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Threshold coupling constant for self-binding in a many-boson system*
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A sufficient condition for self-binding in a many-boson system interacting via pair potentials is that the

coupling constant be greater than the value for which the two-body scattering length first becomes zero. This
result is derived and is applied in a discussion of calculations with Lennard-Jones and Morse potential models.

I. INTRODUCTION

A many-boson system interacting via pair poten-
tials can be self-bound for coupling constants ap-
preciably less than those necessary for the exis-
tence of bound dimers or trimers. The purpose
of this paper is to present an upper bound on the
threshold coupling constant for self-binding in a
many-boson system with pair potentials; the bound
is the coupling constant for which the two-body
scattering length first becomes zero.

The proof is based on the use of a cluster ex-
pansion of the Rayleigh-Ritz expectation value for
the many-boson ground-state energy" with a Jas-
trow trial function. In this formulation the crite-
rion for the onset of the self-bound system is that
the lead term in the density expansion becomes
negative. The lead term is minimized by optimiz-
ing the choice of the pair factor in the Jastrow
trial function; for coupling constants less than the
threshold for a bound dimer, this shows the lead
term to be proportional to the scattering length
and thus the result follows.

Formally, this method is closely related to con-
siderations of many previous workers. ' Sa-
wada4 obtained this threshold result by variational
methods also; the proof here is a rederivation of
his result which apparently is close to the unpub-
lished derivation of Penrose, cited by Sawada.
With this result, the threshold coupling obtained by
Miller, Nosanow, and Parish for a boson system
with Lennard-Jones 12-6 pair potentials is easily
recovered and refined. Also, the self-binding of
the electron-spin-aligned tritium system found by
Etters, Dugan, and Palmer' for a Morse-potential

model is confirmed.
The bound on the threshold coupling constant is

derived in Sec.II; the applications to the I.ennard-
Jones 12-6 and Morse potential models are con-
tained in Sec. III; an appendix is included which
shows the relation of the many-boson threshold
calculations to two-body threshold calculations.

II. BOUND ON THRESHOLD COUPLING CONSTANT

Consider a many-boson system in three dimen-
sions, with the Hamiltonian

The definitions of the coupling constants for the
Lennard-Jones and Morse potential models are
given in Sec. III; in the discussion of the variation
of the coupling constant, what is visualized is that
the (central) pair potential has a two-parameter
form

Kcc mao /S (3)

@is the reduced Planck constant.
An upper bound E, (N) on the ground-state energy

Eo(N) is obtained by use of the Jastrow trial func-
tion'

(l, . . . , N) = II f(r„)
1&$&f+N

in the Rayleigh-Ritz expectation value:

(4).

(2)

The coupling constant K has the following propor-
tionalities:

2 1 -1

Eo(N) E,(N) = ~' " ~ = g dl ~ ~ dN~4~~ P(r, &)+ —( ——,')9'1nf(r„) dl ~ ~ ~ dN~ 4z
~
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Because the ground-state wave function of this
many-boson system is non-negative, there is a
constraint on the pair factor f,

f(x) 0 . (4a)

Furthermore, to apply cluster expansion methods'~
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to the evaluation of Eq .(5), a cluster constraint
for f is imposed:

dry f (r) —li &~ .

With the constraint Eq. (4b), in the thermody-
namic limit of large particle number N at fixed
number density p there is a convergent expansion~
of Eq. (5), in powers of the density, at low den-
sl ty»

E,(fv)/iv E,(x)/iv= pa+ 0(p');
the initial slope B is

9=- d r (It ~+—

with a large-~ solution in terms of the scattexing
length a for finite-range potentials or potentials
with a van der Waals tail (I/r'),

f =1 —a/r, r-~ . {9)

For zero scattering length, use of Eq,. (8) in Eq.
{7)shows that 8 vanishes, the threshold for seU-
blndlng.

For nonzero scattering length, Eqs. (8) and (9)
as they stand do not yield R function satisfying Eq.
(4b). However, this can be immediately remedied
for flnlte-range potentials, which vanish beyond a
separation fto. Modify Eq. (8) by inclusion of a
~-function «rm' at location Z ~a~ger than Z„

—(8'/~)&af+ @f+(&/&~)&(&- ft)f=0,
with the solution f to satisfy

For separations just less than ft, f satisfies the
scattering-length form

f (~) = (1 —a/r}l/{1 —a/&),

and the choice of & to achieve Eq. (11) is

&= —(a'a/m)/(I - a/ft) .
The resulting value for B is

(12)

A consequence of the convergence statement is
thRt Rt sufficiently 10%' deDslty 'the leading tex'Dl on
the right-hand side of Eq. (8) is an accurate eval-
uation of Z, (N}/N, so that if J3is negative E,(N)
is negative and the system has lower energy than
at zero density. 8

A sufflcleDt, coDdltlon for the exlsteDce of self-
binding is that B is negative. 8 can be minimized
by variation of the pair factor f subject to Eqs.
(4a) and (4b). Without the constraints the varia-
tlon leads to R zelo-eDex'gy 3chrOdinger equRtlon
for f,

satisfies Qobrushin's requirements for thermody-
namic stability, lo so that the self-binding obtained
for this model is not simply due to COBapse at
large N.

Miller, Nosanow» Rnd Parish used a pair factor

f„„v(&)= exp[ ,'(0/~)']——

ln R Jastrow trial function» optlmlzed the length 5»

and obtained a value

as the threshold for self-binding. Theix' trial func-
tion can be generabzed to

f.(~}=exp[ 2(f/~)'] .- (19)

With this, the integrals in Eq. (7) reduce to 1
func tions,

8= (2vb'c/s) $41"(9/s)(o/8)" —41'(3/s)(o/8)'

+ (sa/K) I'[2 —(I/s)](o/b)2[ . (20)

For given s, this is minimized by variation of 5
and a value E at which B=O is obtained. For s = 5,
the value is 8. 78, in good agreement with Eq. (18b).
The minimum K obtRIDed by vax'latlon of 8 Rftex' the
6 variation is 8. 676» for s —4.41.

The threshoM K bound obtained from the condi-
tion of zexo scattering length is

&s = {2'5'a/m)/(I —a/ft) .
This goes to a bmit independent of R as g- ~,

B=2vh a/rn, (18)

although the cluster constraint Eq. {4b) does not
go to a finite limit. This argument extends, with
more detailed estimates of remainders in Egs.
(9) and (12}, to the Morse and I ennard-Jones mod-
els. The conclusloD of this argument ls that Rt
low density the leading term in the enexgy is pro-
portional to the scattering length, which is also a
result in optical-model approximations. The con-
clusion is limited to potential coupling constants
less than the threshold Ez for dimer binding; above
E, there is a node in the solution of Eq. (8) or (10)
and the non-negativeness constraint, Eq. (4a} is
no longer satisfied.

III. APPUCATIONS TO LENNARD-JONES ANB MORSE
POTENTIALS

A. Lennard-Jones 12-6 potentiaI

The Lennard-Jones 12-6 potential

P(r) =4e[(o/r)" —( /o~)'],

with coupling constant E,
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—2expfc[1 —(r/r „)])),
with coupling constant K,

K = mar' „/k'c' .

(28)

(24)

If corrections arising from the finiteness of the
potential at r =0 are neglected, ' the threshold
coupling constant K2 for the bound dimer is

KB=0.25

and the scattering length is

a/r „=c+in(2vK)+P(-,' —v K),

(25)

(26)

where P is the digamma function
Etters, Dugan, and Palmer' fitted a Morse po-

tential with

c/ks = 6. 19K, r,„=4. 1527 A, and c = 6.0458
(27}

to the calculations by Kolos and Wolniewicz" of
the electron-spin-triplet potential between two

hydrogen atoms. The threshold coupling constant
K for boson self-binding obtained from Eq. (26},
with c'=6. 0458, is K~ =0.0963. The value of K
for hydrogen with the parameters in Eq. (27) is
K„=0.06, so the criterion for self-binding is not
fulfilled for spin-aligned hydrogen; it is fulfilled
for spin-aligned tritium, as was found by Etters
et al. '"

Note added in fnoof. The situation in two dimen-
sions is a little different, since there the two-body
relative motion wave function at the first zero-en-
ergy bound state has the cluster property. The

only slightly smaller than the value obtained with
Eq. (19). For comparison the values of K for the
bound dimer" K~ and bound trimer' K, are known
to satisfy

K~ = 22. 361 s 0. 001, 14.90 ~ K~ ~ 21.20 . (22)

B. Morse potential

The Morse potential is

P(r) = e(exp{2c[1 —(r/r «)]}

threshold coupling constant for the Lennard- Jones
12-6 potential in two dimensions obtained with Eq.
(19) is 14.8 for many-boson self-binding and is 20. 8
for many-fermion self-binding. These values are
consistent with a calculation for two-dimensional
helium which found self-binding for He but not for
He [A. D. Novaco and C. E. Campbell, Phys. Rev.

B ll, 2525 (1975)].

ACKNOWLEDGMENT

The author thanks Professor C. J. Goebel for
helpful discussions.

p[ —l(b/ )']/ (A2)

The trial function in Eq. (19) is not admissible
here; the trial function is to be square integrable.
The numerator in Eq. (Al} is continuous and finite
under the limit a goes to zero of

P,„=exp[ ——,'(b/r)' —&r]/r

but not of a trial function based on Eq. (19},

f, , =exp[ —,'(b/r)' —er]—.

(A8)

(A4)

Correspondingly, while the trial function Eq. (19}
satisfies the cluster constraint Eq. (4b), the trial
function Eq. (A2) does not.

APPENDIX: RELATION TO TWO-BODY THRESHOLD
COUPLING CALCULATIONS

For the two-body calculation with a trial wave
function g the variational upper bound on the
ground-state energy is

E, (2)= d (gP —
~v)~~ ) (

d P ) (Al)

The numerator in Eq. (Al) is formally the same
as B in Eq. (7), and an upper bound on the thresh-
old coupling constant for the dimer is the value
when the numerator in Eq. (Al) changes from pos-
itive to negative. Kihara, Midzuno, and Shizume'6
obtained such a bound (K~~ 22. 868 is the value cal-
culated by McGee, following their method) with
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