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We present a simple but physically motivated approximation scheme for the dynamical spin correlation
function of the Heisenberg model above the critical temperature. Built upon the spin-diffusion theory, it

describes the short-wavelength and high-frequency excitations as magnonlike modes which exist within
clusters of highly correlated spins. The modes are damped by both the finite size and the finite lifetime of the
clusters. The agreement between the theory and the neutron scattering data on a variety of systems is
reasonably good.

Inelastic neutron scattering experiments have
been carried out on many magnetic materials above
the critical temperature. ' The results may be
summarized by the criterion first proposed by
Marshall. ' When the wavelength of the excitation
is long compared with the spin correlation length
A. , the mode is well described by the spin-diffusion
theory. ' When the wavelength is short com-
pared with A. , the spectrum of the excitations bears
remarkable resemblance to the magnon modes be-
low the critical temperature. (The critical be-
havior of chromium is better described by the
itinerant theory. ' ) There have been many theo-
retical discussions on the latter type of modes. '"
Most of these works attempt to extend the spin
diffusion theory by more careful mathematical
methods.

In this paper we discuss a very different ap-
proach to this problem. A preliminary account of
our method was reported elsewhere. Instead of
trying to improve on the mathematical technique,
we work from the physical nature of the short-
wavelength modes. Although there is no long-
range order above the critical temperature, the
system retains various degrees of short-range
order up to rather high temperatures. Thus if
the wavelength of an excitation is less than the
average size of the correlated cluster A., or qA. &1,
where q is the wave vector, the mode can make a
few complete oscillations within a collection of
correlated spins. Then the nature of this mode
should be very similar to the magnon mode in the
ordered phase. The finite size of the cluster of
spins gives rise to a damping mechanism of the
mode. In addition, the average cluster decays
away due to spin diffusion with a lifetime given by
r= X /A, where A is the spin-diffusion constant.
Thus it is also necessary for the frequency co of
the mode to satisfy ~~) 1 in order to have a well-
defined mode. We will show that the shape and

width of the neutron scattering response function
depend on the interplay bebveen the two conditions

qX ) 1 and co w & 1.
We will demonstrate our method by using the

simple ferromagnet as an example. The inelastic
neutron scattering cross section is proportional
to the dynamical spin correlation function'

G(q, ) =g (s (t) s, (0))
OO

where R„. is the vector distance between the spins
S,. and S, In the spin-diffusion region, i. e. ,
qh. «1, the two-spin correlation function has the
form

(S;(t) S,(0)) a S(S+1) p (R... t), (2)

where C =kT/2D, w = V', and D is the stiffness
constant.

Now we consider the situation where qA. &1. As
pointed out in Ref. 24 the dominant contributions
to the neutron scattering response function come
from pairs of spins which are roughly one wave-
length apart. When qA. &1, it is highly likely that
the pairs will fall within the same cluster of cor-
related spins. We propose to describe the dy-
namics of such pairs by the spin-wave theory. If
two spins fall in two different clusters, we use the
spin-diffusion description for the dynamics of the

pair. The probability that an arbitrary spin pair
is correlated is given by the spin-diffusion cor-
relation function p(R, t). Hence our approximation
scheme is as follows:

(S,(t) ~ S, (0)) == (S,(t) Sz(0))~~o(R;,, t)

+ (S,.(t) S,.(0)) [1 —p(R;;, t)], (4)

where the subscript SW indicates that the two-spin
correlation function is to be calculated by the
spin-wave theory and SD indicates that the spin-
diffusion theory is employed. The first term de-

where p(R, t) is the normalized correlation func-
tion satisfying p(0, 0) =1. The spin-diffusion theory
gives the Fourier transform' '" of p(R, t),

( )
C 2Aq'

q2+&2 +2q4+~2
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pends on the model, but the second term is simply

S(S+1)p(R, ,, t) [I —p(H, ,, t)] . (5)

A simple isotropic ferromagnet has the spin-
wave dispersion relation &, =Dq, where D is the
stiffness constant. For each cluster of ordered
spins we can define a local z axis which is in the
direction of the ordered moments. Then

&s;(t) ~ s,(0))..= &s",(t) s;(o)&

~ —.
'

&S;(t)S,(0)& —.
' (S,(t)s;(o)& (6)

(S;.(t) S;.(0)) = S' ——Zn. . .

&S;(t) S,.(0)&» ———Z (n, .+1)exp(tq' ~ H„. —i(d, , t),
(t}

(S,(t}S„'(0)&»= —g n, , exp(iq' R;, +i~, ,t),

where n, , =(e~"»' —1) ' and where N is the tots, l
number of spins. We have ignored the two-and
more-than-two-magnon terms. Putting these re-
sults into Eq. (4) and taking the Fourier trans-
form, we obtain

G(q, (o) = S ——~ n, , p(q, (u) + —~[n, , p(q —q', ~ + u), , ) + (n, , + 1)p(q —q', (e —(u, , )j
Q

+ »(»+)) (»tt), ) M-')— »(»', &')»(»-»', — ') (B)N g. . 2m

The first term is the central peak term because at any finite q the function p(q, (d) peaks up at (d =0. In the
limit of ordered spins this term becomes elastic ((u=0) and describes the magnetic Bragg scattering. The
next term consists of the excitation and deexcitation of single magnons, and these one-magnon lines are
broadened by folding with the spin-diffusion correlation function. The last term is a background term
contributed by loosely correlated pairs.

We now extend the result to antiferromagnetic systems. The spin correlation function which exhibits
the critical behavior is the Fourier transform p(Q, 0), where Q is the characteristic wavelength of the spin
ordering. For a simple two-lattice antiferromagnetic system Q is one-half of a reciprocal-lattice vector.
A suitable measure of the degree of order is p(H, ,, t) cos(Q ~ H, ,), which is then used in place of p(H ... t}
in Eq. (4). The result of the calculation is as follows:

»(q, )=(»' ——Z[ .. Cosa'e, . ~ (,. ))s'na'e. ,]) —,'[p(q, (), ),»(»-(), ~)]

+ Z ((n, . +1)[e"»'p(q-q'+Q, (d —(u, ,)+e""p(q-q'-Q, + —(u, , ) +2e "»' p(q-q', (u —(d, . )]
OO

+ n, .[e'"' p(q- q'+Q, ~+ ~,.)+e" p(q»- q'-Q, u)+(d, , )+2e "»' p(q- q', ~+ (d, , )]j
+ (background term).

In the above equation

~, =2S [~(q) -a(q)]"', tan2e, = [a(q) -II(q)]/[a(q)+a(q)],

&(q) =J(Q) -J(q), It(q) =J(Q) ——,
' J(Q+q) ——,

' J(Q-q),

where J(q) is the Fourier transform of the exchange interaction and both q and q' are measured from Q,
A special case of the helical antiferromagnet is the linear-chain model with nearest-neighbor inter-

action. 2' It is customary to express the wave vector in units of inverse lattice parameter. Then Q = n,

J(q) =2Jcosq, tan28, =cosq, etc. Thus,

»(», )=(»' ——Z[ ..( s»' ~ () ~ ( .. ~ ))(csc»' —))1)p(» —,) ~—I [( .. ~ ))[A.". »(»-»'+, , —,. )
Q

+ &,'. 'p((]' —q', (d —~,.)]+n,. [&,"'p(q —q'+](, ~+to, , ) +&(.)
p(q —q', u)+(d, .)] j+(background term),
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infinite-temperature limit. '6'" This is not a
sel ious drawback, because oui main interest ls
to understand the neutron data over a finite tem-
perature range above the critical point.

In our numerical calculation for the simple
ferromagnet we put in the spin stiffness constant,
correlation length, and spin-diffusion constant of
nickel. '*' There are reasons why one should not
apply the Heisenberg model to nickel; for example,
the rapid broadening of the magnon line around
80 meV can be understood only on the basis of the
band model, 26 However, aside from this fact our
theory is not sensitive to the model. Away from
the critical region we assume

I 1
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FIG. 1. Calculated line shape for a constant-energy
scan on. nickel above the Curie temperature (631 K).

where A,")=cscq~cotq and the sum on q' is car-
ried out in the magnetic Brillouin zone ——,

'
m&q

There is a mell-known infrared divergence
in the simple spin-wave theory of linear-chain
models. The divergence appears in all of the
sums onq' atq'=0. However, it is very easy to
show that in Eq. (10) the divergent part of the
central peak term cancels exactly the correspond-
ing divergent part of the one-magnon term. Con-
sequently, one can remove both divergences by
restricting the sum on q' by A,

' —Iq l ~-,'&.
At this point w'e mould like to point out an un-

certainty in the theoretical results Eqs. {8)—(10),
The peaked structure of p{q, ~) implies that the
major contribution to the one-magnon terms come
from the region q ™=NNq and ~'=—{d. For ~q-q'l
& X

' we can justifiably use the form of the spin-
diffusion correlation function in Eq. (3). However,
in the three-dir'. ension model the sum on q' con-
verges slowly, so that it may be necessary to in-
clude q' vectors outside this range, The situation
is worse for the central peak and background terms
because the region of interest is outside the range
of validity of Eq. (3). This uncertainty arises
from the fact that we take the spin-diffusion theory
as given and build a theory of short-lived magnons
on it. We make no attempt to extend the spin-dif-
fusion theory to shorter mavelengths, because in
doing so me wouM encounter all. of the difficulties
mentioned in the previous theoretical morks. ~ ~3

We will show that in spite of this uncertainty the
theory still allows a great deal of understanding
of the neutron scattering results.

It is easy to verify that the theory fails in the

~=~,(T/T, -l)"', ~=~1,(T/T, 1)"'-,
where T, =631 K, co=0, 312 A ', Ao=380 meV A,
and D =280 meV A'. We also take 8 =-,' for con-
venience. A typical line shape for a constant en-
ergy scan is shown in Fig. 1, where we shorn the
total line shape and the contributions from the
central peak, one-magnon, and background terms.
The three components are equally important in
determining the shape and width of the response
function, In a constant energy scan the central
peak splits into two peaks because O(q, ~) is zero
at q =0 and (d 10. We used the same input data
to simulate a constant q scan, and the line shape
showed only one broad peak centered at a =0.
Therefore we do not regard the lines observed in
Befs. 7 and 8 as convincing indications of propa-
gating modes above the critical temperature.

In Fig. 2 we compare the theoretical line shape
with the experimental data at two temperatures. 7

The data includes an instrumental resolution whose
size is given in Ref. 8 as 0. 05 A or 0. 02 re-
duced units. This is rather small compared mith
the total width of the peak and is comparable to
the discrepancy between the theory and the data.
We also assumed that all of the experimental back-
ground came from scattering by disordered spins.
Since this background mas fully accounted for in
our calculstion, we made no adjustment of the ex-
periment31 background. One can see from Fig. 2
that the comparison between theory and experiment
is reasonably good. On the same graph we also
show the predicted line shape at 1000 K. The cal-
culated line is somewhat narrow compared with
the data. This may be due to the simplified as-
sumptions me made for the temperature depend-
ence of the correlation length and the spin diffusion
constant.

There appears to be very little change in inten-
sity as well as in linewidth with increasing tem-
perature. This is in qualitative agreement with
the observations. 8 To understand this phenome-
non we must consider many factors. Since {d
= Dq~ for a simple ferromagnet, me have
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FIG. 2. Comparison between theoretical line shape
and experimental data for nickel above the Curie tem-
perature, The wave vector is in units of 2~v 3ja, and
the intensity is in units of neutron counts per number of
monitor counts, as in Ref. 7.

vv =(D/A) (qX)'.

The ratio D/A is of order unity; thus the conditions
qX &1 and ~ ~1 more or less go together. hen
the temperature increases, the correlation length
decreases. This has the tendency of broadening
the line. On the other hand, the spin diffusion
also becomes faster, with the effect of cutting out
the influence of the small clusters and leaving only
the large c1usters to respond to the excitation.
This explains why the line does not actually broad-
en. Although the number of large clusters de-
creases with increasing temperature, the boson
distribution function increases so that there is no
net loss of intensity. The neutron scattering data
on iron have the same qualitative features. 8

In all of these calculations we used the simple
form of the spin diffusion correlation function.
Because of the uncertainty in the form of this func-
tion for large q, we performed a series of tests
by assuming different forms for the correlation
function. One possible form is the Gaussian func-
tion

p(q, (u) =(c/~') e ' ~" 2Aq2/(Aaq4+uP);

another form is the cutoff Lorentzian where we
use the form in Eq. (2) for q& q, and p(g, ~) =0 for
q & q„q, being a parameter. The results show
that the line shapes change very slightly when the

Guassian form is used, and hardly at all when the
cutoff Lorentzian form is used with q, - 0. 1 A '.
This choice of q, corresponds to the inverse of the
range of spin interaction in nickel. Physically
both the Gaussian and the cutoff Lorentzian forms
of the correlation function suppress the number of
those clusters that are much smaller than the av-
erage size X. Thus it appears that these smaller
clusters decay away sufficiently rapidly so that
the detailed shape of p(q, ~) is not very important.

%'e then applied the theory to a simple antifer-
romagnet, RbMnF, . The magnetic lattice of this
material has a simple cubic structure with lattice
spacing a=4. 186 A. 7 The important exchange in-
teraction is between nearest neighbors with J
=1.99 K. ~e The spin for Mn ions is S= —„and the
Neel temperature is T„=83 K.

Tucciarone et al, followed up their early work'

by a detailed study of the inelastic neutron scat-
tering line shape at the critical temperature.
The authors analyzed the data in terms of the dy-
namic scaling theory and found very good agree-
ment. At the critical temperature the spin-dif-
fusion correlation function is given by

p(Q+i, ~)=—(&/q' ")&(q)/(1 (q)+~'1, (12)

where q is a small deviation from Q. q=0. 05,
I'(q) =Cq'~, and A is a normalization constant.
The spin correlation length is infinitely large.

It is difficult to apply the theory at the critical
temperature for two reasons: (i) the nonintegral
exponents in expression for p(q, (o) makes the in-
tegration of q' in Eq. (9) impossible to work out;
and (ii) the expression in Eg (12) on. ly holds for
small q, and the correlation function for large q
is unknown. Never theles s, some progress can be
made by observing that the spin-diffusion correla-
tion function peaks sharply at q' =q and that at
the critical temperature the major damping mech-
anism for the magons is the magnon-magnon in-
teraction. Thus we may ignore the Fourier com-
ponent of the correlation function for wave vectors
q —q' +Q completely and approximate

P(Q —0 ~
~ —~e)

=—&(0 —q') 2F'(q)/ [(~—~,)'+ F"(q)1, (12)

where 1"(q)=Dq as given by the hydrodynamic
theory. 0 For small q the factor e "—= 2v3 (nq) ~

and the magnon frequency ~, =cq, where c =2v 3
Ja. These enabled us to find

r (q) 2,'S S
G(q, ()=~,(), +

2(n, +1)I"(q) 2n, l"'(q)"
~.—..i" *w'("-.i" i.))

(14)
The background term was found to be negligible.
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FIG. 3. Comparison between theoretical. and experi-
mental line shapes for constant-q scans on RbMnF& at
the critical temperature (83 K).

There are four parameters, A, C, D, and the
scale factor, in the theory. We calculated the the-
oretical line shape fox q =0.25 A ', folded with the
resolution function given in Ref. 29, and adjusted
the parameters for a best fit. The magnon velocity
was not adjusted. We then used the same set of
parameters to calculate the line shapes for q =0.2,
0.15, 0.11, 0.075, and 0.05 A '. The results are
shown in Fig. 3 together with the data from Ref.
29. One can see that for large values of q the the-
ory reproduces the data very well, but for small-q
values the magnon peaks stand out too sharply.
This discrepancy arises because our theory does
not satisfy the dynamic scaling law, "which says
that both &u, and l"(q) should be proportional to

Compared with oux theol y w 1th %II ~ q and
I"(q) ~ q, the magnon frequency in our theory is
too high and the damping too low for small values
of q. This xesults in three distinct peaks in the
theoretical curve even for the smallest q. There-
fore the failure of our theory in the small-q region
comes about because the critical fluctuation alters
the nature of the modes in a fundamental man-
ner. 31-33 It is beyond the scope of our theory to
elucidate this effect.

We have also tested the theory on the one-di-
mensional antiferromagnetic system TMMC
[(CD,),NMnC1, ]. In this material the ordering
temperature is suppressed by the dimensionality
so that there is no evidence of phase transition
down to 1.5 K. ' All of the inelastic neutron scat-
tering measurements were done above the critical
temperature, which is 0 K fox a linear chain. The
static correlation function for a classical Heisen-
berg chain was given by Fisher. ~s It. appears that
the spin value of —', for the Mn ions is large enough
for the classical theory to work very well. ' On the
other hand, the critical dynamics of the system
has not been adequately explored. Therefore we
chose to approximate

p(q, (u) =2wp(q)5(&"),

with

p(q) = (l- u')/(1+u'+2u cosq),

where u =coth(2Z/kT) —kT/2Jand 4=&.& K'
approximation has two effects, i.e, , it underesti-
mates the linewidth by ignoring the decay rate of
the correlated clusters and it prevents us from
drawing any conclusion about the central peak.
Numerical calculation shows that the first effect is
probably not important because the shapes of the
one-magnon lines are well accounted for over a
wide range of temperature and wave vector, The
second effect is beyond our concern at this moment
because there exists no data in the central peak
region.

In Figs. 4 and 5 we compare the calculated line
shape with the data. To make a realistic compari-
son we folded the calculated curves with a resolu-
tion function having a full width of 0. 3 meV, Be-
cause we concentrated on comparing the line shape,
we used an adjustable intensity scale factor. The
variation of the intensity scale factor is less than
a factor of 2 for two values of q and five values of
the temperature. The theoretical line shapes fit
the data exceedingly well.

The tempex'ature dependence of the lines in Pigs.
4 and 5 is strikingly different from that of the lines
in Fig. 2. The response function for TMMC broad-
ens and the peak value decreases steadily with in-
creasing temperature. As mentioned before the
line broadening is due to the effect of the small
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TMMC. The dispersion relation of the magnetic
excitons has weak dependence on q. Therefore
we expect the co7 effect to be weak and the qX effect
to dominate. The observed magnetic excitons above
the critical temperature in the range q ~ O. 4 A is
very likely a result of the short-range order. The
question of soft modes in these materials can be
settled only by performing the experiment at much
smaller values of q.

Finally, we may draw from our numerical ex-
perience some general conclusions about the nature
of the magnetic excitations above the critical tem-
perature. For an isotropic ferromagnet with w,
=Dq, the spin-diffusion mode and the magnon
mode have nearly the same energy. The result is
a strong damping of the magnon mode, so that the
most likely line shape for a constant-q scan is a
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FIG. 4. Comparison between theoretical and experi-
mental line shape for constant-q scans on. TMMC. The
wave vector is 0. 1(2~/a) measured from the magnetic
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clusters which do not decay away very fast. In the
meantime the temperature is low compared with
the magnon energies; thus there is a less dramatic
increase of the magnon population with increasing
temperature, certainly not enough to compensate
for the decrease due to the reduced number of
large clusters. Hence the difference between the
dispersion relations of the simple ferromagnet and
the linear antiferromagnet can account for the dif-
ference in the temperature dependence of their
neutron scattering lines.

The neutron scattering lines of the magnetic ex-
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FIG. 5. Comparison between theoretical and experi-
mental line shape for constant-q scans on TMMC. The
wave vector is 0. 25 (27t/a) measured from the magnetic
reciprocal-lattice point Q =7Ija.
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broad diffusion peak at v = 0. For a. constant-~
scan the diffusion peak splits into bvo. Recent
data on EuO given by Passel et a/. is in agreement
of this conclusion. 3 Fox an isotropic antiferro-
magnet with Qp = cg, the magnon energy stands
above the energy of the spin diffusion mode so that

a constant-q scan with sufficient resolution may re-
veal a thx'ee-peak structure. If the anisotropy of

ferromagnetic or antiferromagnetic system is
high, so that v is nearly independent of q, the
likelihood of seeing a three-peak structuxe is even
more favorable. ~
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