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The hypothesis of two-scale-factor universality, originally proposed by Stauffer, Ferer, and %'ortis, is shown to
follow from the renormalization-group approach, for systems close to their critical point. Values of the

universal ratios involving correlation length and specific-heat amplitudes are obtained from the e expansion,

for Ising, X- Y, and Heisenberg models. In the latter two cases the correlation function has a power-law

behavior at large distances below T„and the (transverse) correlation length is defined in terms of the stiffness

constant p, . Experimental values of the correlation lengths and amplitude ratios are determined for superfiuid
"He, which is X- Y-like, and for the Heisenberg antiferromagnet RbMnF3. Comparisons are made between the

values of the amplitude ratios coming from e expansions, series, and experiments.

I. INTRODUCTION

The phenomenological theory of scaling' has
been extremely useful for understanding critical
phenomena in model systems and real materials.
A related concept, formulated as the hypothesis
of universality, ' greatly reduces the variety of
different types of critical behavior, by dividing all
systems into a small number of equivalence
classes. Within each class the exponents and the
equation of state will be the same, provided one
fixes the scales of the order parameter and its
conjugate field appropriately. Thus, apart from
two scale factors which will differ from system to
system, the thermodynamic functions of all ele-
ments in the same class will be identical, suffi-
ciently close to the critical point.

The scaling hypothesis was extended to time-in-
dependent correlations of the order parameter in
the earliest formulations, ' and it was found" that
the correlation exponents were simply related to
the thermodynamic ones. A few years ago, Stauf-
fer, Ferer, and Wortis4 generalized the concept
of thermodynamic universality, by the hypothesis
of tzvo-scale-factor universality for correlation
functions. This hypothesis states that the correla-
tion function for a system is fully determined near
the critical point once the two independent thermo-
dynamic scales have been chosen. This means that
the length scale is not independent, but is univer-
sally related to the thermodynamic scales. Stauf-
fer, Ferer, and Wortis showed that the hypothesis
was exactly satisfied in the two-dimensional Ising

model, and held rather accurately in a number of
other models.

The ~enoxmalization-g~oup approach' provides a
systematic method for proving scaling relations,
and for calculating exponents and universal ampli-
tude ratios as expansions in e =4 —d or 1/n (d is
the dimensionality, and n the number of compo-
nents of the order parameter). Indeed, early ap-
plications of Wilson's expansion methods were the
calculation of the universal equation of state" and
of the universal order-parameter-order-param-
eter correlation function, "and the verification of
two-scale-factor universality to second order in

10

In the present paper, we pursue this program by
proving two-scale-factor universality to all orders
in e, by completing the order e-' calculation, and
by extending the calculation of the corresponding
amplitude ratios to systems with continuous sym-
metry. In these systems, the correlation function
in the ordered state falls off as a power of the dis-
tance, rather than exponentially, which necessi-
tates a somewhat different treatment than the one
for Ising systems. As was first pointed out by
Josephson, " an interesting application is to super-
fluid helium, where the superfluid density yields a
direct measure of the transverse correlation length
below T~. A similar system is the isotropic anti-
ferromagnet RbMnF„where the spin waves in the
ordered state may also be related to the transverse
correlation length. Following a suggestion of
Ferer, "we are thus able to obtain, for such sys-
tems, experimental estimates of the universal
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amplitude ratio connecting the correlation length
to the singular part of the specific heat. The va, lue
of this ratio ma, y be compared to an extrapolation
to d =3 of the ~ expansion. Using this extrapolated
value and the measured specific heat, we can pre-
dict values for the transverse correlation length,
and we find in each case that the theory overesti-
mates the correlation length by roughly 50%, which
may be within the error bars of the extrapolation
of the e expa.nsion. In liquid helium above T„we
may use the series value of the amplitude ratio
and the measured specific heat tc obtain a value of
the correlation length which is otherwise unmea-
surable.

In See. II the appropriate amplitude ratios are
defined, first for the ease of exponentially decay-
ing correlations, and then for power-law correla-
tions. The results of the e expansion are given to
second order, and extrapolated values for d =3 ob-
tained. Series values for T & T, and for n =1
(T& T, ) are used to estimate the accuracy of these
extrapolations. Section III discusses the applica-
tions to superfluid helium and RbMnF, . The proof
of two-scale-factor universality from renormaliza-
tion-group recursion relations, and the details of
the e expansion are contained in the appendixes.

II. THEORETKAL ASPECTS

A. Systems with exponentially decaying correlations

We first discuss the situation for T& T„since it
is generally simpler. In order to formulate the
state ment of two-scale -factor universality, we
have to start by defining the scale factors. In do-
ing so, we follow the approach of Ref. 10, which is
somewhat different from that adopted by Betts,
Guttmann, and Joyce, ' or by Stauffer, Ferer, and
Wortis. ' We start by considering the wave-vector-
dependent susceptibility X(q, t, M), which is the
Fourier transform of

q(r, t, M)

=(nhzT) ' P [&4(r)4(0)& -&4(r)&&4(0)&I (I)

Here, t =(T —T,)/T„M is the "magnetization" (or,
generally, the average of the order parameter, "
&P ) =M5~, ), and g~(r) is the ath component of the
n-component order parameter at the site r. The
scaling assumption' states that for q, t, M-0, X

may be written in the form

y(q, t, M ) = t &Z(tM 't, t "q),

where y, P, and v are the usual critical expo-
nents. '4 Clearly, the relation

z =Z(x, y)

t/M"= x„H =0, (5)

and the scale of h(x) is determined by the critical
isotherm,

H/M'=h„ t =0.

RescalingH/M by h, and t/M'ts by x, we obtain a
universal sealing function, "

h (x) =h (x/x, ) =h, 'h (x) .
The nonuniversal constants x, and ho then deter-
mine all the thermodynamic critical amplitudes.
For example, for I, &0, H =0, and q =0,

)((0, t, 0) = Tt ",
with"

Similarly, the singular term in the specific heat
per unit volume above T is given by"

C; =(A/a)t (H =0, t&0),

with A uniquely determined by x„h„and h(x).
Equation (9) determines the value of Z(~, 0), i.e.,
the scale of z in Eq. (3). To fully characterize
Z(x, y) we now need only one more boundary con-
dition. Following Ref. 8, we choose this to be de-
termined by the small-y behavior of Z(0, y) which,
for an exponentially decaying correlation function,
ma, y be written as

Z(0, y) = I'[I+(t.y)'+0((4y)')1 ' (ll)
This equation defines the amplitude of the co~rela-
tion length,

(t&0, H =0),

involves three scales, i.e., those of the variables
x, y, and z. Given the scaling form (2), it is nat-
ural to make a universality hyPothesis (three sc-ale
universality): Once the scales of x, y, and z are
chosen in a unique way (so that the function Z or
its derivatives assume t ree given bounda y val-
ues), then the resulting function is the same for
all systems within a "universality class." The
further hypothesis of tu o -scale -factor universality
says, in fact, that only two of the three constants
are independent.

The two purely thermodynamic scales may be
defined by considering the function y(0, t, M), which
is directly related to the equation of state, assumed
to have the sealing form"

H /M = h (t/M'ts), (4)

where H is the ordering field conjugate to M. The
scale of t/M' is determined by the coexistence
cur vey
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which is related to the second moment of the cor-
relation function at zero field above T, .

Returning to (2), we can now define

Z(x, y) = Z(x/x„],y) = Z(x, y)/r, (13)

where d is the dimensionality of the system. Note
that the temperature independence of R

&
is just a

consequence of the scaling law

dV=2 —& . (15)

The quantity' &
may also be expressed as a uni-

versal combination of critical amplitudes,

(16)

In Appendix A we show that the universality of R',
follows from the assumptions of the renormaliza-
tion-g;roup approach, ' in much the same way as the
scaling relation (15).

If the constant R
&

can be computed theoretically
or obtained by measurements for one system in a
universality class, then the relation (14) enables
one to predict the correlation length, for any other
member of the class, once the specific heat is ac-
curately measured. For t-0', we have

t,(t) =,ft; [at 'C;(t) J
't' . (17)

The situation for the Ising model at zero field
below T, (n =1) is very similar: The wave-vector-
dependent susceptibility is now

ft(q, t, t I ) = t &' Z( x„ it i-' q), --
and for small )t~

'
q it can be written as

y(q, t, M) =r'ltl-&'[I+(g.'itl 'q)'

+o((t.'it l "q)')] '.
From scaling we have

(18)

(19)

and Z(x, y) is a universal function, just as the ex-
ponents are.

Betts, Guttmann, and Joyce' and Stauffer, Ferer,
and Wortis4 also define three scale factors, i.e.,
1, n, andg, related to the scales of length, order-
ing field, and temperature. The basic conceptual
difference between our formulation and theirs is
that their scale factors are defined as ratios of
the normalization constants (e.g. , x„h„and (,)

for a given system to their counterparts in a ref-
erence system. We feel that the present absolute
definitions are more useful for experimental anal-
ysis.

We are now ready to state the hypothesis of tzvo-

scale factor un-iversality': Only two of the three
normalization constants xp Ap and F„are indepen-
dent, and the three constants are related through
the universality of the combination"

(14)

V= V (20)

Universality of Z (x, y) leads to universality of
I'/I" and of $,/(,'. Similarly, the singular term
in the specific heat per unit volume below T, at
H = 0 is given by"

C' =(A'/o. ')itl " (If =0, t&0),

with a =a. ', and with, a universal ratio A/A'.
In analogy to (14), we can thus define

(22)

and this is directly related to R
&

through

ft' ~It
—= (A/A')'"(( /(') (23)

The quantities R', and R„were evaluated, for a
number of models and real materials, in the orig-
inal work of Stauffer, Ferer, and Wortis. 4 These
ratios were generally found to be independent of
lattice structure and spin value for the series ex-
pansions, "but were much less regular for the ex-
perimental data, " as is indeed the case for the ex-
ponents themselves. In view of the rather large
experimental uncertainties involved in determin-
ing the specific heat and correlation-length singu-
larities in real materials, we do not consider the
present disagreement with two-scale-factor uni-
versality to be conclusive, but rather an indication
that data on critical amplitudes may not be quan-
titatively reliable. A similar situation exists for
purely thermodynamic amplitude ratios. "

The universality of the combination (14) was
checked by one of us, "to second order in E =4 —d,
using Feynman-graph expansions based on the re-
normalization group. ' An expression was found
for h~, '$0=(R &)'/A, where A is a. universal
quantity, defined in Eq. (B10), for short-range
n-component models. Results depended only on d

and on u, and not on other properties of the start-
ing model, such as the cutoff A or the four-spin
coupling constant up." Comparison of the result
of Ref. 10 with experiments or with models was
complicated, however, because A could only be
roughly estimated and because the e expansion cal-
culation was difficult to extrapolate to e= 1. More
recently, two of the present authors'4 used a di-
rect renormalization-group recursion-relation ap-
proach" to calculate R

&
to lowest order in e in

d =4 —e dimensions. A closely related constant
was calculated exactly for short-range models at
d =4 as well as for the dipolar Ising model at d =3.
This approach can be generalized to show that
under the assumptions of the renormalization
group, 'fl', (andA, ) are indeed universal. Since
this proof is rather technical, we present it in
Appendix A. The alternative approach, used in
Ref. 10, which employs Wilson's Feynman-graph
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(R', )' = ,'nK, I-+e 1 — +O(e')n+8 (24)

where

expansion, ' is more directly applicable to an ex-
plicit calculation of the e expansion of R, . This
calculation is outlined in Appendix B. The final
result is

At d =3, this yields (R'„)'/n- —,'zzK, = I/4zz = 0.0796,
or R', /zz'~'-0. 43. An e expansion of (29) gives, in
agreement with (24),

(R &) /n ,'Kd(—1+a)+O(e'). (30)

Using K, = I/2zz' and e = 1, (30) yields R', /n'~'
-0.29. A slightly better agreement with the exact
result is obtained if we replace (30) by

K ' =2' 'r' 'r(d/2) . (25) R', /n'~ - (4K~)'~ ( I+a/d)+ O( e'), (31)

To obtain R
&

for the Ising model, one needs
A/A' and t,/$,' [see Eq. (23)]. These ratios were
calculated by Br6zin, Le Guillou, and Zinn-Jus-
tin, "with the results

A./A'=2" '(1+a)n+O(e. ')

and, for n =1,

$,/(,' = 2'(1+ ~ e + 0.0176'') + O(e') .

(26)

(For the e expansions of n, v, etc. , see, e.g. ,
Ref. 5.) A simple substitution into Eq. (23) thus
yields

(R, ) =-, K, (1 ——", e)+O(e'), n=l. (28)

(R', )' K, (2 —e) 'zze/2
n "-" sin(zz e/2)

(29)

The extrapolation of the e expansion (28) [just as
that of" (26)] to e =1 is ambiguous, owing to the
large negative coefficient of e. The uncertainties
involved may be appreciated by considering the
spherical model, which is the n-~ limit of the
js-component models. " For this model, Gerber"
calculated R', exactly, with the result

and now extrapolate to e =1, d =3. This yields
R', /n'~'- 031. From now on, the procedure indi-
cated in Eq. (31) will be used for extrapolating ra-
tios such as R &

and R, to ~ = 1.
Fortunately, the coefficient of c in Eq. (24) is

not very large, so that extrapolation of this expan-
sion to e =1 is expected to be more reliable. [This
line of reasoning is of course only suggestive,
since Eq. (24) has a vanishing coefficient of e for
n =1, but the resulting extrapolation R'„=0.23 still
differs somewhat from the series value R', =0.26. ]
Our extrapolations for R'„and R

&
from the e ex-

pansion are compared with series values in Table
I. The e-expansion values seem to be consistently
smaller than the series values, by -20% for R',
and by a factor of 2 for R, (n =1). This latter re-
sult is not surprising, however, owing to the large
negative coefficient of e in Eq. (28). If the extrap-
olated e-expansion value of R', is combined with
an experimental measurement of C'„ to predict
E, [see (17)], then $, will be underestimated by
-20%%up. This comparison with the available series
data may serve as an estimate of the ambiguities

TABLE I. Model values of universal amplitude ratios, at d=3,

Series
n=i

E expansion Series E expansion Series
n=3

e expansion

Ap
A/A'

(p/(()

A~

0 26
0.5id
1.96f
0.i7g

0.23b
0 55
1 9i
0 09c

0 36c
1.08d

0.30b
0 99

0.27"

0.95'

0.42
1.52d

0.36b
1.36~

0.30"

0.88'

"From Ref. 4.
e expansions (24) and (28) extrapolated as explained in Eq. (3i).' From Ferer, Moore, and Wortis, Ref. 20.
Obtained from the relation A. /A' =1 —40.', with n taken from series. See Refs. 16 and 22.' From Ref. 26.
From Tarko and Fisher, Ref. 3

~ From Eq. (23).
"From Eq. (43), with d=3, e= i, and 1 —2P=3&/(n+8).
' From Eq. (44), with d=3, e= i.
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involved in the extrapolation of the e expansion.
If we include the comparison in the case of the
spherical model, we are led to an error estimate
of order 20/o-50Vo. Such estimates are useful,
since in the following discussion we shall extrapo-
late e expansions of amplitude ratios, for which
no series values are available.

B. Systems with power-law correlations

ltd(r, t, M) =(kzzT) '((gz(r)gz(0)) M'), -
and y~, the Fourier transform of

(32)

Xr(r, t, M) =(kzzT) '(g„(r)g„(0)), zz. g1. (33)

For n&1 (e.g. , X-Y and Heisenberg systems),
the correlations below T, do not decay exponen-
tially, as would follow from Ezl. (19), but rather
according to a power law, whose form may be de-
termined from hydrodynamics, "or from the re-
normalization group. ""

For n&1 and T& T„we must define two response
functions, i.e. , y~, which is the Fourier transform
of the longitudinal correlation function

p, = (k'/m'„, kzz T)p, , (40)

where m„, is the helium mass. According to the
scaling hypothesis' " any other relevant correla-
tion length for the system below T, must be a
multiple of the length $r defined in (39). More-
over, the exponent v' for 4 must be equal to v,

(41)

The two-scale-factor universality assumption
below T„ first formulated for helium by Ferer, "
may now be stated analogously to (22), in terms of

R", = ~r(mtzC')'" (42)

where $r is defined by (39). The quantity R „
should be universal within a class.

The e expansions for f, /t;, ,and for R, are car-
ried out in Appendix B, with the results

(39)

The length $~ was denoted ~ ' in Ref. 35. In su-
perfluid helium the stiffness constant p, is related
to the usual superfluid density p„ in units of mass
per unit volume, by the equation"

Clearly,

X(~, t M) =[Xi+(n —1)Xr]/n (34)
2 ~ 17n+ 76

z) "zI„/I ') "oI' I ( zI

itr(r, t, M) =A M'/k Tp,r

, t&O, H=O

where the coefficient

= I'(d/2)[zz t'(2d —4)] '

(36)

comes from the Fourier transform of q
' in d di-

mensions. Since y, as defined in (1), has the di-
mensions of (kzzT) 'M', a (transverse) correlation
length (~ can be defined by the relation" "

yr(r, t, M) =A~M'(kzzT) '($r/r) (37)

where A.„' is a numerical constant, which may be
chosen to have any fixed positive value. By con-
vention, "we shall choose A,' =A~, so that Eq. (35)
reads

yr(q, t, M)=M'g '/kaTq',

q-0, &&0, II =0

and

(38)

For H = 0 and t & 0, X is dominated at long wave-
lengths by y~, which has the form

gr (q, t, M ) = M'/kzz Tp, q', q -0, t & 0, H = 0 (35)

where p, is a stiffness constant, which depends on

temperature. Equation (35) was derived in Ref.
29 for the usual three-dimensional case, but it
holds also for any d at which long-range order
exists. The coordinate-space transverse response
function is then

and

4n+2 3+ z) K2/tz( 8) ( 8)z

(44)

1 sin'~e 1+0
Kdn p rr n' (45)

in agreement with the large-n limit of (43). Thus,

g/$, decreases monotonically to zero as n in-
creases to infinity.

In order to obtain the large-n limit of 8„ it is
now sufficient to know the large-zz limit of A/A'
and to use it together with (29) and (45). The
ratio A/A' was recently calculated in this limit,
by Abe and Hikami. " For 3 & d & 4 they find

Extra.polated values of $,/$, and of R, at d =3 are
also exhibited in Table I. In these extrapolations
we have used the explicit expressions (43) and

(44), and substituted e =1, d =3, K, =K, =1/2zz'.
These values may now be used, together with

(42), to estimate (r from measurements of C' or
of g, .

As was the case for T& T„we can also calcu-
late g, /], and Rrz for general d in the limit n- ~.
A direct extension of the calculation of Brdzin and

Wallace, "along lines similar to those presented
in Appendix B, shows that in this limit, with the
normalizations of Appendix B, p, =M', and there-

foree
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III. APPLICATION TO REAL SYSTEMS

In this section we wish to supplement the work
of Stauffer, Ferer, and Wortis, and of Ferer, "
by a more complete discussion of two systems
with continuous symmetry: superfluid helium (n
=2) and the isotropic antiferromagnet BbMnF,
(n = 3).

A. Liquid helium

As mentioned in Eq. (40) and discussed more
fully in Ref. 35, the stiffness constant p, is pro-
portional to the superfluid density P, (which has
units of mass per unit volume). Thus the correla-
tion length $& may be obtained from the measured"
superfluid density P, by the relation (for 2 =3)"

t'r =m„' ka T/b'p, .

Inserting the value'9 at SVP

P, =0.35(-t)"' g/cm',

we find, with T = 2. 17 K,

t, =3.57(-t) '" i

(47)

(48)

(49)

From p, measurements at higher pressure one
also finds that Eq. (49) remains unchanged to with-
in the accuracy of the absolute measurements
(10% 2o/, )."

The correlation length g, above T, cannot be
measured, but we can use the series value of A&

(Table I), combined with the experimental specific
heat, "to arrive at a three-dimensional value of

At SVP the speeifie heat has the asymptotic
form (21) with"

A=1.65x 10" cm ', A/A'=1. 065, o. =-0.0154.

Inserting the value A'N =0.36 from Table I into (17),
and using (50), we thus find

E, =1.41 t o'6" A (51)

at SVP. Note that the e-expansion value, Ei&

=0.30, will give a value of (, whichwillbe smaller
by -20%. At higher pressures the absolute values

A/A'=n[f(d)+0(1/n)j, with f(d) given by"

2 &
— ~« - ~1(d/2)1(2 d/2)

f(d) =
I'((4 —d)/(d —2))I'{(2d —6)/(d —2))

I (-', )I (d/2) '«'-'~
I'{(d —1)/2)

However, ot d =3, A/A' is finite for n-~, and
becomes A/A'=v'/4 —1=1.467. . . . Thus, the ex-
trapolation of A. /A' from these results to n =2,
d =3 is quite ambiguous. We therefore prefer to
use the e expansions.

=5 2(-I) "' A, (52b)

which overestimates the experimental value by
50$. In view of the a.mbiguities in the extrapola-
tion of the e expansion, discussed in connection
with the comparison to series results above 7.', in
Sec. II, we do not attach great significance to the
discrepancy between (52b) and (52a).

It is interesting to note that if superfluidity were
due to the condensation of pairs of helium atoms, '
the appropriate mass to be inserted into (4"l)would
be 2m„„ leading to an experimental value of $&
larger by a factor of 4. Unfortunately, the uncer-
tainties of the extrapolation of the e expansion do
not at present permit one to rule out this possibil-
ity definitively, although it seems quite unlikely.
It is hoped that future, more accurate calculations
might provide such a test.

The experimental results (49), (50), and (51)
may also be used for a direct evaluation of the uni-
versal ratios Rq, Aq, and $,/$, . These are sum-
marized in Table II, and are in reasonable agree-
ment with the theoretical predictions of Table I.
A universal ratio proportional to (Rq) was first
obtained from experimental data in the original
work of Ferer. "

We should also mention that there exist other
correlation lengths in superfluid helium, which
arise in the analysis of the depression of T q in fi-
nite geometries, or the reduction of p, in the
neighborhood of a surface. These might more
properly be called "healing lengths, *' since they
measure the distance over which strong perturba-
tions of the order parameter will decay. It is
clear from scaling that the healing length E~ should
have the usual exponent v, and that its amplitude
should be universally related to $~, but the value
of $r/$„ is difficult to predict, since it depends on
a detailed theory of surface effects near T„.
Such effects are particularly difficult to describe
for systems with continuous symmetry. ' What is
usually done in order to extract a value of (z is to

of the specific heat are too uncertain to permit an
independent calculation of $." From the pressure
independence of g„however, we are led to pre-
dict that both g~ and A will also be indePendent of
Pressure.

The experimental value of A', Eq. (50), and the
&-expansion value of A~, from Table I, may now
be used to generate a theoretically predicted value
of (z, from Eq. (42). The result is

& =3 8( t)"' A,

in surprisingly good agreement with the experi-
mental result (49). An alternative way to predict
t'r is to use $„Eq. (51), and the e-expansion val-
ue of $0/)o from Table I. This yields
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TABLE II. Experimental values of ratios. 5r =~a Ts(Spa) /@ c X, (55)

Helium (n =2)

0.90

0.39

RbMnF, (n =3~

0.45'

f.8-i.~'

0.5-0.7'

where' X =3.9xlo is the macroscopic suscepti-
bility per cm', in electromagnetic units, gp~
=2&0.927@10 "ergs/g, and T„=83.02 K. Com-
bining Eqs. (54) and {55)we find

=62( t) '"A
' From Befs. 39 and 40.

From Befs. 39, 40, and series value of A& in Table I.' From Befs. 46 and 48.
From Befs. 47 and 48.' From Befs. 46 and 48.

apply mean-field theory, "with the simple bounda-
ry condition that the order parameter should van-
ish at the surface. Such an analysis was carried
out by Ihas and Pobell, ~' who found the value $&
=1.2 j t j

"' A. More importantly, however, these
authors were able to check directly the universali-
ty of $z/$r as a function of pressure, by combining
their measurements of the depression of Tq in fi-
nite geometries, with bulk measurements of p, .

Finally, we remark that although two nonuniver-
sal scale factors are needed to specify the critical

behavior completely (in addition to the universal
exponents and amplitude ratios), a certain amount
of information is already available by determining
a single amplitude, say A. . This is because there
is a subset of "hydrodynamic" exponents and am-
plitudes which are related among themselves, in-
dependently of the others. These are the exponents
a and v, and the amplitudes A, A', and $, . The re-
maining "microscopic" exponents and amplitudes
are as yet inaccessible to experiment in liquid hel-
ium. Thus there is no quantitative information
available on the strength of the Bose condensate, "
which is given by the nonuniversal amplitude &.
Another "hydrodynamic" exponent in liquid helium
is the dynamic exponent"'" z, which is related by
a scaling law to a and v, with an associated uni-
versal amplitude ratio A~, discussed in Ref. 35.

8. RbMnF3

In the isotropic antiferromagnet RbMnF, there
are neutxon scattering measurements of („"and
of the spin-wave velocity, 4' and thermodynamic
measurements of the specific-heat amplitudes 4
and A.'." The measured value" of (,= &+' is

Clearly the relation v= v' is only obeyed very ap-
proximately by these fits.

The specific heat was found to be of the form (10)
and (21), with""

4=9.87 x10" cm ', A/A' =1.46, o =-0.135.
(57)

We may use the experimental values (57) for A
and A' and the e-expansion (or series) values for
A~ and A~ to generate theoretically predicted val-
ues of $, and of $&..

t', = 1.68 t ' "' A (e expansion),

t, = 1.96 t o" A (series),

and

=4 65( t) '" A (59a)

7 Ot-o. 7j A" (59b)

which again overestimates (56) (for j tj-10 '-10 ')
by roughly 60%. We thus see that the & expansion
seems to overestimate $0 for n = 3, as was also
found in the case of helium, n =2.

We could also evaluate the experimental ratios
Aq, Aq, and (o/$, directly from Egs. (53), (56),
and {57). The violation of the relation v= u' in (53)
and (56) then leads to a temperature dependence of
A g and to/$, ,

The result (58) again shows that the extrapolated
e expansion underestimates t', by -15%. Consid-
ering the error bars, the series prediction is in
good agreement with the experimental result (53).
Since the experimental fit (56) does not agree with
the scaling relation v= v', itis difficult to compare
(59) with (56). ln the typical experimental range
probed in Ref. 46, jtj-10 '-10 ', the theoretical
value (59a) overestimates the experimental fit (56)
by 10%-60%%uo.

An alternative predicted estimate of $& follows
from the experimental value of $„(53), and the
e-expansion extrapolation for $o/$, (Table 1). This
yields

0~71 A

whereas the spin-wave velocity c is given by"

ft'=2 6j tj'"
t /g'=034jtj-'" (61)

kc =25.3(-t)o' meV A. (54)

As explained in Sec. VC of Ref. 35, the correlation
length (~ =(x ) ' is related to c by

Substituting j t j
- 10 '-10 ' gives the numbers pre-

sented in Table II. In view of the strong tempera-
ture dependences which occur in (60) and (61) it is
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difficult to draw conclusions about the aecuraey of
the e expansion in this case. It is hoped that more
definitive experimental investigations will be made
on a magnetic system with continuous symmetry.
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sufficiently large so that for E ~ N all "transients"
x& have died away and are negligible. For finite
e & 0, (u, —u*) can also be considered a transient.
We assume that r, —r~ is sufficiently small, so
that L»N. Then, for I &N, all the variables (r, ,
q, , etc. ) are functions only of I —L. In particular,
apart: from an additive nonumversal constant, 9(f)
is also a function of / —L,. Furthermore, we may
then expand quantities in powers of e

APPENDIX A; RENORMALIZATION-GROUP PROOF OF
TWO-SCALE-FACTOR UNIVERSALITY

We start with a reduced Ginzburg-Landau-Wilson
Hamiltonian, '

r, =r*+r,e ' '+r e ' ' "+F(l —L)

q, =0+0,e I' -'&~"-+q,e "'-"'-+0(f L)—,

G(ri, ui, &i)+ani/d= V(f-—L) (A I)

x,(y) = —
2 (r, I)I'+

I
V)I'+2u,

I
)I'+ ")d'x

1
(r. +& )0; 0-;

+uo 4r'4~a4q-'4-a -q -a~'+ ' '

(A 1)

where f, means (2w) f d V, with IVI& A=0(1).
For convenience, we set A = 1 in this appendix. We
then construct recursion relations for r„u, , etc. ,
and rescale the order parameter after each itera-
tion by a factor f, so that the coefficient of I

V/I�

'
remains equal to l.'

The free energy may be written as"

etc. We can now divide the integral in (A2) into
three parts,

J' f. (AB)

The contribution from the la, st term, -1/d, in
(AS) is a constant, independent of ro, and may be
dropped. The contribution from the first integral
in (AB) is nonuniversal, but analytic in ro, and
thus does not affect the singular term in the free
energy, F, . The last term in (AB) is of the form

F(r„u„.. . ) =uK„ 9(f)e "'df, -
where

a, = y(~)e "dr (A10)

9(f) =~(rr ug &g)+(~20& I)/d. (AS)

(A4)

where t-' is the change in the length scale, and

Here, x, represents the fast transients (e.g. , the
coefficients of I/I or of Iv'((I'), and may be set
equal to zero for large E. The quantity g& is re-
lated to the spin resealing factor at the lth itera-
tion,

e(1-Qg/2) 61

is universal. Similarly,

[G(r„u„0)+$0(]

e-dN &-dL -(d -]/v) N -L, /v dL,

6 + +(p~2 d d ' d-I/v

-(d -2/v) N -2L/v8 e -8
2

G(r„u„0)= —,
' ln(l +r,) +O(u, ) . (A5) (All)

At T, (or r, =r~), for large l,

r r* u -u* x -0
y l y

gg q, G G*,

etc. , where g is the usual critical-correlation ex-
ponent. For ro slightly above r~, we now define
I. such that r~ =1. The correlation length is then
given by t =e

I I+0(u~)], since there are no q-de-
pendent contributions to the correlation function
y(q, f, 0) at order uL, .' Let N now be a value of I

where

0

gr)e "dr& ~

is again universaL The first term in (All) com-
bines with the corresponding one in (A9) to give
a contribution independent of L. The terms pro-
portional to e /" and e '~ " are regular, since
e ~ "~f (g™e). Hence, the only singular terms
are proportional to 8, and the coefficient is a
universal constant,
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(A13)

G*+ 2g
d d-1/v d-2/v (A14)

is universal. This completes our proof. Note
that if dv= 2 then the last term in (A14) corres-
ponds to logarithms. " In the limit c-0, only
this last term remains, and we have

a= (/), v/o. ,

with, to lowest order,

, [-,'in(1+x)]„,= ——,'. (A

Using v= —,'+ O(e), we thus identify

(A15)

nF, (3 = —4'4nK, +O(e), (A1V)

in agreement with the lowest-order result (24) and

with Ref. 24.
Note added in pt oof. We have been informed by

Professor F. Wegner that he has independently
proved two- scale- factor universality using the
renormalization group. "

+ [3(x+ 12u, ) ln(x+ 12u, )

+ (n —l)(x+ 4u, ) ln(x+ 4u, )]+O(e'), (81)

where one must substitute

APPENDIX 8: e EXPANSION OF R(~AND RT(

The basic Hamiltonian we use is again that of
Eq. (Al), with the addition of a magnetic field
term. For this Hamiltonian, Brdzin, Wallace,
and Wilson' derived the equation of state (4). For
general cutoff A, their result is"

h( ) A-[(44+3)4/(n43))~x+4+ A-4
0

A=A,,x, 'A

=4,4," *34(4 —4) J 434' '

~[h(y) —I (0) -I &0)y —-'. h-(0)y ].
The universal amplitude A can be found from the
explicit e expansion' of I)(x) as"

(Blo)

33e 3 ln(16/27)

30—
( 6), + O(e') . (811)

Using the scaling relation (15) we may now express
the ratio R&, Eq. (16), as

(812)

Combining Eqs. (83), (84), (88), and (89), and

using the e expansion of the exponents, ' we find
the universal expression

k3x," 't3 =K (n3+6) e 1 —e
9n+ 42

t-' = I/~+ O(e')

= )((0, f, 0) + O(e') = I'f ~ + O(e') . (87)

Since y= (2 —q)v= 2v+ 0(e'), we immediately iden-
tify

$3=1'+O(e').

The amplitude I' is readily ealeulable from the
equation of state (Bl), using Eq (9.). The result
ls

I'=A(44+3) 3/(n+3) O( 3)

The speeifie-heat amplitude A may be obtained
by integrating the equation of state, "'"

4K~ u, = 1+,e + O(e3)
A'c 9@+42
n+6 n+6 ' (82)

3 ln(16/27)
2(n+ 6)

in order to obtain the correct exponentiations of
M in (4).

From (81) we immediately identify

(2/A3)33/(44+3) (4 ) 3+/3(434+3) + O(e3) (8

A-4393/3(44+3) (4~ )4+3/3 O(e3) (84)
As noted in Ref. 8, the e expansion of the two-

spin correlation function for the Hamiltonian (Al)
is of the form

)((V, t, 0)=,+ O(&'), (85)t+g
whel e g ls the exact inverse susceptibility

)((0, f, 0) =- I/r. (a6)
Thus we identify the correlation length $ [see Eq.
(11)]as

This result coincides, up to a factor of d,"with
the quantity calculated in Ref. 10.

We may now combine Eqs. (811)-(813) to find
the result for R& quoted in Eq. (24).

The expansion of the transverse correlation
function at finite q proceeds in a manner analogous
to the calculation of Brdzin, Wallace, and Wilson, '
who considered the case q=0, IIWO. The first-
order result at II=0, t&0, q-0 is

3-,'(3, )= '- 4 444; 4/4~4 ),M

X - - ~ — 3f)',
'YL+ p+q &I +p

where r~ is the inverse zero-momentum longi-
tudinal susceptibility, to lowest order in e, and
is given by
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rz = ro+ 12uo M'+ O(e) = 8uo M'+ O(e) . (B15)

The second step in (B15) follows from Eq. (Bl),
which at zero field yields ro+4uoM'=O(e). Ex-
panding the integral in (B14) for small q', and
using (B2) and (B15), we immediately find (at
H=O)

'=M ' 1 — +O(2'))2(n+ 8

=2 *' 1 — ~ O(2'))(-1) *'
2(n+ 8)

(B17)

Inserting the expressions (B3), (B8), and (B9) we
thus find

2,'( , 2M2)= '21 ~ ~ O('*)} O(2').

The correlation length $r, Eq. (38), is thus"

(B16)

(B18)

Using (B2) we arrive at (43). Finally, the value
of R, quoted in (44) is obtained by inserting (B3),
(Bll), (Bl"I), and (26) into (42).
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