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The dynamics of isotopically disordered ferroelectric crystals of K(H, „D„),PO4 type is discussed on the basis

of the coupled proton-deuteron tunneling-lattice optic-mode model. It is shown that one of the collective

modes of the disordered system exhibits a soft-mode behavior at the ferroelectric transition temperature. The

collective mode frequencies and their pressure derivatives are calculated by a modified random-phase

approximation as a function of deuteron concentration and compared with recent low-temperature Raman

data of Peercy. The theory allows an estimate of the various parameters of the model and provides strong

support for the proton tunneling picture of hydrogen-bonded ferroelectrics.

I. INTRODUCTION

Whereas a large effort has been made in re-
cent years to understand the lattice dynamics of
KH~PO4-type crystals, ' relatively little attention
has been paid to the dynamical behavior of iso-
topically disordered mixed K(H, „D„)zPO4 systems.
It is the purpose of this paper to discuss the soft-
mode dynamics of such systems on the basis of the
coupled proton-deuteron tunneling-lattice optic-
mode model. The frequencies of the collective
modes and their pressure derivatives have been
calculated and compared with the results of re-
cent3' low-temperature Raman experiments of
Peercy. We hoped that mixed crystals might pro-
vide a more stringent test of various proton-lattice
dynamical models of KH2P04 order-disorder-type
ferroelectrics than pure KH~PO4 or KDBPO4.

In Sec. II the Hamiltonian of our problem is de-
fined. In Sec. III the behavior of the coupled pro-
ton-deuteron system is discussed. In Sec. IV,
the interaction of the proton-deuteron system with
the lattice is taken into account. In Sec. V the
obtained results are compared with the experi-
mental data.

II. HAMILTONIAN

Our analysis will be based on the Hamiltonian
for the coupled proton-deuteron-lattice system
which is written in the usual pseudospin formal-
lslTl ' as

of x 1 aB I B s' sX = —Q A~C( S(~ —— Z;) C( C~ S;~Spy

Here n, P mean p (for protons) or d (for deuterons),
and C~ = 1, Cd = 0 if the jth O-H- -0 bond contains
a proton, and C~& =0, Cd&=1 otherwise. Thus, C~&

+C& -—1. The tunneling frequency 0 has two val-
ues, 0& and Ad«A~. For the sake of simplicity
we assumed that there is just one O-H- -0 bond
per unit cell. The interaction term J,&B has three
different values, J~~~, J',~, and J~t", =J',~J, describ-
ing the proton-proton, deuteron-deuteron, and
proton-deuteron coupling. The mass dependence
of the interaction term may be due to a renormal-
ization of J,&B due to strong proton-deuteron cou-
pling with the 0- - -0 vibration. The third term
in expression (l), which is independent of the iso-
tope composition, represents the Hamiltonian for
the polar optic lattice mode, which couples to the
pseudospin system as described by the fourth term.
The brackets [, ]„designate an anticommutator.
The last term in Eq. (l) describes the interaction
of the system with an oscillating external electric
field E„e""'"t"". Here p. stands for the dipole
moment of an Q-H- -0 bond and p~ for the appro-
priate Fourier component of the ionic charge dis-
tribution in the unit cell.

III. PROTON-DEUTERON SYSTEM

The proton-deuteron part of the Hamiltonian (l)
can be written in explicit form as

Xp ~= —Ap QP";(1 —C;) —Q~gd";C;

+-P(~,'q, q, +f,P, ) - gr, [q„S',].e""~-C,
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~d;. d;c', c," —P z". p'. d'(I -c'}c" (2)

where S~ = (p", p', p') and S, = {d", d", d') are the
Pauli spin matrices for protons and deuterons,
respectively. In the molecular -field approxima-
tion, expression (2) decomposes into a proton,

x, , = - Q, p", —gz,','(p,'(.I C,' )&-p', .

Q g Pd(ds C d& pg

and a deuteron part

x,„=-n,d, —Pz,", &d,'c,'&d',.

—p~;;(p,'(I —C', )& d;- .

& p,'(1 —c,')& =
& p'&(1 —c'), (4a)

(4b)&d'c'& = &d') c'
where C"=(C,.) is the deuteron concentration, and

( ) includes a configurational average. Within
this approximation each proton interacts with a
molecular field which is the same 3t all protonic
sites

As the system is isotopically disordered and thus
not translationally invariant, the hydrogen order-
ing will be different in different parts of the crys-
tal. In view of the long-range nature of the inter-
action, however, it ls not too bad an approxima-
tion to assume that each hydrogen "sees" only the
average and not the true local distribution of the
protons and deuterons. In this case we have

(d"& =-.'(n, /H, ) ta~(-.'Pa„), (Vb)

where p=l/kT and H =Q +H, with n=p, d. I in-
earizing the equations for (p & and (d'&, we find
the dependence of the transition temperature T,
on the deuteron concentration from
I-7 C tanh( —

P Q )/2Q

—Z", (I —C") tanh(-.'P, n, )/2n,

+[J~()~ja"—(Z+() ) ]C (1 —C ) tanh(2Pcnq)

x tanh(a Pcn~)/4Q~Q~ = 0,
where Pc =1/kT, .

Depending on the sign and the relative values of
J 0, J 0", and J o, there are tw'o possibilities for
a low-temperature homogeneous ordering of the
proton and deuteron subsystems: a parallel
"ferroelectric" ordering with (p'&/(d &&0 and an
"antiparallel" ordering of the two subsystems with

(p )/(d') &0. In the following we shall concentrate
ourselves on the parallel ferroelectric ordering
which seems to be the one realized in K(H,.„D„)ap04.

Since the statics of isotopically disordered
ferroelectrics has already been discussed by
Holakovsky, ' we will focus here on the dynamic
properties of the system. Dividing the expecta-
tion values of the pseudospin operators into a
static part, which is equal to the thermal average
value, and a fluctuating part'~

&S.&, =&S.)+ 5(S.& 8-'", (9)

we find from the Heisenberg equations dA/df
= j[R,A] the six coupled equations of motion for
the fluctuations 5(S ) around the mean-field ap-
proximation solution. In the random-phase ap-
proximation we get

and the same is true for the deuterons,

Here we have

H„=z", (I c'}(p'&+@", c'—(d'&,

a =z'"c'&d'&+z" (1-c')(p"

(5b)

(oa)

(6b)

—I~5&d"& =H„.5&d'&,

—i ~5&d'& = n, 5(d*) —H„5(d"&

—(d"&[7,"C' 5&d'& +Z", (I —C') 5(p'&], (10b)

iv) 5(d'&-= —Q, 5(d'&,

—i~5(p'& =H„5(p'&,

f~5(p'& -=n, 5&p'& -a„5&p"&-&p &

The thermal expectation values of the pseudospin
operators are now determined from the self-con-
sistency equations

(P'& = ,'(H, /H ) tanh( —'PH )—,

(p") = a (Qp/Hp) tanh(a paq),

(d &
=-.'(H„/H, }tanh(-,'Pa, },

x [Z~g(1 —C')5(p')+ZpC'5&v'&], (10e)

—Ao5(p') = —Q~ 5(p'& .
Above T„(p'& = &d'& = H~, = H~, = 0 so that 5(d"&
= 5(p') = 0 and we a.re left with four equa. tions de-
scribing the transverse excitations, i.e. , the
elliptic precession of p and g around the x axis.
The eigenfrequencies u =+ (di, + (dz of these modes
are obtained as solutions of the equation
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~'- ~'f„n,[n, -(p„&z", (1 —c')]

+ n, (n, —(d"&z,"c'))+ (n,n, )'

The above equation can be rewritten as co —b(d
+c=0, so that we find

[bd. (fi —4C) ], (12)

where the coefficients b and c are defined by ex-
pression (11). The c term vanishes at T, as it is
proportional to expression (8). For nga0, ndc0
one (d. igi) of the above eigenfrequencies exhibits a
soft-mode behavior at the ferroelectric transition
temperature

~', (T=T,) =0,
whereas the other (d: erg) stays finite at T, :

(u', (T = T, ) e 0 .

(13a)

(12b)

The m~ mode corresponds to a ferroelectric in-
phase motion of the proton and deuteron subsys-
tems, whereas co& corresponds to an out-of-phase
antiferroelectric motion of the two subsystems
which should be —in view of 1(p'&14 l(d'& I

—better
described as a. ferrielectric mode.

The above behavior of co, and ~2 is character-
istic of the case where the ferroelectric state is
stable at low temperatures. If, however, the
signs of the interaction parameters were such
that the "antiparallel" ordering of the proton and
deuteron subsystems would represent a stable
state, then urz would become soft first and m,
would be the "hard" mode. In the following, only
the ferroelectric case will be treated.

For A„=O the ~, mode becomes a "deuteronlike"
pure diffusive relaxational mode characteristic of
an Ising model, where the real part of the eigen-
frequency is zero at all temperatures, The eigen-
frequency of the "protonlike" +3 mode is in this
case given by

Ii
1 1 C" T) T 14

tanh(g Pc ong)

should be rather low above T, and hard to observe.
Another feature, which should be stressed, is that
the frequency of the "easily" observable proton-
like A@2 mode should increase with increasing con-
centration of deuterium.

Below T, (d') and (p') are both different from
zero and the molecular field points along a gener-
al direction in the x-z plane. All six equations of
motion are now coupled. The frequencies of the
two longitudinal excitations are however still zero.
The eigenfrequencies of the four excitations which
are transverse to the molecular field, (d =+ co„
+ ~~, are now obtained from

(g4 ~g[H2 n (Px& egg(1 Cd) +H2 Q ((P&j dd Cd]

+ tHgH —H n (d")J""C —H n (P")J g (1 —C )

+Cd(1 Cd)n n (p")(d"&[eggy d (Zgd) ])—0
(16)

For Q„-O, the expressions for ~, and ~~ become
relatively simple. The frequency of the deuteron-
like mode is given by

whereas the frequency of the protonlike mode be-
comes

~,' = [zgg (p&(i —c') +zgd (d'&c"]'

+n, [n,&p"&egg(i —c')] .
It should be noted that whereas the frequencies of
the co, and or~ modes should be for T&T,—in con-
trast to the situation above T,—relatively close
to each other, the intensities should be rather dif-
ferent. The (d2 mode becomes the normal protonic
soft mode of the ferroelectric phase for C„-O.

A discussion of these expressions is postponed
until the interaction with the polar optic lattice
mode is taken into account.

IV. COUPLED PROTON-DEUTERON-LATTICE MODES

For a discussion of the coupled proton-deuter-
on-lattice modes, we have to consider the full
Hamiltonian as given by expression (1).

The equations of motion for spin fluctuations
6 &8, ), which are obtained by eliminating 6 (Q,),
6 (P ) from the linearized random-phase-approx-'
imation (RPA) equations of motion for S, , Q„P,
are

where P~o is given by the transition temperature
of the "pure" protonic system: —iig6&s",.) =QZ, ,'. (0)C', (S;,)6(s;..&, (18a)

tanh(gPcgng) =2nd/J gg . (i6)

For zero concentration of deuterium C"=0, i. e. ,
in the absence of the deuteron subsystem, the ~~
mode becomes the well-known soft mode of the
protonic system: uPz ~ T —T, .

It should be noted that in view of the presumably
very small value of Q~, the frequency cog cf-Qg

—i(o6(s;.&
= —Qj. ,,'. (0)C',. (Sj'g)6 (S',.)

fB

+Q Ingcg 6(.d6d, g J;.((u)cd&s ~&]

x 6&s,'g& —&s",. &[p +E„p,/(uP, —~')]E,e'"'"*f,
(18b)
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—i&u6(s; &
= —n 5(s'; ), (18c)

where the renormalized coupling constant J,, (id)
is given by

al»(~) Ju» ~ a ei1'iai-Ri)(1 8 )I g a/ {dPI ~PI t jl

(18)
The last result follows from a modified decou-

pling scheme for the mixed spin-lattice terms in
the equations of motion for d(S", &, /df, d(S'; ),/dt,
namely

etc. , where the first term is just the usual RPA,
and Q,

' in the second term can be interpreted as
the time-dependent projection of Q, (f) on the oper-
ator S; (f). T. he average (Q,

' ) and the fluctuation
5 (Q,

' ) are found from the equations of motion for
(Q,&, and (P,&, . The only novel feature introduced
by our scheme (20) is the factor 1 —5i, in (19)
which removes the unphysical self-interaction of
the ith pseudospin. '

Within the same approximation as in Eq. (7) the
averages (S*;"&are site independent, and for T «T,
they become

(s".) =-,'n. /ff. , (s:)=-,'ff.,/H. ,

where by analogy with Eq. (8), H« ——gz(s»&c Jo,
and J,"'=g, J„'(0).

In order to calculate the frequencies of collec-
tive modes at nonzero wave vectors q me multiply
Eqs. (18) by C,. and average them with respect to
all deuteron (or proton) configurations. Configu-
rational averages of the type (Ci C»i5(Siz&)„are de-
coupled as - (C, &„(C»»5(S» &)„, corresponding to
the virtual crystal approximation. A better de-
coupling scheme based on the coherent potential
approximation mill be discussed in a future publi-
cation.

There are again tmo sets of proton-deuteron col-
lective modes with amplitudes 6(S, ), a =p or d,
which are coupled by a term J»'(id) which is the
Fourier transform of J»i(u) from Eq. (18b). If
t]"s coupling mere neglected, the eigenfrequencies
mould be given by a modified Kobayashi expres-
sion, '~

~,(q)'=-,'(id', + id2 ~ [{(o',—id')'+4n c G,(o', &s".&]~'},
(22)

where n means p or d, a is the frequency of the
oi subsystem analogous to expressions (17),

~'. = (H„,)'+ n. (n. —c (s'.}J,"),
and the coupling constant G, folloms from the
Fourier transform of the second term in (1S)

%e have made the assumption that the spectrum of
the polar optic modes is totally flat, i.e. ,
although I E, I

3 may still be strongly q dependent.
Thus 6, can be either positive or negative, de-
pending on the actual shape of j E,), in sharp con-
trast to Kobayashi's result, mhere G, & 0 only due
to the absence of the term —Q,. I E; I

'.
With J» (&o) restored the eigenfrequencies of the

system may be obtained as the solutions of the
equation

[~'- ~!(q)'] [~' - ~'(q)'] [~' - ~!(q)'][a'- ~'(q)']
—n»n, C»C' J,"(~)'(P"&(d"&(~' —~',)' = O . (28)

Note that there are in general four coupled pro-
ton-deuteron-lattice modes, one pair for a ferro-
electric motion of the proton-deuteron subsystem,
and another for a ferrielectric motion. In each
pair, one mode is latticelike and the other proton-
like or deuteronlike.

The spectra of (d„u, and e, for a =p and
0. =d are shown schematically in Fig. 1 assuming
a large maximum value of G, (G, =0 at q = q*) a,nii
C"~ O.

From Eq. (18b) we observe that the amplitudes
of the e~ and e" modes mill be roughly proportion-
al to C»(p") and C~(d"&, respectively. Since (d") ~ n„
from (21), the intensity of the deuteronlike mode
is proportional to - C"A~ and mill be very small
even in the fully deuterated crystal (C"= 1) in view
of Q„«Q~. For Q„-O the coupling between the

Ptd,

L
tO
L

CO

wave vector

G, = NE, — E,
q

(24)

FIG. 1. Schematic spectra of coupled proton-deuter-
on-I.attice modes. The mode w, is ferroelectric lattice-
like, c ~"„ ferrielectric deuteronlike, etc.
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proton-deuteron branches in Eq. (10) i
us e eigenfrequencies are very nearly given

by Eqs. (22) and (23) in analo
KH I Q ." ana ogy to the case of pure

The observable modes with =0 ar
the latticelike m
mode co' w

e mode (d, and the protonl'k fi esot
whose intensity scales as - C~Q .

mode will ther
s p. This

erefore become weaker as th d
ation conc

s e euter-
centx'Rtlon incx'eases Rnd will disR eRx'

altogether in KD PQ .
Wi ls RPPe Rx'

The two branches become
uncoupled in the limit C -1, hence (d =

QP beconies
hence, =(do, while

a)" = (-,' X~0")'+0' .0 p (26)

It ma a,y ppear as a paradox t at H still
0 as C~-0. Cl

s contains
Cl y, ls result ls only valid ifC lear 1 thi

ere are at least a few r
the oint b '

w protons left in the crystal,
e point being that the last proton still tunnels

with the same frequency Q, which i
in ependent.

p~ w ich is concentra-

V. DISCUSSION

I et us now compax'e the results of the above
theory with recent loow-temperature experimental
data of Peerc His I'esults on the px'essux'e de-
pendence of Baman spectra of pure KH PQ2 4 and

, may e summarized as follows: (a) The
broad overdamped soft mode at T & T, in KH P
becomes underdam

, in KH~PQ4
erdamped at high pressures. (b) The

frequency of the underdamped mode dmo e ecreases as
&u = (T- T, ) if the pressure is smaller than a
critical pressure P . ~c) A~c) bove a critical px essure
P&P thefre uP, requency ru stays finite for all tern-
peratures. &d) Be& ) elow the transition temperature
the soft mode bece ecomes underdamped even at at-
mospheric pressure. (e) W' th

'
1 lncx'eRsing pl"es-

cy o e soft mode (d-sure below T, the fx'equenc of the
and of its coupled-lattice counterpart v,—de-
creases, whereas all other t fop ic requencies in-
crease with rp essure. This can be understood as
the pressure lop lowers T„and increasing the re-
sure bri s the'ngs e system closer to the transition
point. At the same same time this pressure effect
demonstrates the correctne f th

*ss o e assignment of
as the soft mode below T, . (f) Th ie intensity of
so mo e vanishes on deuteration below T, .

A number of important additional points has
been provided b Pe' e y Peercy's work on mixed KH PQ
systems: &i) The frequency of the underdamped

p

d
soft mode below T, inc~ease ths wi increasing
euteration, although its int t,in ensi y, of course, is

found to decrease. ~ii) The pressure derivative of
the soft-mode frequency continuousl hay C nges

negative to positive values 'th '
wl inc I'e R sing

concentration of deuterium.* ' . qili) The frequency
o e polar optic latticelike @mode, which is
known to couple strongly to the proton soft mode
continuousl i ey increases with increasing deutera-
tion indicati thating at the proton-lattice coupling de-

creases and not incr
latticelike mode.

' creases the frequency of th e
This can only happen if the

coupling constant between the proton and then an e polar
is negative and not, positive as a-

sumed so fRx'.
Rs Rs-

The theory presented in this paper explains Rll
abovementioned results i
interestin to n

s in a natural way. It is
g note in this connection that th

cou 1

a e

III alrea
p ed proton-deuteron mod l d'e iscussed in Sec.
already gives a correct qu litat*uR lve descllptlon

of the above results (a)-(f). However
tative anal sis o

owever, a quantl-
ysis of the low-temperature data on both

pure and mixed s stem
th

y ms is only possible within
e framework of the ce coupled proton-deuteron-lat-

tice model of Sec. IV.
To calculate the frequencies v, we dro~, we rop the

rip P from now on) as functions of the
deuterium concentration C" f werom 22) and 23 we
use the values (d - 233 — cmcm and Q -97 5 cm"
The re remaining parameters Z~~ Z an

rom e Haman spectra of pure KH3PQ
d from (d extrapolat d t C" =

for C =0 h
e o = 1. In particular,

we have the relation

Go = —J'o (420 —(d,) ((do —(d )/(np(do) .

= —186 cm 1
Since coo& ~„ it follows that t" &0. We find Go

cm, J'0 =—335 cm", and J~o"—= 254 cm l.
c o e proton-latticeWe realize that the effect of the

coupling in KHzPQ4 is to decxease the proton-
proton interaction a featu h h

model.
p ained by Kobayashi's treatments f thn 0 e same

The calculatedd frequencies are shown in Fig

1?5—
3

1M
II

Qp

125—

100
O jl25 0,50 0.?5 1.0

OElHPRAt ION

FIG. 2. Calculated conce
f

ncentration dependence of th
requencies of coupled proton-1

e

KH PO 4
—K PO

pro on-lattice modes in. mixed
~Points: experimental data of Peer-

s
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05-
e

O

+
3
c= -50

0

I

K (Hl-)( ~x~7

Q5

e

0.0

3
—-0.5

I

0.75

f

0.50 1.00

OEU tERAtl0N X

FIG. 3. Calculated pressure dependence of (', as
function of deuteration X. (Points: experimental data of
Peercy. 4)

Note the almost linear increase with deuterium
concentration of ~, and ~~. The lattice polar
mode frequency (do has been determined from the
limiting value of v, for C -1 as explained earlier.
Its value ~o- 233 cm ' is larger than believed so
far. " The values of all other parameters should
be regarded as rough estimates only in view of
the small number of experimental points available.

An even more crucial test of the theory lies
however in its ability to explain the peculiar be-
havior of the pressure derivatives of the coupled
frequencies as functions of the deuterium concen-
tration. From Eq. (22) with a =P we can calcu-
late the logarithmic derivatives (always denoted
by a prime on a given symbol) &u,'= (de, /dP)/u, in
terms of ~o Q» J~o~ Jo and Go- We must
assume that in general all these parameters are
pressure dependent. The logarithmic derivative
of the uncoupled lattice polar mode frequency ~o
-0.4% kbar ' is obtained directly from the mea-
sured ~,' at C"-1. The positive sign and the mag-
nitude of v~ are comparable to that observed for
ionic crystals with large compressibility. From
microscopic considerations' we know that Jo
ought to be negative, whereas Q&&0 since the main
effect of a hydrostatic pressure is to reduce the
O-H- -O distance in the hydrogen bond. From the
measured derivatives of (d in both limits C =0

and C'-1, and from Eqs (22), (23), and (26) it
then follows

2/oo kbar ' & Q~ - 3. 5% kbar '.
Using the value A~-3% kbar we find Po - —0. 18%%uz

kbar ', Jo' - —0. 55/p kbar, and from Eq. (27)
finally I Go I' 5. 27' kbar ', the last value being a
rough estimate only. The pressure derivatives
of co, for an arbitrary C are calculated from Eqs.
(22), (23), and (21), and are plotted in p'ig. 3 to-
gether with Peercy's data. The agreement is
reasonably good.

It should be stressed that the positive sign of
e' at C"-1 is entirely due to the rather large
positive derivative of Q~. This fact together with
the above value of Q~, which agrees with the cor-
responding microscopic estimates, ' provides a
striking confirmation of the tunneling model of
hydrogen-bonded ferroelectrics. "

In this connection the limitations of the above
treatment should be as well mentioned: (i) The
replacement of the true KH2PO4 Hamiltonian
which includes four-body forces by a two-body
forces Hamiltonian, i.e. , by a spin--,' Ising model
in a transverse field with one pseudospin per unit
cell; (ii) the use of the random-phase approxima-
tion in the linearization of the equations of motion.

Both of these approximations have serious
limitations and are expected to work quantitatively
only at temperatures well below T„but not in
the neighborhood of the transition temperature. ' ' '
The point is that for temperatures near T', four-
particle correlations play a dominant role'4 and
at the same time critical fluctuations may become
large. For a quantitative analysis of the shape of
the polarization curve or the deuterium concen-
tration dependence of T, a cluster approximation
method like the one discussed in Befs. 5 and 15
should be used. Only at T«T„where our re-
sults are compared with Peercy's experiments,
the above two approximations may be expected to
give quantitatively correct results.

In conclusion we might reemphasize our original
point, namely, that the study of mixed crystals
does in fact provide a much better check on the
various dynamical mode ls o f KH&PO4 orde r -dis-
order-type ferroelectrics than a study of iso-
topically pure systems, such as KH~PO4 or
KD2PO4.
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