J„ in

agreement with our findings about t, .
It must be noted that these systems are not

exactly isotropic Heisenberg ferromagnets; they
do have small. xy anisotropies that may in prin-
ciple make the critical. behavior of some of them

xy like. This circumstance is of no qualitative
importance since the existence of a phase trans-
ition in the 2D xy model seems to pose problems
similar to those appearing inthe Heisenberg case. "
Clearly, more experiments are needed for a full
quantitative check of these points, especially re-
garding point (c) above. The weight of the existing
experimental. information supports the existence
of a finite T', in isotropic ferromagnets.

Unfortunately, as discussed in Sec. I, the very
interesting low-temperature zero-field phase of
the pure 2D system is not physical. ly realizabl. e
within our approximation, owing to the inter1ayer
fields which exist below T, and have finite values
below T', &T, . However, the finite field proper-
ties of the pure 2D system are observable in prin-
ciple in layered samples. Scaling theories of
these effects below T', were recently given in
Refs. 5 and 15. One should be aware of the down-
ward renormalization of 7, due to fluctuations.
This T, shift, t, =[T,—T, (me afniel )]1/T, ( eman

field), is presumably small because t, is small.
However, it is possible that t, 70. This is in
fact true for spatia1. ly isotropic systems for which
t, -t, ' »70, for t «1. Since our theory does
not apply below T', , we cannot use it to estimate
&, . %'ere t, 1.arger than I, , the pure low-tem-
perature 2D phase wouM have existed at a smal. l
temperature region of a relative size I,, —&0 be-
1ow T', . It is interesting that effects of this kind
were claimed to have been observed" experimen-
tally. However, this question is extremely deli-
cate and further experimental and theoretical
work in this direction is needed. It would also
be of great interest to obtain the amplitudes of
the 3D critical singularities from our free-energy
functional (3"t) or (38).

A basic question which we have not answered
fully is: %hat is the validity of the interlayer
mean-field approximations Since the critical
region is small, this type of approximation should
be valid over substantial. temperature regions.
%'ithin the critica1. region, one feels that the
Ginzburg-Landau functional derived here [Eqs.
(37) and (38)] should be the appropriate one to
use in a more complete (e.g. , a renormalization
group) treatment, as discussed at the end of Sec.
III. This is based on plausible physical ideas,
but we do not claim to have established it rigor-
ously.
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