
PHYSICAL BEVIES B VOLUME 13, NUMBEB 7 1 APH IL 1976

Helium II thermal counterflow at large heat currents*
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Data for the temperature and pressure differences produced by the thermal counterflow of helium II in long
capillaries are given and shown to define a region of nonlinear flow distinct from that described by Vinen. We
suggest a simple modification of the Vinen theory associated with a secondary flow in the normal fluid and in

good agreement with our data. The critical heat current for the onset of the secondary flow is shown to define
a stability region in analogy to second-order phase transitions.

Gur measurements of the temperature and pres-
sure gradients in He II thermal counterflow' '
have added to the recent experimental support' '
for the Vinen theory of superfluid turbulence. We
have shown that these data are consistent with a
mutual friction force F,„and a superfluid eddy
viscosity g„both of which are simple functions of
a homogeneous vortex line density Lo. Vinen has
given theoretical expressions for both F,„(Lo) and

the dependence of L,o on the relative velocity of the
superfluid and normal, ft.uid, v = v, —v„. There is
as yet no theoretical result for comparison with
our empirical determination of q, (Io).

As we have previously emphasized, there are
Aeo distinct nonlineax' flow regions and two critical
heat currents obvious in our thermal. counterflow
data, as can be seen. from the example in Fig. 1.
It is important to note that it is in the region be-
tween 2 and 3 in Fig. 1 where the above analysis in
terms of the Vinen theory is applied. The purpose
of the present paper is to examine the critical heat
current at point 3 (which we shall call i', ) and the
nature of the flow at higher heat currents. Gur
data can be used to exclude several explanations
of this third flow region, while at the same time
they provide support for a rather simple physical
model which we introduce.

A previous attempt' to understand Q, and the
dissipation for Q & Q, required combining data from
sevexal sources. This led to some erroneous
conclusions, although the model suggested below
beaxs some similarity to the previous one. In
particular, we suggest that Q, marks the onset of
a secondary flow in the normal fluid and that the
critical value of a normal-fluid Reynolds number
depends on the vortex line density L,. The third
flow region (Q& Q,) can then be understood quanti-
tatively in terms of a, simple modification of the
Vinen theory, allowing for a new vorticity gener-
ation term arising from the secondaxy flow.

Gur data were obtained with the apparatus des-
cribed in detail elsewhere' and shown schematical-
ly in the inset to Fig. 1. Heat produced in the

heater reservoir is transferred through the helium
in the flow tube to the temperature-regulated bath.
The temperature and pressure differences & T and
4I' are detected by the resistance thermometer
and pressure transducer and are displayed sim-
ultaneously on &-F recorders as functions of the
heat current Q. Typical data emphasizing the third
flow region are shown in Fig. 2. Data were ob-
tained with a glass flow tube of diameter d= 1..29
&10 ' cm and length / =10 cm (tube 8 in Ref. 3).
In order to further reveal the considerable detail
in the ~T data near Q, we have employed the fol-
lowing technique: after Q is rapidly changed by a
small amount, the temperature of pressure dif-

HelIbath at T

Flow tube

solatincj Vacuum

2Q

lO

500~

E
200

a)

IOO
CL

I%0

FIG. 1. Temperature- and pressure-difference data
as a function of heat current Q obtained at T = 1.7 K and
representative of other temperatures. The solid line is
a guide to the eye and the broken line is an extrapolation
of the linear region to higher heat currents. Points 2
and 3 are discussed in the text, as is the critical heat
current Qc at 3. Inset is a schematic drawing of the
apparatus.

2918



13 HELIUM II THERMAL COUNTERF I OW AT LARGE HEAT CURRENTS 2919

(a)
20

20

(b) „
15

E

10

0
~ 600
~ 400

200

o i 10 20 30 40

10E

C]
5

0
cu 600

Eo
Q 400
D
CL0 200

20 30 40 50 60

15
E

IO

5

500—
CV

Eo 400

300
CL0 200

10

CI

CV

Eo 300

—200
CL

15 25

20

100—
60

I

80 100 120 140 160 80 100 120 140 160 180

Y
E

C]

400
Oi

E.

s 300

CL+ 200
I I I

40 50 60 &0

~ (uW)

X 15
E

10

0

—500
E

~w 400

D
300

CI
200

100—
40 60 80

Q (JJW)

I

100 120

a 4

N
E 200

C~ 150

CL+ 100

80 100 120 140

Q (JiW)

E

cj

Q
N

Q
CI

160 180

12—

10—

T =2.0K

0
0

0
0

0
0

00
0

000
00 00

Q

0 0
00

0

60 80 100 120 140 160

Q (Jiw)

FlG. 2. (a) Temperature and pressure differences at T = 1.3 to 1.6 K as functions of the heat current Q, emphasizing
the data at high heat currents. The broken line is an extrapolation of the linear, low-Q region. The solid line is com-
puted from the theory given in the text. Note that the zeros are often suppressed. (b) The temperature and pressure
differences at T =1.7 to 2.0 K as functions of the heat current Q, emphasizing the data at high heat currents. The
broken line is an extrapolation of the linear, low-Q region. The solid line is computed from the theory given in the text
and is omitted at T =2.0 K because the Vinen parameter y2 is not known there. Note that the zeros are often suppressed.

ference approaches its new equilibrium value as
1-e ' '. From measurements below Q, we have
verified that the experimental relaxation time T is
given by its theoretical value rC. The dynamic
thermal resistance r is db T/dQ, and the heat
capacity C of the heater reservoir is dominated by
the heat capacity of the helium it contains. The
data for 7 thus give the derivative of the &T vs Q
curve. Figure 3 shows some of our data for v' and
for corresponding &T obtained by direct integra-
tion of v. It is clear from these results that there
is a great deal of structure near Q, .

In our view, an analysis of the third flow region
must begin with a proper set of dynamical equa-
tions for the preceding mutual friction region. We
write these equations in the form

VP =rJ„V v„+rJ,(LO)V~v (l)

VJJ = F,„(L,) +q, (L,)V'v,'", (2)

where the chemical potential gradient is

VJJ =VP/p —SVT.

Here p is the total density of the fluid, S is the
entropy per gram, g„ is the normal fluid viscosity,
and v„"and v,"are the microscopically time-

averaged velocities of the normal fluid and super-
fluid as described in Ref. 3. The relative velocity
v is uniform across the tube and is of magnitude

v = 4Q/vd~p, ST . (4)

The spacial averages of v„'" and v,"over the tube
cross section are denoted by V„and V, and are
related to v as

V, = -(P./P. )V. =
, (P,/P)v,

where p„and p, are the normal and superfluid
densitites. The dynamical equations must of
course be supplemented by equations for F,„(L,)
and rJ, (L,):

F,„(L ) = (ap,p„ii/3p)vL„

q (L ) = Jap(L y~)~~&

(6)

(J)

where J3 is the mutual friction parameter of Ha, ll
and Vinen, a is the quantum of circulation, and
~ is the empirical constant derived from our pres-
sure data. ' Finally, it is necessary to give the de-
pendence of Lo on the relative velocity. Neglecting
wall effects (which are insignificant in the region
near Q, ), the Vinen theory gives the steady-state
vortex generation rate to be
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Here X, and X, are the Vinen parameters given
and discussed in Ref. 3. Equations (1) (10) give
an accurate description of the counterflow phen-
omena in the mutual friction region and we take
them as our starting point for analysis of the third
flow region.

Manipulation of Eqs. (1)-(3) quickly revea. ls that
the excess temperature difference &T' is domin-
ated by F,„(I-,) and the excess pressure difference
AP' is given solely by the t4(Lo) term (B. y "ex
cess" we mean the actual pressure or temperature
difference minus the I,=0 contribution. ) In pre-
vious attempts to understand the third heat flow
region, it was assumed that the normal fluid was
turbulent and that Eq. (1) was modified by the ad-
dition of a force F„. While F„can certainly be
modeled to give the experimental ~P' in this re-
gion, unless Eq. (2) is a.lso modified in some way
the resulting &T' is far less than what is observed.
This is obvious when the domination of ~T' by F,„
is recognized. Other possibilities that can also be
discounted are modification of Eq. (6) (since this
leaves AP' unaltered) and modification of Eq. (f)
(since this cannot give a large enough &T'). The
only single modification that can possibly agree
with our data is a change in the Vinen theory re-
sult in Eq. (10) for the equilibrium vortex line
density. If for Q&Q, that result were replaced by

= (sX,Bp„/&pX, )U+ 0 L,'
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FIG. 3. Time constant for relaxation of AT or
&& (triangles) as a function of Q near Q, , and the
corresponding values of b T (Q) (circles) obtained by
direct integration of a smooth curve dravrn through the
data. The solid lines on the AT data are calculated from
the theory proposed in the text.

L, = ()(,Bp./2p)~L', '
and the decay rate to be

I; = (x)(,/2w)IP,

giving an equilibrium line density

then ~T and ~P would reflect this through F,„
and t)„respectively. Using Eq. (11) and Eqs.
(1)-(V) we have analyzed our data, and found that
indeed the same correction M.,' 2 is needed for
both the ~T' and ~I" data. This key experimental
result means that the third heat flow region is
simply one in which the vortex line density I-, is
modified from the value given by the Vinen theory,
while the mutual fricition and eddy viscosity con-
tinue to depend on I-, in the same way. The basic
dynamical equations are thus left unchanged.

Without lntl oduelng another term ln the dynamic
balance of line generation and decay, it is impos-
sible to modify the Vinen theory so that Eq. (11)
results. Such a term was introduced by Vinen"
to account for the inhomogeneity at the walls of the
flow tube. In that ease Vinen suggested that L~ be
multiplied by a factor (1 —ct/LP'd)„where a is a
constant of order unity andi. ;"' ls the mean spac-
ing of vortex lines. We have demonstrated the suc-
cess of this modification to the theory by an exam-
ination of the critical velocity introduced by it. '
To account for +I p in the third flow region we
propose that the generation term again be modi-
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fied, and that the source of the modification is a
secondary flow in the normal fluid which com-
mences at Q, . It is important to recall that in the
Vinen region (between 2 and 3 in Fig. 1) the norm-
al fluid is in Poiseuille flow only in a time-average
sense. Because of the local mutual friction force,
the actual normal fluid velocity field would find
its classical analog in something like flow through
a tube filled with a tangle of wire. The fact that
classical Poiseuille flow is not unstable to a sec-
ondary flow (as is Couette flow to the formation of
Taylor vortex cells, for example) does not neces-
sarily preclude such an instability in the thermal
counterflow probelm. Obviously there is no hint
as to the structure of the postulated secondary
flow, but there are some pertinent general results
due to Landau. " In particular, he has shown that
if the base flow becomes unstable at a critical
Reynolds number R„ then the velocity amplitude
of the secondary flow increases as e' ', where
e —= (R —R,)/R, plays the role of an order parame-
ter. This result, as well as other features of the
Landau approach to hydrodynamic instabilities,
has been confirmed in a number of experiments. ""

Specifically, we propose that Q, corresponds
to a critical normal fluid Reynolds number above
which a secondary flow of amplitude v, &

' ' is
present and that this flow modifies the Vinen vor-
ticity generation term in the obvious manner

Vo =— X4K/X. . (14)

Using X=3 &&10 ' cm, determined from the pres-

L = (X,Bp„/2p)vL, '~' —(X,Bp„/2p)(v+v e' ')L' ' .

(12}

This then leads to the result

HALO'
' =(vX,Bp„/p&X, )vo&' ', (13)

where r Lo' ~' is defined in Eq. (11}. Using this
result we have fitted our hT and AP data for
Q &g, using v, as an adjustable parameter. " The
results of this procedure are given by the solid
lines in Fig. 2 and indicate excellent agreement
with the data at all temperatures. It should be
noted that the explicit dependence of 4T' and ~P'
on Q and T as given by Eqs. (13), (11), (6), (7),
(1), and (2) is extremely complex. There is a
systematic deviation at the largest heat currents
due to the very large temperature differences
present there. We have not attempted to correct
for this, although the correction would make the
agreement even better. The values of Q, used in
this procedure are given in Table I.

In keeping with the terminology introduced by
Vinen, we write the parameter i), in dimensionless
form as

TABLE I. Values of the critical heat current Q~ and
the parameter g4 defined in the text.

Q (AW)

1.3
1.4
1.5
1.6
1.7
1.8
1.9

27.0 +1.5
42.5+1.5
o0.5: 1.5
88.5 +2.0

111.0 ~2.0
123.0 ~ 2.0
110.0 -~ 3.0

0.80 +0.02
0.81 ~0.02
0.72 +0.03
0.59 + 0.03
0.41 + 0.04
0.27 +0.03
0.11 +0.02
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plG. 4. Dimensionless parameter X 4, defined in the
text by Eq. (14), giving the amplitude of the proposed
secondary flow as a function of temperature.

sure data, gives y, as shown in Fig. 4 and given
in Table I. While the temperature dependence of

y4 is somewhat stronger than either y, or I3, it is
encouraging to note that it is of the same order of
magnitude.

Possible support for our proposed model may be
found in measurements of the damping of a fine
wire immersed in a thermal counterlow reported
some years ago." It was found that at low heat
currents the damping was entirely due to the norm-
al fluid viscosity, but that above a critical heat
current there was an excess damping proportional
to E' '. Possibly more significant, however, was
the observation that this excess damping was an-
isotropic, being maximum for wire vibrations
parallel to V„. These results are suggestive of a
spacially periodic but time-independent secondary
flow as described by Landau. "

One of the classic examples of secondary flows
is the Taylor vortices which develop in the lamin-
ar flow between concentric rotating cylinders.
Donnelly et al."have demonstrated in an elegant
experiment that the onset of the Taylor instability
can be postponed substantially by modulation of the
inner cylinder velocity at an appropriate frequency.
Oberly and Tough" have observed an identical
effect in thermal counterflow: the value of Q, de-
pended on the frequency of modulation of the norm-
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FIG. 5. Values of R~ and L, od 2 determined from our
data for Q~ at T =1.3 to 1.9 K. The solid line, arbitrar-
ily drawn through the data, divides the plane into regions
which are stable and unstable to the formation of the
proposed secondary flow. The dashed lines represent
isotherms for X=1.4, 1.6, and 1.8 K, as discussed
in the text.

al fluid flow just as in the Taylor problem. These
results were interpreted as evidence for the hy-
drodynamic origin of Q„and we now suggest that
they support our proposed model of a secondary
flow.

The analogy between fluid instabilities and sec-
ond-order phase transitions has often been made. "
Both phenomena exhibit an order parameter which
grows from zero in the neighborhood of a critical
point, and both have a phase or stability boundary
in the space of defining variables. Exploiting this
analogy to phase transitions, we have examined the
flow stability boundary corresponding to Q, . The
state of the thermal counterflow can be defined by
the vortex line density Lo and a normal fluid Reyn-
olds number, which for the present we choose as

R = pV„dig„.

The analogy thus suggests that the R, Lo plane
should be separated into two regions in which the
*'Poiseuille" flow of the normal fluid is, respec-
tively, stable and unstable to the formation of the
secondary flow. The boundary between the two
regions would then be R,(Lo), the critical Reynolds
number. From our data we can construct R,(LO),
since at each temperature T both R and L, can be
computed at Q,. Figure 5 gives the results of this
calculation (the dimensionless quantity L,d' is
used instead of L, here) and shows that the data do
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FIG. 6. Values of R„, and Lodt determined from our
data for Q~ at T = 1.3 to 1.S K. The solid line, arbitrar-
ily drawn through the data, divides the plane into regions
which are stable and unstable to the formation of the
proposed secondary flow. The dashed line represents
the isotherm for T=1.6 K.

fall along a reasonably smooth boundary in the
plane. One might equally well choose the Reynolds
number to be

in which case a similar calculation gives the re-
sults in Fig. 6. The dashed lines in Figs. 5 and 6
show several isotherms, the loci of points followed
by the thermal counterflow at fixed temperatures
as the heat current is varied.

In our experiments it is possible to increase the
heat current in a smooth continuous fashion and
observe the resulting temperature and pressure
differences as functions of Q on X-Y recorders.
In this way we often observe the linear region
(Fig. l) persisting to heat currents greater than

Q, . However, if we begin this procedure with the
flow in the mutual fricition region, the third flow
region alzvays appears at Q,. These observations
suggest the following: the flow transition at Q,
requires the presence of a high density of vortex
lines, and the flow instability leading to the transi-
tion is with respect to infinitesimal rather than
finite disturbances.

In conclusion, we have demonstrated that both
temperature- and pressure-difference data ob-
tained in thermal counterflow at large heat cur-
rents can be understood in terms of a simple mod-
ification of the Vinen theory. We suggest that the
critical heat current Q, marks the onset of a sec-
ondary flow in the normal fluid. Using the result
that the amplitude of such a flow increases as e'~',
we are able to obtain a satisfactory fit to our data.
Other thermal counterflow experiments are shown
to be supportive of our model. We point out the
analogy between second-order phase transitions
and flow instabilities and use our data to construct
a stability diagram. Finally, we note that the ex-
istence of a highly correlated secondary flow
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should produce dramatic effects in the vortex line
noise spectrum.

We are grateful to F. Moss, J. A. Northby,

W. F. Vinen, and R. J.Donnelly for valuable dis-
cussions of this problem, and to R. J.Donnelly
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to publication.
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