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At about 810'C niobium dioxide undergoes an apparently second-order transition between a high-
temperature (HT) rutile structure and a low-temperature (LT) phase whose structure is slightly distorted from
rutile. The primary order parameters of the transition are the amplitudes of sinusoidal displacement waves
with wave vectors q =(1/4, ~ 1/4, 1/2). These waves give rise to a series of superlattice reflections in
de'raction patterns obtained with the LT phase. Additional superlattice reflections occur at wave vectors
which are related by the rutile point group to q =(1/2, 1/2, 0) and q„=(1/2,0,0). The latter reflections may be
diA'raction harmonics or they may represent the presence of secondary distortions in the LT phase. A detailed
neutron diffraction study at room temperature has allowed the LT structure to be determined and has
demonstrated that both primary and secondary distortions are required for an adequate description of this
phase. The general symmetry properties of the primary distortion are discussed and this distortion is discribed
in terms of a simple model involving dimerization of c-axis chains of Nb atoms.

I. INTRODUCTION

Niobium dioxide undergoes a structural phase
transition' at a temperature of about 810'C. Close
to the transition, which experiment indicates to be
of a continuous nature, there are anomalous changes
in both electrical resistivity and magnetic sus-
ceptibility. ' X-ray experiments have shown that,
in the high-temperature (HT) phase, NbOa crystal-
Iizes with a rutile structure' (cf. Fig 1). .In the
low-temperature (LT}phase the structure is slight-
ly distorted and a series of superlattice reflec-
tions appear on x-ray photographs. %bile the x-
ray measurements have succeeded in identifying
the space group to which the LT structure belongs
(C4„), they have not provided an accurate deter
mination of all atomic positions in this phase. In
particular, the deviation of the positions of oxygen
atoms from the ideal rutile sites have been deter-
mined with uncertainties which are equal to or
greatex than the deviations themselves.

The vectors a; which define the body-centered
tetragonal unit cell of the LT phase are related to
the unit-cell dimensions a,. of the HT rutile cell by

a, = 2(a, ', —a,,'), asr = 2(a,'+ as), asr = 2a,' . (la}

Here To and T are reciprocal-lattice vectors of the
high- and low-temperature phases and q, may be
any member of the sets

{q,}=-4,-', -'}, fq.}-=6.o. o}
(&)

{q.}-=Q,—,', 0}, q, =(o, o, o),
where rn—= (Ii, k, f) and lt, k, f are integers. In Eq.
(3}the quantity (q, }denotes all wave vectors in the
"star" of q„ that is, all wave vectors which can
be generated from q, by operation of the point
group of the HT phase.

Superlattice reflections of the P, M, and X types
mere studied in the recent neutron scattering ex-
periment of Shapiro et al. ' These authors found
that the intensities of M- or X-type reflections and
the squares of the intensities of P-type reflec-
tions showed the same dependence on sample tern-
perature. The X and M reflections mere homever

4$p

T= Tp+q (2)

For convenience we choose an (unconventional) LT
primitive unit cell bounded by the vectors a;,
where

a,, =2(a,, —as), as=2(a~+a~), a, =2ats+ass . (1b)

These transformations imply that the reciprocal
lattices of the high- and low-temperature phases
are related by

FIG. l. (a) Unit cell of the high-temperature rutile
phase of NbO&. ~: Nb, o: Oxygen. The numbers be-
side the atoms are the values of A, in, for example, Eqs.
(4), (12), etc. (b) Projection. of the high-temperature
unit cell on. the x-y plane. Filled symbols are at @=0
while open symbols are at z= go. Niobium atoms are
denoted by circular symbols while oxygens are squares.
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invariably much weaker than those of the P type.
In addition, critical scattering was observed
around (q2}at temperatures slightly above the
phase transition temperature T, while no such
scattering was observed in the neighborhoods of
the X- or M-type reflections. From these ob-
servations it was concluded that the intensities of
the P-type reflections provide a measure of the
primary order parameter associated with the
structural transformation in Nb03. In order to ex-
plain the behavior of the X- and M-type reflections
Shapiro et a/. noted that any wave vector in the
stars of q„and q can be written as a linear com-
bination of two wave vectors in (q2}. Thus the ob-
served temperature dependence of the X- and M-
type reflections may be explained if these reflec-
tions are diffraction harmonics obtained from a
rutile structure modulated only by sinusoidal dis-
tortions with wave vectors (q2}. The X- and M-
type reflections may also be obtained from a LT
phase in which the rutile structure is modulated by
distortions of wave vectors (q„}and (q }in addi-
tion to the P-type modulations. These two situa-
tions are of course different physically; on the
one hand the X and M reflections are a manifesta-
tion of the manner in w'hich the neutron probes the
lattice structure while on the other hand these re-
flections are related to an actual distortion of the
rutile structure. In the latter case the X- and M-
type refelctions would be a measure of secondary,
induced order parameters similar in origin to the
ferroelectric polarization which appears in im-
proper ferroelectrics. Phase transitions in sys-
tems which display secondary order parameters
of this type have recently received theoretical at-
tention from Achiam and Imry and from Murata.

In order to determine the relative significance
of the two explanations of the X and M reflections
discussed above, accurate structural data for the
LT phase are required. The existing x-ray data
are not of sufficient accuracy to determine whether
or not a secondary distortion is present in NbO~.
It was in an attempt to answer this question that
the experiment described in this paper was per-
fol med,

In addition to the foregoing considerations our
desire to thoroughly understand the low-tempera-
ture phase of NbQ3 is a natural preliminary to the
study of the static and dynamic critical phenomena
associated with the structural phase transition in
this material. Renewed interest in these phenom-
ena has recently been generated by Mukamel who

has pointed out that NbO~ is an example of a sys-
tem with a four-component order parameter. '
Mukamel has used renormalization-group theory
to estimate the critical exponents of such a sys-
tem and has found them to be markedly different
from the mean-field values which appear to de-

scribe most structural transitions so far studied.
The remainder of this paper is divided into five

sections. In Sec. II the neutron scattering cross
section for the LT phase of N10z is derived for
the case in which only primary distortions exist.
The analyslsq which ls applicable with minor modi-
fication to a large class of problems concerned
with structural phase transitions, demonstrates
the manner in which X and M reflections are pro-
duced as diffraction harmonics. The constraints
which symmetry imposes upon the nature of the
primary distortions are considered in Sec. III.
Section IV, which contains a discussion of the sec-
ondary order parameters which may occur in NbO&,

completes the discoursive part of the paper. Ex-
perimental data obtained by neutron diffraction
with a LT sample of NbQ3 are described in Sec. V
and analyzed in Sec. VI.

II. SCATTERING CROSS SECTION O'ITH PRIMARY
DISTORTION ONLY

The qualitative features of x-ray data for NbO~
show that the low-temperature phase may be ob-
tained by superposing on the HT rutile structure
sinusoidal distortions with wave vectors (q2}, (q },
(q, }, and q r. Thus if r» denotes the position of
the 0th atom (cf. Fig. I) in the Ith unit cell of the
rutile phase and if r» denotes the position of the
same atom in the LT phase one may write

~0 ~ ~0 ~0
r~~= r~a+u~~=x~+ rn+uga y

where x, is the position of the origin of the Eth
rutile cell and the displacement u» is given by

u„=Q Q,(T) E,(q, ) exp(i q, x, ) . (5)

In this equation Q,(T), which is the amplitude of
the modulation of wave vector q„may be con-
sidered as a. temperature- (T) dependent order
parameter. The unit vector E2(q, ) describes the
lattice distortions which result from the presence
of the modulation of wave vector q, .

While Eq. (5) provides the most general de-
scription of the LT phase the actual situation may,
as was discussed in the Introduction, be somewhat
simpler in that only one order parameter Q~ may
be finite. In this case one may rewrite Eq. (5) in
the form

u„= Q [a(kq,.
~
T) cos(q, ~ xg)

1 8

+ b(k q, ~
T}sin(q, ~ x', }],

where
1 1 1 1 1 l

q1 (4&4)2) I q2 (4i 412) (7

and a, b are real, temperature-dependent ampli-
tudes. In obtaining Eq. (6) from the general re-
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suit given by Eq. (5}the wave vectors —qi and
- q 3 have been eliminated by demanding that u» be
real, and other wave vectors belonging to {qz)
have been omitted because they differ from q, or
q~ by a rutile reciprocal-lattice vector vo.

In order to obtain expressions for the intensities
of the superlattice reflections which result from a
distortion of the type given by Eq. (6} it is neces-
sary to evaluate the neutron scattering cross sec-
tion do/df1 defined by

p(Q) = g &2 exp(f Q r»),

Here b~ is the bound coherent scattering length
(with a Debye-Wailer factor included) of the kth
atomic species and Q is the neutron scattering vec-
tor. Equation (8) may be evaluated by substituting
for r» from Eqs. (4) and (6) and by making use of
the identity"

eizsiss ~ J (&)cine
n )

where J„(e}is a cylindrical Bessel function. The
result is

p(Q} g g g g k eiQ Ps iQ R(~ (Q a }ein&fi'2l sz/2) g (Q, a ) ei)n($2 jT( sz/2)

)(J (Q b }eis(ii xl J (Q b }einlf2 (9

where a;, and b;, have been written for a(kq, ( T) and b(kq; i T), respectively. Carrying out the sum over I
yields

p(Q) = gpss b, e' ' 'e'n'/'Z„(Q a»)Z„(Q ~ b»)e' '/'J' (Q a2,) J„(Q b2„) (fQ)+(n+ v)q, +( my+)q2 —72) .
mn uv

(10)

In order to simplify Eq. (10) one may make use of
the identity

Z (w) e(2 = g Z (u) Z (i/) e'"'/2

with m =u + v, @=&@cosy, and u=svsinx. Apply-
ing this result both to the product involving n and
v and the product involving m and /i in Eq. (10) one
finds, after a little simple algebra, the result

p(Q) = Q Q Q b, e'~ 22 J„(w„)'Z (w„)

&&e'"""e' "»5(Q+n qi+ mq2 —7'()),

where

w', „=[Q a(kq, ~T)]'+[Q b(kq,-~T)]',

Q' b(kq i ~
T) = w cosx.s ) Q' a(kq i ~

T}= win sin)f 2 .
Equation (11) is a peri'ectly general result which

describes the intensities of Bragg reflections in

any material in which a basic structure is modu-
lated by two sinusoidal waves with {arbitrary) wave
vectors q, and q~. However, for NbO» in which

q, and qz are simple submultiples of reciprocal-
lattice vectors To of the parent structure, further
simplification of Eq. (11) is possible. In this
commensurate situation only certain combinations
of m and n are a, llowed in Eq. (11}for any given
value of Q. Consider, for example, the case of

Q = q, ; n may take values s(2p+.I), where p is a
positive integer or zero. For even values of P,
m may take values +(4m+ 2) while for odd values of

p, m takes values + 4r; once again x is a positive
integer or zero. Once the terms which contribute
in Eq. {11)have been identified the equation may
be summed by making use of the expansions of trig-
onometric functions in terms of Bessel functions. "
After some simple but painfully long-minded ma-
nipulations one finds the results

„0
p(Q) =-, Q "' (~)".,".".[Q'(kq, l T)],".",[4'(kq. i T)]

+(-()"-""(() 2(sin(l &l) ""(() 2(ss,
(l &))) for Q = &(}+'fI!qg + P?q p (12)

In Eq. {12)the cosine (sine) function is to be used
as the first term of each product if n is even (odd)
and the cosine (sine) function is to be used as the

second term of each product if m is even (odd).
Notice then Eq. (12) now applies specifically to a.

system in. which the combinations 4q„4~ and 2q,
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+ 2qz are equal to reciprocal-lattice vectors of the
high-temperature phase.

Equation (12) may be used to calculate the rela-
tive temperature dependences on the intensities of
the P-, M-, and X-type reflections. Setting both

a(kq, .
I T) and b(kq; I T) proportions, l to an order

parameter f))~(T), one finds to leading order in

Qp(T) that

P type, (n+m) odd, p(Q)-(I)&(T);

M type, n = 0, m = 2 or vice versa,

p(Q) - [e,(T)]';
X type, n and m odd, p(Q)-[(I)~(T)]

Thus, as Shapiro et al. noted, a single-order-
parameter model is sufficient to account for the
qualitative behavior of the P, M, and X reflections.

III. SYMMETRY CONSTRAINTS AND SINGLE-ORDER-
PARAMETER MODEL

In Sec. II the vectors a,(kq, ~ T) and b(kq; l T)
which describe the lattice distortion of the LT
phase [cf. Eq. (6)] were considered to be arbi-
trary. However a number of constraints are
placed on these vectors by the symmetry of the
high-temperature, rutile phase. To determine
these constraints one may note, following Landau, '

that, if the transition is of second order, the dis-
tortion introduced in the low-temperature phase
must transform according to one of the irreducible
representations of the HT group of the wave vector
q~.

The consequences of this fact have been worked
out in the language of phonon coordinates by a num-
ber of authors. In this paper we shall adopt the
methods developed by Maradudin and Vosko. " In
order to parallel their calculation in detail it is

0, 0, 0; p, *,—)(, 0),
E"'(q, ) = (a, —a, 0; 0, 0, 0; p, , —p. , 0; 0, 0, )), ;

—g *, i( *,0; 0, 0, —v),

E ' '(q ) = (0, 0, a; b, b, 0; 0, 0, )(; v, v *,0;

0, 0, —p, *;v*, v, 0},

(i6)

where E'"'(q, ) is a basis vector for the irreducible
representation S„. In Eq. (15}roman letters rep-
resent real quantities and greek letters complex
quantities. On each line, the kth set of three sym-
bols are the Cartesian components of the polariza-
tion vector for the kth atom (cf. Fig. 1) of the
rutile cell. Basis vectors for the irreducible rep-
resentations of the group of the wave vector q~ can
be found by using the transformation laws given by
Maradudin and Vosko. " The polarization vectors
[Eq. (15)] determined from the group-theoretical
analysis may in general be multiplied by arbitrary
phase factors. Whence the most general form for
Eq. (14) is

convenient to work with Eq. (5} in the form

u»=Re[E~(q, ) e"(' I+ E~(q2) e'~2' i], (14)

where E~(q,.) is analogous to the usus. l (unnormal-
ized) phonon polarization vector.

Following the prescription of Maradudin and
Vosko one first finds' the multiplier representa-
tion for the group of the wave vector q, . In NbO~
this wave vector lies on the symmetry line con-
ventionally denoted by the letter S (see Fig. 2) and
the group of q, has four one-dimensional irreduci-
ble representations' S~ through$4. Proj ection opera-
tors which generate basis functions for these repre-
sentations may be obtained from the multiplier repre-
sentations by the methods described by Maradudin
and Vosko. Using these operators one finds

E"'(q, ) =(a, a, 0; 0, 0, b; )(, )(, 0;0, 0, c;
—i(*,—)(*,0; 0, 0, c),

E ' '(q }=(0,0, 0;a, —a, 0;0, 0, 0; )), , —p, , 0;

I

I

l~

I xg~

qx

FIG. 2. First Brillouin zone of the rutile structure
showing the location of the P, X, M, and I' points. The
point P has the same symmetry as any point on the line
denoted S.

Re[etc) E(n)(q ) etC) f(+ ec(~E(n)(q ) eil~ r( ]
(16)

This generalization, which may at first sight ap-
pear pedantic or irrelevant, actually contains
some essential physics. It corresponds to ac-
knowledging the fact that in the LT structure the
phases of the sinusoidal modulations which are
superposed on the rutile structure are measurable
quantities. The phases Q, and ft) ~ introduce a
complication; until they are specified it is not
possible to determine the space group to which the
LT phase will belong even if one knows which of
the E(")(q~) is correct. In the case of NbOz, gen-
eral values of (t}, and Q~ produce a low-temperature
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structure which is orthorhombic whexeas the x-xay
results indicate that the structure is in fact te-
tragonal with symmetry C46„. If one accepts that
the LT space group is indeed tetragonal' one finds
from Eqs. (5), (12), (15), Rnd (15) that

While the above result has been presented here
as a consequence of the assumed tetragonal sym-
metry of the LT phRse it may actually be pre-
dicted theoretically. Antlclpatlng R 1 esult which
will be discussed in Sec. IV, one may write a
Landau-like free energy for Nboo in the form [cf.
Eq. (22)]:

& = P [&
~
Q(q;)

~

'+ c[Q(q;)'+ 9(-q;)']

+c'[Q(q)'+Q(-q)'][@q)'+@-q)']+" f
(18)

where Q(q,.) is the complex a.mplitude of a dts«r-
tlon of wave vector' q ] Rnd A, C~ C Rx'e constRnts,
Writing Q(qq) =I}qe' q and minimizing the free en-
ergy with respect to fII), and $3 leads to the condi-
tion I QI I

=
I pa I =-qII which is identical to Eq. (17).

This simple calculation demonstrates the impor-
tant fact that in a commensurate transition the
phases of the distortions are determined by high-
er-order terms in an expansion of the free energy.

Once the phases Q, and Qa have been determ»ed
one may use Eqs. (12) and (15) to make a number
of deductions concerning the symmetry of the LT
phase. Each of the E'"' imply certai. n constraints
on the superlattice reflections which can be ob-
served. These constraints are most easily ex-
pressed in terms of the Miller indices of the LT
reciprocal lattice in which each reflection is de-
scribed by 111dlces (HKI ) wlllch Rl'e 111'tegel's. Thus
one has

I-„„=H(-'„-,', O)+ K(-,', ——,', O)+ I,(O, O, —,'), (19)

where 7 is a reciprocal-lattice vector of the LT
structure and the vectors on the right-hand side
of Eq. (19) are written with respect to the rutile
reciprocal lattice. Kith these definitions one finds
that distortions described by gny E~"' given in Eq.
(15) imply that

H+K+I, =2m for (HKI, ) reflections,

I. = 4m for (OOI. ) reflections,

H=2m; K=2m for (HKO) reflections,

(2o)

IV. SECONDARY-ORDER PARAMETERS

In this section we shall use a Landau theory' to
demonstx'Rte the mechanisQl which may lntl oduce
secondRx'y dlstortlons ln the LT phRse of Nba.
Following Kwok and Miller' we first write a gen-
eral expression for the Helrnholtz free energy in
the form

whex'e PE ls Rn integer. These conditions Rx'e ln

fact precisely those determined by Marindex from
his x-ray results and are sufficient to specify the
LT space gxoup as C64„. In addition to the condi-
tions given above, distortions described by E~ '

and E' ' both imply that

H=2m for (HOI, ) reflections,

a condition which contradicts both Marinder'8 ex-
periment and the data presented in this paper.
Thus it is possible on the basis of qualitative ob-
servations to assert that the distortion which oc-
curs in the LT phase cannot transform as a linear
combination of Sz and S3 alone.

Although the space group C&I, can repx'esent a
distortion which transforms as any linear com-
bination of all S„, experiment (cf. Secs. V and Vl)
shows that 8, is the relevant representation. The
vectol's R(kq I I 7) Rnd b(kq I I T) wllicll Rpply to 'tllls

representation are given in Table I. The lattice
distortions which these vectors imply are shown
in Fig. 3. The essential features are displayed
more clearly in part (c) of this figure in which the
atomic displacements in (110) and (110) planes are
x"epx'oduced. Notice thRt the dlsplRcenlents shown
axe approximately those one would expect if the
Niobium "chains" along the [001]axis were to be
dlxnex'ized Rnd all othel" RtoQlic motions were to be
determined by keeping the length of the niobium-
oxygen bonds [cf. Figs. 3(a) and 3(b)], constant. "
Distortions with wave vector q, cause dimerization
of one sublattice of Nb atoms while distortions with
wRve vector Qa dimerize the other sublattice,

F=&o+—g&(q, q')Q, Q, 5(q+q'-ro)+ —, Z &(q, q' q")Q.Q, 9; 5(q+q'+q"-ro)
ce' N'

+— Q C( q, q, q, q ) Qqgqqgqe~Qqe ~ r 5(q+ q + q + q —To)
qua qt a ~Pa t

Here Q is the thermal expectation value of the (complex) amplitude' of a sinusoidal modulation of wave
vector q and A, B, C are coefficients. The presence of the momentum conserving 5 functions in Eq. (22)
is an expression of the fact that E must be invariant under the translational subgroup of the HT phase.
SIIlce tile pl'1111RI"y dlstol'tlo11 111 NbOo llRs R WRve vectol" lll (qp] tile Illlpol'tRIlt. secolld-ol'del' term 111 Eq. (22)
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will be associated mith this mave vector. In addition, third- and fourth-order coupling terms mill only be
of interest here if they involve q . Thus the important contributions to the free energy can be written

(24)

Q+
= 6A,p„QpQ~. +A„Q„=0, (25)

aE 1

BQr Q,Qp+A, ,Q, = 0, (26)

which give Q, Q„, and Qr in terms of Q&. From

In this equation Q, has been written for Q, and g,
is intended to imply that the sum extends over all
vectors in the star of q, which satisfy the appro-
priate momentum conserving 5 function.

The free energy given in Eq. (23) may be used
to describe a system in which there is a second-
order transition with Q& as the order parameter.
For such a transition to occur one requires' that
A~ change sign at the transition temperature and
that A, A„, Ar be positive. In order to specify
the behavior of the LT phase of the system de-
scribed by Eq. (23), the free energy must be mini-
mized with respect to Q» Q„, Q, and Qr. In par-
ticular„ this minimization leads to the relations

I

these equations one sees that a finite value of Q&
will in general induce finite values of Q, Q„, and
and Qr. Thus the latter quantities behave as sec-
ondary induced order parameters in the LT phase.
One may show rigorously that the introduction of
a secondary distortion does not lower the sym-
metry of the low-temperature phase once the dis-
tortion characterized by Q~ has appeared.

From the foregoing analysis lcf. Eqs. (24)-
(26)] it is not difficult to appreciate that in NbOz
the intensities of X- and I-type reflections will
show the same dependence on sample temperature
as the square of the intensities of P-type reflec-
tions even if all X and I intensity were to occur
as a, result of induced secondary distortions (which
a,ccording to Sec. II cannot be the ease). Thus
both the induced-order-parameter and diffraction-
harmonic arguments predict the same relative
temperature dependences of the X-, M-, and P-
type reflections. In point of fact any argument (in-
cluding multiple scattering) which relates the in-
tensities of these reflections must give the same
result!

TABLE I. General forms of the vectors a(k, q) and b(k, q) for the primary wave vectors
q =(4, 4, —') and q =(4, 4, ~} deduced from lattice symmetry. The symbols a, 5, and c
represent the same quantities as the identical symbols in Eq. (15) while p' and p" are
the real and imaginary parts of the p of Eq. (15). S; and C; are abbreviations for sink&
and cosh&, respectively fcf. Eq. (16)j.

(4, 4, k)

a(k, q)

0

6(k, q)

, 0

, 0

, -SS,
—p "C& —p S&, —p C& —p S&, 0

0 , 0 cC( 0 , 0 —cS(

5 —p'C& —p "S&, —p'C& —p "S~, 0 —p"C, + p'S„—p"C&+ p'S, , 0

0 0 cC( 0 , 0 —cS)

(4, -4, k) 1

0

0

, —cS2 0

, aS&

, 0

0

, —cC2

pt C p ITS p I C + plIS 0 —p"C —p'S, p "C + p'S, 0

0 0 , —cS2 0 , 0

p '
C2 + p "S2, —p ' C2 —p "S2, 0 p"C2 —p'S» —p"C2+ p'S» 0



STRUCTURAL DISTORTIONS IN THE LOW- TEMPERATURE. . .

V. EXPERIMENTAL DETAILS +

A. Crystal

The single-crystal sample was in the form of a
rectangular prism cut from the large crystal used
and described by Shapiro et al. The sample di-
mensions were 3X3&&6.5 mm', and the largest two
faces were parallel to (001)z, and (100)z, planes.
Here, as in much of the remainder of this paper,
Miller indices are given with respect to the crys-
tallographic axes of the low-temperature phase
(cf. Fig. 4). As a remainder of this fact the sub-
script L is appended to these indices. A least-
squares fit of the scattering angles for a number
of easily identifiable reflections yielded values of
a= 13.66+0. 01 A and c=5.964+0. 005 A for the
lattice constants of the sample at room tempera-
ture. These results agree tolerably well with
those found by Marinder.

B. Data collection and reduction
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C

DISPLACEMENTS FOR E (q )

(a) (b)

4d gc

gp 4b
—o~&M~MI

A B

(c)

FIG. 3. Parts (a) and (b) of this figure show the
atomic displacements associated with sinusoidal distor-
tions of wave, vectors q~ and q2 [q&

=—(4, 4, 2) and q2
=—(4, 4, 2) j which transform according to the representa-
tion 8&. Part (c) of the figure shows the essential in-
gredients of the distortions. Parts (a) and (c) and parts
(b) and (c) can be put into the correct relation to one
another by observing the labeled corners of the unit
cells.

The neutron-diffraction data were obtained at
room temperature with an automated four-circle
diffractometer at the Brookhaven High Flux Beam
Reactor. Intensities of reflections were measured
with a 8 —28 scanning technique with about 40 mea-
sured points per scan.

Background corrections were made in a manner '
which separates the peak and background such that
o (I)/I is minimized. Here I is the integrated in-
tensity of a peak and o(I) is the estimated standard
deviation of I calculated on the basis of counting
statistics. Squared structure factors F =I sin28
(28 is the scattering angle at the sample) were ob-

FIG. 4. Projections of the low-temperature structure
of Nb02 onto the ~-y plane. Part (a) shows atoms in the
planes z=0 (filled symbols) and z =2c (open symbols),
while part (b) shows atoms in planes z=c (filled symbols)
and z = &c {open symbols). Here c is the rutile lattice
parameter in the z direction. In both parts of the figure
circular symbols denote niobium atoms and squares are
oxygen atoms. The arrows and+ or —signs indicate
the direction of displacement of an atom from its ideal
rutile site. For the niobium atoms displacements in the
x —y plane are -0.03a (a is the rutile lattice parameter)
while z displacements (denoted + or —) are -0.05c.
Oxygen atoms are displaced by -0.015a in the x —y plane
and by -0.01c in the z direction. Some oxygen atoms
[O(2) and O(3) in table II] move by- 0. 001c in the z
direction; no + or —sign is associated with these atoms.

tained and corrected for absorption by a Gaussian
integration method with 512 sampling points.

Values of F were found to be consistent with a
Lane symmetry of 4/m and hence reflections of the
types (hkl)z„(khl)z, , (hkl )z, and (khl )z were av-
eraged to give a quantity denoted F . The stan-
dard deviation of the latter was determined from
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the spread of the individual observations. While
this method differs from that often used (in which
only counting statistics are considered) it ap-
pears to be the most appropriate in this case. In
measurements of weak superlattice reflections
multiple scattering contamination was found to be
a severe problem. Since this difficulty cannot be
entirely avoided it is best to minimize the effect
by averaging over many observations of equivalent
reflections. Such averaging is, however, only
useful if equivalent reflections were affected dif-
ferently by multiple scattering processes. In prac-
tice this was achieved by ensuring that the crystal
was mounted in such a way that no major crystal-
lographic direction coincided with any of the in-
strumental axes about which the crystal was ro-
tated during the data collection.

During the experiment the integrated intensities
of 1078 reflections were recorded. Systematically
absent reflections are not included in this number
although a check was made of the validity of the
criteria. given by Eq. (20) for the determination of
the indices of nonexistent reflections. After the
averaging procedure described above 154 values
of F were obtained. As a measure of the quality
of the data. (or alternatively of the problems caused
by multiple scattering) the over-all agreement fac-
tor 8 =g IF —F I/gF was found to be 8 = 0. 09.
While this value is somewhat large it should be
noted that it is totally unadulterated; no observa-
tions have been rejected for "statistical" reasons.

VI. STRUCTURE REFINEMENT

The simplest method of including both primary
and secondary distortions in the description of the
low-temperature structure of NbOz is to fit the
diffraction data to a general crystal structure be-
longing to the space group C4„. This may be ac-
complished by using one of the programs available
in the crystallographers' arsenal. In the present
case the full-matrix, least-squares program
FLINUs' was used to minimize the quantity g w(F
—IF, I ), where IF, I is the calculated value of a
squared structure factor and Mi is a weighting fac-
tor. The latter was chosen to be the inverse of the

Nb(1), (0. 125 x",
Nb(2), (0. 125 x",

0. 125, 0. 5 z");
0. 125, z");

O(l), (0. 975 —x' -y', 0. 125, z');
O(2), (0. 975+ x'+ y', 0. 125, 0. 5 —z');
O(3), (0.275 —x'+ y', 0. 125, 1.0+ z');

O(4), (0.275+ x' —7', 0. 125, 0. 5 —z') .

(28)

Here the quantities x",z",x', y', and z' are dis-
placements related to the constants given in Table
I and the undisplaced oxygen positions are those
of rutile itself' (oxygen parameter u = 0. 3).

In our attempts to fit the low-temperature struc-
ture various sets of trial atomic coordinates were
input to FLINUs. Each set of input parameters was
obtained from Eq. (28) above by cha.nging both the
magnitudes and signs of the displacements. Cal-
culations based on many of the initial parameter
sets refused to converge; those calculations which

sample variance discussed in the previous section,
In order to use FLINUs one must specify both the

positions of nonequivalent atoms and the symmetry
operations which relate the positions of equivalent
atoms. Let us denote the position of an atom with
respect to the low-temperature coordinate sys-
tem (cf. Fig. 4) by {x,y, z). For genera. l atomic
positions commensurate with the space group C4„
the coordinate (x, y, z) is a member of the sym-
metry related set

(0, 0, 0) a.nd (z, —,', z) plus

(x, y, z); (-x, z —y, z); (—,
' —y, —'+ x, —,

' + z);
(27)

(—,'+y, —,
' —x, —,'+z) (-x, —y, —z); (x, —,'+y) —z);

1 3 3 3 3 3
(—, +Y, —, —x, —, —z), (—, —y, —,+x, —, —z) .
The specification of the coordinates of two niobium
atoms and four oxygen atoms is sufficient to de-
scribe the positions of the 96 atoms contained in
the body-centered tetragonal LT unit cell. In the
case that the LT phase results from a distortion of
the rutile phase which transforms according to Sf
one may show that the atomic coordinates [the
(x, y, z) above] are

TABLE II. Final. fitted parameters for the low-temperature phase of Nb02. The quantities listed are the atom label,
the neutron scattering length (in 10 cm), the atomic coordinates [cf. Eq. (27)], and the thermal. factors. In terms of
the latter factors the Debye-%aller factor which multiplies the structure factor of the (HKL) reflection is
exp( —pf fH P22K ~ ~ ~ —2pf2HK —~ ~ ~ ). Estimated standard deivations (&10 ) are shown in parentheses.

Atom x z P«

NIb(L)

N4 (2)
o(1)
o(2)
o(3)
o(4)

0, 711
0. 711
0. 5803
0. 5803
0. 5803
0. 5803

0. 1155(3)
0. 1356 (3)
O. 9866(5)
0. 9749(5)
0 ~ 2739(5)
Q. 2631(6)

0. 1249(2)
0. 1250(2)
Q. 1262(6)
0. 1252 (6)
0. 1245 (6)
0. 1241 (6)

0. 4746(8)
0. 0267(7)

—0. 0046 (5)
o. sooo(s)
0. 9998 (5)
0. 5043(5)

0. 0008(7)
o. ooos(6)
0 ~ 0009 (10)
0. 0023(11)
0. 0020(11)
0. 0017(9)

0. 0015(6)
0. 0024(6)
0. 0029(8)
0. 0024(8)
0. 0027(8)
0. 0017(8)

O. O146(31)
0. 0119(28)
0. 0137(26)
0. 0133(26)
o. oo9s(25)
0. OL11(24)

0. 0001 (4)
0. 0000 (3)
0. 0007 (5)
o. ooos(4)
o. ooos(4)
0. 0011 (5)

Q. 0000(3)
0. 0002(4)

—0. 0008 (3)
0. 0004 (4)

—0. 0004 (4)
—o. ooo4(4)

—0. 0001(4)
—0. 0007 (3)
—0. 0006 (4)

0 ~ 0008 (4)
—o. ooos(4)

o. ooo6(s)
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TABLE III. Ve t (k, q) d b(k, q) f q&=(-, @,-') d q =(-,@,-) obt d f th f tt d t
ture. Standard deviations (&&10 ) are shown in parentheses.

a((k, q) a~(k, q) a~(k, q) s, (u, q)

—O. O199(3)
0

—o. o1o5(6)
0

O. 0106(6)
0

0
—0.0201(3)

0
—0. 0112(6)

0
—o. o12v(6)

—o. o2o1(3)
0

—O. 112(6)
0

o. o12v(6)
0

0
—O. O522(5)

0
o. oo45(3)

0
0. 0047 (4)

—O. 0522 (5)
0

0. 0045(3)
0

o. oo4v(4)
o

—0. 0199(3)
0

—o. o1o6(6)
0

o. o1o5(6)
0

—o. o2o1(3)
0

—0. 0127(6)
0

0.0112(6)
0

0
—0. 0522 (5)

0
0.0047 (4)

0
o. oo45(3)

O. 0522(5)
0

—o. oo4v(4)
0

—o. oo45(3)
0

did converge yielded a unique set of atomic coordi-
nates. In the final cycles of the refinement 36
anisotropic thermal parameters (Debye-Wailer
fRc'tol's), QIle scale factor'I Rnd RI1 lsotl'oplc ex-
tinction parameter was varied in addition to the 18
positional parameters described earlier. The
final agreement factox s were

In view of the spread of values of I' contained
within the original data set (cf. Sec. VB) these
R factors would appear to be satisfactox'y. The
parameters obtained in the final fitting procedure
are displayed in Table II.

The parameters listed in Table II include both
primary and secondary (induced) distortions. ln
order to separate these distortions the vectors
a(k, q, ) and b(k, q, ) have been obtained for P, M,
Xy Rrld F %ave vector'8 RDd Rl e dlsplRyed ln Ta-
bles IIIand IV. It was found that if the oxygen
parameter of Ti03 (u = 0. 3) was used in this cal-
culation, the qr di.stortion involved a relatively
large component which transformed as the identity
representation g& . This contribution probably
does not represent a secondary distortion asso-
ciated with the structural transition, but rather a
deviation of the HT oxygen positions from those
found in TiQ3. The A,

&
distortion may be sup-

px"essed by choosing the oxygen parameter as u = O. 2878
and this has been done in preparing Table IV.

Tables III and Vf demonstrate that the finite
components of a(k, q, ) for q, =(-'„0,0), q, =(-,', -„0)
and q, = (0, 0, 0) are significantly different from
zero even though all components of b(k, q, ) vanish
at X, M, and I' by syrnrnetry. It is also apparent
from a comparison of the tables that the amplitudes
of the secondary distortions are considerably
smaller than those of the primary, P-type distor-

TABLE IV„Vectors a(A. , q) [b(k, q) is identically zero
in these cases] for X, M, and I' points. Table entries
have been, obtained from the fitted structure. Standard
deviations (& 104)are given in parentheses. For q = 0 a
rather large distortion which transforms as A &~ has been
suppressed. This distortion corresponds to changing
the oxygen parameter of the HT phase from u = 0. 3 to u
= O. 2878.

(-,'-, 0, 0)

(-.', —,', o)

(o, o, o)
2

3

5
6

a, (a, q)

0. 0012 (2)
0.0010(2}

—0.0007 (4)
—0. 0008 (4)
—o. ooov(4)
—o. ooo8(4)

0
0

0. 0014(4)
—0„0014(4)
—O. O014(4)

0. 0014(4)

0. 0010(2)
—o. 0012(2)
—0.0008(4)

O. 0007 (4)
—o. ooo8(4)

o. ooov(4)

0
0

—0„0014(4)
o. 0014(4)
o. oo14(4)

—o. oo14(4)

0
0.0013(4)
o. 0043(2)

—0.0003 (2)
0. 0043(2)

—0.0003(2)

tions. It should be noted that to within the experi-
mental uncertainty, the vectors listed in Table III
transform as S, (cf. Table 1). Although the space
group C4„allows for distortions which transform
as any lineax' combination of the S„ the conventional
theory of second-ordel phRse tx'Rnsltlons Rsserts
that only a single irreducible representation of the
group of q~ can be involved. For this reason the
fact that oux data yield a p-type distortion m'hich

transforms as 8& is gratifying.
The pRttex'rl of Rtornlc displacements lmplled by

the fitted parameters is displayed in Fig. 4. For
the niobium atoms these dlsplacements are of the
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TABLE V. Fitted parameters for the low-temperature phase of NbO& obtained with a domain model (see text). The
quantities listed are the same as those given in Table II.

Atom

Nb(1)
Nb(2)
o(1)
O(2)
O(3)
O(4)

0.1149(4)
0. 1362 (4)
0. 9873 (6)
0. 9747 (6)
0.2739(6)
0.2629(7)

0. 1250(2)
0. 1251(3)
0. 1285(8)
0. 1271(7)
0. 1225(7)
0.1220(7)

0.4749(10)
0. 0268 (9)

—0. 0045 (6)
0. 5003 (6)
0.9993(6)
o. soso(s)

0. 0015 (8)
0. 0007 (7)
0. 0022 (12)
0. 0029(14)
0. 0030 (14)
G. 0031 (12)

0. 0022 (7)
0. 0032 (8)
0. 0030 (9)
0. 0020 (9)
0. 0022 (9)
0. 0017 (9)

0. 0109(36)
O. 0097(33)
0. 0110(31)
0. 0146 (30)
o. o1 o7(3o)
0. 0066 (27)

0. 0002 (4)
o. ooo1(4)

—o. ooos(6)
—o. ooo8(s)
—0. ooos(s)

0. 0001 (5)

—o. ooo8(4)
0. 0002 (4)

—0. 0002 (4)
0. 0002 (4)

" o. oooo(4)
—o. ooo6(4)

o. ooos(4)
—0. 0010(4)
—0. 0002 (5)

o. ooo8(s)
—0. 0013(5)

0. 0012 (6)

form which one would deduce from the discussion
of Sec. III if a distortion transforming as S, were
to occur. To a large extent the oxygen displace-
ments also obey this rule, with the notable excep-
tion that certain of this species of atom (denoted
02 and 03 in Table II) obstinately refuse to be dis-
placed at all.

In the foregoing discussion it has been assumed
that the NbOz sample comprises a single domain.
However, it is entirely likely that domains, re-
lated by a 180' rotation about the (110) rutile axis,
are present. Since the (kkf) and (kkl) reflections
are not of equal intensity for a crystal belonging
to the space group C4„, such a combination of do-
mains could, in principle, seriously affect the
analysis of diffraction data. In order to investi-
gate this problem we have used the observed in-
tensities of (hkl) and (khl) reflections in conjunc-
tion with various assumed domain concentrations
to calculate "true" structure factors for all re-
flections. These true structure factors have been
fitted in the manner described earlier and the
"goodness-of-fit "parameters for various relative
domain concentrations have been compared. The
somewhat surprising result is that the calculated
atomic parameters are very little effected by the
domain concentration and that it is essentially im-
possible to determine the latter. As evidence of
this result we display in Table V the fitted param-
eters for a situation in which only 60% of the sam-
ple is in the domain assumed by the fit given in
Table II. Comparison of Tables II a,nd V shows
that the fitted parameters are insensitive to do-
main population and thus the results described
earlier in this section cannot be substantia, lly im-
proved by including this extra degree of freedom.

The Debye-Wailer parameters P„displayed in
Tables II and V are both anisotropic and large. In
particular, the values of P„ imply atomic distribu-
tions along the t." axis which have rms spreads of
about 0. 15 (+0.03) A. This value is of the same
order as the distance between LT and HT sites.

However, it is possible that the large values of P33
are a fortuitous result of the data analysis. It was
found to be impossible to obtain reasonable tem-
perature factors when an (isotropic) extinction
pa. rameter was included in the fitting of the data.
In fact the fitting procedure had to be ea, rried out
for several fixed values of the extinction parameter
and a, "best value" of the latter selected. Although
this procedure is reasonable the strong correla-
tion of the P,&

and the extinction parameter casts
some doubt on the values obtained for the tempera-
ture factors. This suspicious circumstance does
not, we hasten to add, affect any of the positiona. l
parameters determined by the fit.

If the Debye-Wailer parameters in Tables II and

V are not an artifact of the fitting procedure they
a,re both noteworthy and consistent with observa-
tions made in VO2. McWhan et al. ' have found
that the Debye-Wailer factors relevant to the rutile
phase of VOz are anisotropic and much larger than
those found for rutile (Ti02) itself. Since VOz un-
dergoes a structural phase transition while TiOz
does not, it may be tempting to postulate the
existence of low-lying phonon states in VO~. While
we cannot comment on the case of VO~ we caution
against a soft-phonon picture for NbO&. Additional
experiments (to be reported elsewhere) have failed
to reveal any low-frequency phonon branches and
have also shown that the temperature dependence
of Bragg intensity is much too small for the P;, of
Tables II and V to be entirely of dynamical origin.
It is not possible on the basis of our experiments
to date to rule out the possibility that the large,
fitted Debye-Wailer factors result from some un-
resolved, "static" positional disorder. Evidently
such a concept is less than satisfying since it poses
more questions than it answers.
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