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A sufficient condition for self-binding in a many-boson system interacting via pair potentials is that the
coupling constant be greater than the value for which the two-body scattering length first becomes zero. This
result is derived and is applied in a discussion of calculations with Lennard-Jones and Morse potential models.

I. INTRODUCTION

A many-boson system interacting via pair poten-
tials can be self-bound for coupling constants ap-
preciably less than those necessary for the exis-
tence of bound dimers or trimers. The purpose
of this paper is to present an upper bound on the
threshold coupling constant for self-binding in a
many -boson system with pair potentials; the bound
is the coupling constant for which the two-body
scattering length first becomes zero.

The proof is based on the use of a cluster ex-
pansion of the Rayleigh-Ritz expectation value for
the many-boson ground-state energy!’? with a Jas-
trow trial function. In this formulation the crite-
rion? for the onset of the self-bound system is that
the lead term in the density expansion becomes
negative. The lead term is minimized by optimiz-
ing the choice of the pair factor in the Jastrow
trial function; for coupling constants less than the
threshold for a bound dimer, this shows the lead
term to be proportional to the scattering length
and thus the result follows.

Formally, this method is closely related to con-
siderations of many previous workers.!™® Sa-
wada* obtained this threshold result by variational
methods also; the proof here is a rederivation of
his result which apparently is close to the unpub-
lished derivation of Penrose, cited by Sawada.
With this result, the threshold couplingobtainedby
Miller, Nosanow, and Parish? for a boson system
with Lennard-Jones 12-6 pair potentials is easily
recovered and refined. Also, the self-binding of
the electron-spin-aligned tritium system found by
Etters, Dugan, and Palmer?® for a Morse-potential

_ (W, HyYy)

model is confirmed.

The bound on the threshold coupling constant is
derived in Sec.II; the applications to the Lennard-
Jones 12-6 and Morse potential models are con-
tained in Sec. III; an appendix is included which
shows the relation of the many-boson threshold
calculations to two-body threshold calculations.

II. BOUND ON THRESHOLD COUPLING CONSTANT

Consider a many-boson system in three dimen-
sions, with the Hamiltonian

N 2
Hy=0_ 2t 2 o(F,)). (1)

o 2m 1S4<GSN

The definitions of the coupling constants for the
Lennard-Jones and Morse potential models are
given in Sec. III; in the discussion of the variation
of the coupling constant, what is visualized is that
the (central) pair potential has a two-parameter
form

(| F|) =€®(7/0) . (2)
The coupling constant K has the following propor-
tionalities:

K< meo?/n?; (3)
7 is the reduced Planck constant.

An upper bound E;(N) on the ground-state energy

Ey(N) is obtained by use of the Jastrow trial func-
tion!

¥, ...,N)= f(ny) (4)

1<i<j<N

in the Rayleigh-Ritz expectation value:

E,(N)=E,(N)= 226" o > U dlo,,dN|\Il,|2<¢(rU)+—Z;(-%)Vzlnf(r”)>} (J’dlen leqf,lz)'l .

(‘I’J; ‘Il.f)

1Si< KN

Because the ground-state wave function of this
many-boson system is non-negative,  there is a
constraint on the pair factor f,

(5)

f(»)=0. (4a)
Furthermore, to apply cluster expansion methods!’?
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to the evaluation of Eq. (5), a cluster constraint
for fis imposed:

[at| rim-1] <= (4b)

With the constraint Eq. (4b), in the thermody-
namic limit of large particle number N at fixed
number density p there is a convergent expansion’
of Eq. (5), in powers of the density, at low den-
sity,

Ey(N)/N=E{(N)/N=pB+0(p? ; (6)

the initial slope B is
_if #or, 2 a)
B=3 dr<¢f+mlvf[ . (7

A consequence of the convergence statement is
that at sufficiently low density the leading term on
the right-hand side of Eq. (6) is an accurate eval-
uation of E,(N)/N, so that if B is negative E,(N)
is negative and the system has lower energy than
at zero density. ®

A sufficient condition for the existence of self-
binding is that B is negative. B can be minimized
by variation of the pair factor f subject to Egs.
(4a) and (4b)., Without the constraints the varia-
tion leads to a zero-energy Schrddinger equation
for f,

— (7Y m)Veif+df=0, (8)

with a large-# solution in terms of the scattering
length a for finite-range potentials or potentials
with a van der Waals tail (1/7°),

f=l-a/r, r-o, (9)

For zero scattering length, use of Eq. (8) in Eq.
(7) shows that B vanishes, the threshold for self-
binding.

For nonzero scattering length, Egs. (8) and (9)
as they stand do not yield a function satisfying Eq.
(4b). However, this can be immediately remedied
for finite-range potentials, which vanish beyond a
separation R,. Modify Eq. (8) by inclusion of a
8-function term® at location R larger than R,

— (73 m)Vef+ of + (M R®)O6(v - R)f=0 , (10)

with the solution f to satisfy

f(r)=1, %:o, ¥<R. (11)

For separations just less than R, f satisfies the
scattering-length form

fn=(1-a/v)/(1-a/R), (12)
and the choice of X to achieve Eq. (11) is
A=—(r%a/m)/(1 - a/R) . (13)

The resulting value for B is

By =(27%%a/m)/(1 —a/R) . (14)
This goes to a limit independent of R as R— <,
B=2nn%a/m, (15)

although the cluster constraint Eq. (4b) does not
go to a finite limit, This argument extends, with
more detailed estimates of remainders in Eqs.

(9) and (12), to the Morse and Lennard-Jones mod-
els. The conclusion of this argument is that at
low density the leading term in the energy is pro-
portional to the scattering length, which is also a
result in optical-model approximations. The con-
clusion is limited to potential coupling constants
less than the threshold K, for dimer binding; above
K, there is a node in the solution of Eq. (8) or (10)
and the non-negativeness constraint, Eq. (4a) is

no longer satisfied.

III. APPLICATIONS TO LENNARD-JONES AND MORSE
POTENTIALS

A. Lennard-Jones 12-6 potential

The Lennard-Jones 12-6 potential

& (r) =4€[(o/7)2 = (o/7)] , (16)
with coupling constant K,
K=4mea?/n?, (17)

satisfies Dobrushin’s requirements for thermody-
namic stability, !° so that the self-binding obtained
for this model is not simply due to collapse at
large N.

Miller, Nosanow, and Parish® used a pair factor

Fune) =exp[ - 5(0/7)°] (18a)

in a Jastrow trial function, optimized the length b,
and obtained a value

Kynp=8.9 (18b)

as the threshold for self-binding. Their trial func-
tion can be generalized to

fo(r) =exp[ -3(b/7)°] . (19)
With this, the integrals in Eq. (7) reduce to T'
functions,

B=(21b%/s){4T(9/5)(0/b)*2 = 4T(3/5)(0/b)®

+(s¥/K)T(2 - (1/9))(a/b)%} . (20)

For given s, this is minimized by variation of b
and a value K at which B=0 is obtained. For s=5,
the value is 8. 78, in good agreement with Eq. (18b).
The minimum K obtained by variation of s after the
b variation is 8.676, for s=~4,41.

The threshold K bound obtained from the condi-
tion of zero scattering length is

K;=8.6725, (21)
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only slightly smaller than the value obtained with
Eq. (19). For comparison the values of K for the
bound dimer!! K, and bound trimer!? K, are known
to satisfy

K,=22.361+0.001, 14.90=K,=<21.20. (22)

B. Morse potential
The Morse potential is
6 (7) = elexp{2¢[1 = (/7]
- 2exp{c[1 - ("/7uu)}) , (23)
with coupling constant K,
K=merd,,/n%?. (24)

If corrections arising from the finiteness of the
potential at »=0 are neglected, !* the threshold
coupling constant K, for the bound dimer is

K,=0.25 (25)
and the scattering length is
a/Vam=c+In2VE)+ 9 -VEK) , (26)

where ¢ is the digamma function
Etters, Dugan, and Palmer® fitted a Morse po-
tential with

Ymn=4.1527 A, and c =6, 0458

(27)
to the calculations by Kolos and Wolniewicz!* of
the electron-spin-triplet potential between two
hydrogen atoms., The threshold coupling constant
K for boson self-binding obtained from Eq. (26),
with ¢=6.0458, is K; =0.0963. The value of K
for hydrogen with the parameters in Eq. (27) is
K;~0.06, so the criterion for self-binding is not
fulfilled for spin-aligned hydrogen; it is fulfilled
for spin-aligned tritium, as was found by Etters
et al, %1%

Note added in proof. The situation in two dimen-
sions is a little different, since there the two-body
relative motion wave function at the first zero-en-
ergy bound state has the cluster property. The

€/ky =6. 19K,

threshold coupling constant for the Lennard-Jones
12-6 potential in two dimensions obtained with Eq.
(19) is 14,8 for many-boson self-binding and is 20.8
for many-fermion self-binding. These values are
consistent with a calculation for two-dimensional
helium which found self-binding for *He but not for
’He [A. D. Novaco and C. E. Campbell, Phys. Rev.
B 11, 2525 (1975)].

ACKNOWLEDGMENT

The author thanks Professor C. J. Goebel for
helpful discussions.

APPENDIX: RELATION TO TWO-BODY THRESHOLD
COUPLING CALCULATIONS

For the two-body calculation with a trial wave
function ¢ the variational upper bound on the
ground-state energy is

E,(2) =Udf<¢>zp2+ Z—j|vw|2>]<fdw2>-1 . (Al

The numerator in Eq. (Al) is formally the same
as Bin Eq. (7), and an upper bound on the thresh-
old coupling constant for the dimer is the value
when the numerator in Eq. (Al) changes from pos-
itive to negative. Kihara, Midzuno, and Shizume!®
obtained such a bound (K,= 22. 368 is the value cal-
culated by McGee, following their method) with

Ye=exp[ —3(b/7)%]/7 . (A2)

The trial function in Eq. (19) is not admissible
here; the trial function is to be square integrable.
The numerator in Eq. (Al) is continuous and finite
under the limit € goes to zero of

Ur,e=exp[ —3(b/7)° = erl/r (A3)
but not of a trial function based on Eq. (19),
fr,e=exp[ —3(b/7)° - er] . (A4)

Correspondingly, while the trial function Eq. (19)
satisfies the cluster constraint Eq. (4b), the trial
function Eq. (A2) does not.
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