
PHYSICAL BE VIEW B VOLUME 13, NUMBER 7 APBI L 1976

Magnetic susceptibility of mixed-valence rare-earth compounds

C. M. Varma and Y. Yafct
Bel/ Laboratories, Murray Hill, ¹wJersey 07974

(Received 13 August 1975)

Many rare-earth compounds (e.g., Sm chalcogenides, YbA1,) exhibit tern, perature-independent magnetic

susceptibility at low temperatures in their mixed valence phase despite the fact that the ionic configuration in

at least one of the valences is such as to lead to a Curie-Weiss behavior. An essential feature of these
compounds is that the Fermi level is pinned to the f levels. We first examine the effect of this feature in the
Anderson model for an isolated impurity and find through a strong-coupling variational wave function as well

as through a simple Green's-function treatment that the susceptibility is finite at T~0 K and of order

p, '/I where I is the virtual width of the f level corrected for correlation effects. For the compounds, a two-

band ("f"and "d" with orbital degeneracies neglected) Hubbard-like model leads in the same treatment to a
finite susceptibility at T = 0, where now I is essentially the f-d hybridization energy. Order-of-magnitude

agreement with experiments is obtained with a reasonable value of the f-d mixing interaction. The physics of
the finite susceptibility at T = 0 is the renormalization of the local moments by the conduction electrons which
is strongest when the f levels are at the Fermi level.

I. INTRODUCTION

Mixed-valence rare-earth compounds have been
extensively investigated in recent years. ' 4 In-
direct evidence from lattice-constant measure-
mentss was the first to indicate a mixed-valence
situation in Yb and Sm compounds. Further clear
indication that tmo ionic valence states are present
in such compounds is provided by the experiments
of Campagna et al. in which the x-ray photoelec-
tron spectra of the tmo valence states are seen
side by side, by photoemission' measurements
and by isomer-shift measurements. '8

The temperature dependence of the susceptibil-
ity '4' in these compounds has been somewhat of a
puzzle, for although one of the two ionic configura-
tions is magnetic, the susceptibility at low tern-
peratures is essentially constant ' while one mould
have naively expected a Curie-Weiss-type be-
havior. Following Hirst's mork, "Maple and
Wohlleben conjectured that as the ion fluctuates
between the tmo configurations, the hopping on and
off of the electron in effect quenches the magnetic
susceptibility. Although what physically seems to
happen can be cast in these words, no proof that
the susceptibility of a fluctuating-valence system
is finite at zero temperature has been previously
given.

We give here a simple model for mixed-valence
compounds and calculate the magnetic susceptibil-
ity. The physical idea is that, since in the ground
state the f" and (f" '+ conduction electron) con-
figurations are both present, their energies must
be very close (i. e. , the difference must be of the
order of the hopping linewidth). The extra elec-
tron is assumed to go into an extended state, so
its energy is equal to the Fermi energy. The
extra available f orbital can then be described by

II. SINGLE-IMPURITY PROBLEM

For a single rare-earth ion in a sea of conduc-
tion electrons the following Anderson Hamiltonian
describes the model:

kka
ekok~ckk+ ~ Vkfaokacfo+ Cfa Ckv)

k, a

+ UNfyHfg + ~ ffkcfkcfk Kk+ Xkf+ Xf y (l)

where &k is measured with respect to &, the de-
pendence of c&, on o takes into account the Zee-
man energy in an external field, ~,=cr„H, cr=+1,
the orbital degeneracy of the felectron is neglected
thus replacing it by an s electron, and spherical
s waves are used for the conduction electrons.
The Zeeman energy of the conduction electrons is
neglected. The value of U is assumed arbitrarily
large. Let I'= vVk'z p(f) be the virtual-level half-

a localized state, with energy cz nearly equal to
to the Fermi energy f, and which can accept one
electron but not two.

The organization of this paper is as follows:
In Sec. II we first discuss the single-impurity
problem with a variational method for the ground
state and then discuss the finite-temperature ef-
fects using a Green's-function decoupling scheme.
The manner of derivation emphasizes hom a singlet
state is formed as t;he impurity level is brought
close to the Fermi level. In Sec. III we treat the
case when the f levels form a band which is close
to the Fermi level. The interesting point is that,
in the strong-coupling situation imposed by this
condition, the behavior of the f band is not qualita-
tively very different from that of isolated f im-
purities. We conclude with a discussion of our
results.
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width where p(f) = Rkt/2vf, R being the radius of
the specimen which is assumed to be spherical,
and 0& the Fermi wave number. %'e assume that
near the Fermi level the mixing matrix element
between the local level and a plane wave k is
V~2&

——v/vÃ, where %=number of unit cells. Then,
for spherical waves, V~& = vk(Q/2')'~ ~ where A

is the unit-cell volume.
Vfe will first construct a singlet wave function

which will make it plausible that the susceptibility
approaches a constant value as T-O'K. (This
wave function is the analog, for the Anderson
model, of Yosida's'2 wave function for the s-d
model. } Let 10'0) = fl, tc~t, c~t, IO) be the ground
state of +. The following form is assumed for
the ground state of X;

a,
~
4,&+ P a, (c~, c»+c~,c„,)~ 4', &, (2)

esa = —eyca+ Q v 2 Vyysy

esp =v 2 Vj,yea —Cyst. (4b)

Using (4b), the a, are eliminated from (4a) and one
obtains the eigenvalue equation,

Since all the &„ are negative, a negative solution
always exists for e, and, for a free-electron band,
using the expression of V~& given above, one ob-
tains

I ln —2
I ~l

If the virtual level is at the Fermi level, &&=0, the
binding energy becomes of the order of F, pro-
vided I is small compared to the bandwidth. This
means that the Kondo energy is in fact of the order
of F.

As a test on our variational solution we now look
at what happens when e& sinks below the Fermi
level and I'«

I eel. Then, for (6), I el must be-
come very small for the second term to overcome
the positive first term, and it approximately satis-
fies —e~ = (2/v}I'ln(4&/I e I). Solving for e,

i. e. , ~
0 ) is a linear combination of 140& and of

states obtained by transferring a single conduction
electron to the localized state. 14'& allows for
perfect correlation, i. e. , n&, n&, I@&=0; thus it
is expected to be a good approximation as U-
Define

E = (%~ K~ 4& —= ED+A+ e,
where E0 is the unperturbed energy of I 4~& and
e is to be determined. The variational equations
for the coefficients a0, a), are

e = —4t. exp[i/Zp(g)] where Z= (2v'/e, }(u,' A/2')
is the covalent-mixing exchange integral as given
by the Schrieffer-%olff transformation for U- ~.
Thus e correctly reproduces the Kondo energy as
given by the s-d model for this case. (A Kondo
energy of the order of I' is not obtainable from the
s-d model since the lattex' is not an approximation
to the Anderson Hamiltonian when I e& I & I'. ) To
obtain the susceptibility, we include a magnetic
field H. The coefficients of

czar, c„, and c&t, c„ in (2)
can no longer be taken equal. %riting equations
analogous to (4) in this case, one obtains for the
ground-state energy to order H~: e(H) = e+ GQH'
where 6 = [2e(l+ n I e I/2I')] '. When az —-0, the sus-
ceptibility at 0'K is of order X- p'/I'. This re-
sult was to be expected for a singlet ground state.

Our variational mave function does not include
states obtained from (2) by promoting the f elec-
tron to a state above the Fermi level. One would
think that such states mould further contribute to
the binding of the singlet state and this is in fact
the case. However, these states also contribute
binding enex gy to the triplet state that can be con-
structed with the localized level. These contx ibu-
tions to the binding energy would be equal for the
singlet and triplet states if g0 in (2}were zero,
since the triplet state has no component in 1/0&.
ln fact, a, =[i +in( Er/I@I)] ' when &&=0 and be-
comes rapidly smaller if the energy of the local-
ized level sinks below the Fermi level, so the rel-
ative singlet-triplet energy shift due to single
electron-hole pair excitations is small compared
to the energy shift (6).

To calculate the susceptibility at finite tempera-
tures and also to treat the case of a periodic array
of f levels, we have performed a Green's-function
calculation for the Hamiltonian (l), using Hubbard's
decoupling scheme. '3

The equation for the Fourier transform of the
retarded Green's function ((cz,, c~, ))„is (taking
a=i)

~((cy. , cy. &).= l+ 2 Vay ((ca. , cj.)).
+ e~, ((cq, , cq, &) „+U((n~, cq, , eq, &).

( f}
The second term on the right is eliminated by the
relation

«ca. cg.». = [Vag/(~-ea)1((cy. , cy. &&. , (6}

and the last term is calculated from its equation
of motion, making use of Hubbard's approxima-
tion' .

((n~ .c,.; c~t, & )„=(n~, & ((c„;c,'. ) &

where (s&,& is the thermodynamic average of n&, .
The decoupling (S} is in fact a very crude approx-

imation: Unlike the case of the variational wave
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1 —(ng, )
((cfog j cfog ))(g I(1 ( ))

(10)

The factors (n&, ) in this expression arise from
the Coulomb repulsion. From (10) the occupation
probability of the jorbital and the magnetic sus-
ceptibility are obtained by standard methods. "
In terms of the narrowed halfwidth I', = I'(1
—(n&, )) we find at 0 'K

(n&, ) = (1- (n&, )) —arctan ~' +—1 1
'11 r.

In the absence of a magnetic field e&, ——ef, and

(nz, ) = (n&, ) nz, th=—e two equations (11) reduce to
a single one,

nz= (1 —nz) C, (12)

0.45

0.40

0.35

function which gave correctly the Kondo energy
(and the magnetic susceptibility) when the localized
level energy was placed well below the Fermi level
(-e&»I'). The decoupling (9) fails to give the cor-
rect answer in this case and predicts a small value

p /I e&l for the 0'K susceptibility. This is not
really surprising because the calculation of the
susceptibility when —&&» I' requires a very careful
and systematic decoupling of the equations of mo-
tion as the Curie law (for T & T„, the Kondo temper-
ature), a.s pointed out by Hamann, '~ is due to the
small d state tail at the Fermi surface. Since we
are interested in the opposite case I E& I

& I where
the occupation of d states at the Fermi level is not
small, it is plausible that the method of decoupling
is not so critical here.

Substituting (9) and (8) into (7) and taking the
limit U-~ we obtain
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FIG. 2. Temperature dependence of the atomic sus-
ceptibility and of the occupation number 2nf of the local-
ized state for & —sf=0. 62I'.

where 0& C& 1. The maximum occupation of the
localized level is thus 2n&,„=1, reflecting the
maximum correlation brought about by an infinite
U.

At finite temperatures J3= 1/kT, the occupation
number nf is given by

-=&~- j,f(~)-
(

n I' dA ' 1
I' 1 —Af d 1 1 —A&

where f(~) = (e~" +1) '. As long as I r —&~I & I',
the value of n& at high T& I'/k approaches the val-
ue —,'(2S+ 1)/2(S+ 1)= —,.

The magnetic susceptibility is obtained by dif-
ferentiating with respect to H the expression of

(nz, ) at finite temperature. Letting (nz, ) =nz
—co( p, H)/r, the atomic susceptibility is

x t=»t /r
and we find
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FIG. 1. Temperature dependence of the susceptibility
of the localized state for &f=P. The abscissa is g(kT/
r), the ordinate X,t T'/3p where p is the magnetic
moment.

In this expression the first term on the right-hand
side is due to the dependence of 1', on H and the
second term is due to the factor (1 —(nz, )) which
appears in (11) and in the corresponding expres-
sion at finite temperature.

The first term reduces to 1 at all temperatures if
6y = &. At high T, provided I f —cf ) & I, the value of
A& approaches —,

' and the first term approaches unity
again. At 0 'K, dA&/dr 6 0 depending on whether

ef ~ g, sofor kT& I' thefirstfactor increases with
Tif e& & f anddecreaseswith Tif e& &f. Thesecond
factor varies with T in the same way through the
dependence of A& on T. As a result, the tempera-
ture behavior of X „depends on the parameter



fi= (f' —ef)/I'. If b~0 the susceptibility decreases
monotonically with temperature as shown on Fig.
1 for the value 5=0. If on the other hand b is
positive and not too small, y„ first rises as 7
increases, reaches a maximum, and at higher T
becomes Curie-gneiss like. Near T= 0 it always
varies quadratically in T. Figure 2 shows the
occupation number 2' and the susceptibility as
functions of temperature for b=O. 62.

It is seen that 2n&, which corresponds to the
fraction of trivalent character of the rare-earth
ion, varies in this case from O. 86 to 0. 7 while
y„has a maximum at QT= —,

' I'. It is amusing to
note that this curve has features similar to the ex-
perimental curve of Havinga et a/. for YbAl3.
However, a quantitative comparison xs not war-
ranted on two counts: {a) The Yb ' ion has Z=T
instead of —,

' and the levels are split by the crystal
field. " These effects can be included in the pres-
ent calculation but this will not be done here. (b)
The single-ion treatment is not applicable because
the ions form a lattice. This case is now treated
by the same method as above.

III. PERIODIC ARRAY OF f LEVELS

The Hamiltonian of a lattice of rare-earth ions
ls

Tif Csis Csfs + s'-s fif(Csis Cfis+ CffsCsis}

+ ~ efs Cfis Cfis+Q Unfi~nfi,

40—
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FIG. 4. Temperature dependence of the susceptibility
for &i=0. 5D and s~=0. 004. The abscissa is 2AT/s2D,
the ordinate is X~t D/2p . The Fermi energy & is in
the middle of the gap.

the hopping integrals T,.&
between sites i and j, the

atomic f levels have energy c&, and correlation
energy U, and there is a mixing term t,.~ between

f and "s"orbitals located on different sites j4j.
Using the same decoupling approximation as above,
the Green's function for the f band is found to be

Off(q, id)

where there is a broad "s" band characterized by
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FIG. 3. O'K susceptibility for the two-hand model as
function of the position of the Fermi level. . The local-
ized level. energy is at ~f =0, 4D above the bottom of the
"s"band and s2=4t2(l —n&)/D =0.016. The abscissa is
the Fermi energy measured in units of the bandwidth D,
the ordinate is X,t D/ p .

eig. its .

and the factor 1 —(nf, ) occurs in two places, just
as in Eq. (10).

The spectral density function is

&& [(esses —Gsg)5((d —es@ )+ (Esii —Bigs)6'{~—Ziiis )1, (17)

where 7„&, and Z, &, are the upper and lower energy
bands which are given by the roots of the denomi-
nator of Eq. (16). From (17), the susceptibility is
obtained in the same way as for the single-ion
case. The mixing term f& (taken as a constant, f)
produces a band gap' of order If. To =4t (1 —nf)/D
where D is the "s"bandwidth. In a mixed-valence
compound the Fermi level must lie close to cf.
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Two cases can occur, namely: (a) the Fermi level
intersects one of the bands, or (b) the Fermi level
is in the gap.

In the former case the susceptibility per atom

y„ is finite at 0 'K, of order p.2D/t~(l —n&), and
for T & TG decreases in a Curie-Weiss way. As
a specific example, the value of the O'K sus-
ceptibility as a function of the Fermi-level posi-
tion is plotted in Fig. 3 for the case of an "s"band
with a constant density of states D ' per atom and
for the f level at an energy ez = 0.4D above the
bottom of the band. In actuality, the Fermi level
is expected to be in the gap so the system can take
advantage of the very high density of states and
minimize the total energy. In this case the sus-
ceptibility vanishes at 0 'K, increases up to a
maximum for T- T~ and becomes Curie-gneiss like
for T» To. Figure 4 shows a, typical plot of y„(T)
for the values 4t (1 —n&)//D = 0. 004, e&/D = 0. 5,
and f = e&. There is no evidence that the spin sus-
ceptibility vanishes in any of the mixed-valence
compounds. However the specimens have invari-
ably a, sizeable fraction (-10 ') of impurities and
it is plausible that the gap is smeared out with a
resulting finite susceptibility at 0 'K. '6

IV. DISCUSSION

In summary, by constructing a strongly corre-
lated solution to the Anderson Hamiltonian we have
shown that when the position of the f level is close
to the Fermi energy the susceptibility of the f
electron stays finite at low temperatures and be-
haves as (T+ To) ' only when T is larger than a
characteristic temperature determined by the

strength of the s-f mixing interaction. We do not
make quantitative comparison with experiments
here because in the case of the Yb compounds the
calculation requires extension to j'= &, and in the
case of Sm it requires taking the many-electron
coupling in the Sm2' and Sm ' ions into account.
A value of the order of z =0. 1 eV for the mixing
matrix element is consistent with the experimen-
tal values.

If we calculate the excess specific heat in a
similar model, we expect it, in analogy with cal-
culations of the single impurity, to be proportional
to T/(t~/D) for T -0 and to start decreasing at above
T = f 2/D. The magnitude of the low-temperature
specific heat in Smas and SmS under pressure '7

is such that the parameter t2/D is consistent with
that deduced from the magnetic susceptibility by
this theory.

It is noteworthy that in the limit T-O, the in-
teracting f band acquires all the properties of a
Fermi liquid. For the case of the single-impurity
problem, it is now understood that as T- 0, the
problem renormalizes ' to the strong-coupling
problem and the properties of the system are just
those of a Fermi liquid as T-O. ' Similar re-
normalizations seem to be operative in the f-band
situation.
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