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Properties of a random bond Ising chain in a magnetic field~)
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The Ising chain with random bonds in a magnetic field = —X, J, cr, a.
, +, —hX, o.„where J, = ~ 1 at

random, and Z;J; = 0, represents a model of a magnetic glass, or of heteropolymer melting. Calculations of the

therniodynamic properties of the chain as a function of field strength and temperature have been performed

by Monte Carlo techniques. These results are compared with perturbation calculations for small and large
values of h/T. The Monte Carlo results show, in agreement with the perturbation calculations, that the field-

induced magnetization is generally smaller for the random bond model than for a chain of noninteracting

spins. As T~0 the magnetization approaches the result for noninteracting spins.

I. INTRODUCTION II. PERTURBATION CALCULATION

The Ising chain with random ferromagnetic and
antiferromagnetic nearest-neighbor bonds (of equal
strength) is equivalent to the simple one-dimen-
sional Ising model, which is exactly soluble. In the
presence of a magnetic field, however, the model
cannot be solved in closed form. The Hamiltonian
for this system is

with o,. = + 1, J, = g 1 at random and M; J; = 0. The
random nature of the bond is clearer if we define a
new operator T, , where T; = z 1 at random, and

J; = T&J. The Hamiltonian is then

The partition function for this model with a given
distribution of bonds is

(4)

and the free energy for this distribution is

F(T„.. . , Tz) = —P 'lnZ(T„. . . , T~).

The physical properties of the system are found by
averaging the free energy over all possible con-
figurations:

(F) = Q P(T„.. . , T„)F(T„.. . , T„),
X = —Z p T,fo,fo,f „—h p z, . (2)

In this form the chain represents a model for a
one-dimensional magnetic glass. In addition, a
simple transformation shows that this is also
equivalent to the Hamiltonian for a ferromagnet in

a random magnetic fiel. d

X=-Z g ~,o,„-h g T,o, ,

where P(T„.. . , T„) is the probability of occur-
rence of the arrangement T„.. . , T„of bonds. If
the bonds occur completely at random,

P(T„.. . , T~) = [(N/2)!]',(N!,

and

which has been shown to provide a model for het-
eropolymer melting. ' We report here the results
of calculations of the thermodynamic properties of
a system governed by the Hamiltonian (2). There
has been considerable theoretical work ' on ran-
dom systems similar to the one considered in this
paper. The Monte Carlo calculations discussed
here provide "experimental" results which can be
compared with detailed theoretical calculations,
and they should be useful in this context. Xo= —J Q T, g, go, „, V= —h Q o&,. . . (6a)

The calculations reported in this paper are for this
particular choice of P, but the Monte Carlo tech-
nique is easily adapted, if desired, to more com-
plex choices of P.

It is possible to carry out straightforward per-
turbation-theoretic calculations of (Fj in the limits
of small P» or small PJ. To do this we write
K=X,+ V, where we consider either
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or

K, = —hg a, , V= —J g T,o,o„,.. (6b) and

(A) = Tr(e OA)/Tre
'

o,

Fp: -P ' ln Tre
In either ca,se, Eqs. (5) and (4) can be expanded to
yield

EF) =IF.) —'p C«&)
—~P'([& V') —3& V')'1)+ ~ ~ ~, (7)

where

The assumption of the specific form for
P(T„.. . , T„) mentioned above assures that aver-
ages of odd-order terms in V, e.g. , ((P)), will
vanish, so they have not been included in Eq. (7).

Evaluation of these averages is straightforward,
and we find:

Case A: Low fields (including fourth-order terms in Ph):

IF} 1 ph' p'h4

N] p
—) = ——in[2 cosh(P J)] — + [3 cosh'(P J) —2],

2 12
p'h'

(M) =Ph — [3 cosh'(PJ) —2],
3

c

U p'h'

N
hJtanh(p J) —ph'+ [3 cosh'(p J) —2]

3

p4h4
+ P'h'cosh'(J! hT) — J cosh(P J) sinh(P J).

2

Case B: high fields (including second-order terms in PJ')

F 1 PJ'
N P

= ——in[2 cosh(Ph)] — [1 —tanh'(Ph}],
2

(M) = tanh(ph) —2(pJ}'tanh'(ph) sech'(ph'),

N
= —h tanh(Ph) + 2h(P J)' tanh'(Ph) sech'(Ph).

(8)

(12)

III. MONTE CARLO CALCULATIONS

In order to study the intermediate region where
neither type of interaction is much stronger than
the other, we have carried out Monte Carlo calcu-
lations on a ring of 1000 spins with equal numbers
of randomly arranged ferromagnetic (F}and anti-
ferromagnetic (AF) bonds. The method used was
an importance sampling technique similar to that
used for the Ising square lattice except that the "ref-
erence" spin was chosen randomly. The details of
the method have been reported elsewhere. ' The ef-
fect of finite size on the properties of rings is quite
small, since the correlation length does not diverge
at any finite temperature. From earlier work on
small rings' and from our preliminary Monte Carlo
studies we find that even rings as small as 50-100
spins should have negligible finite size effects. In

order to study the average behavior of all such
rings with different "random" bond distributions
one can either study many short rings with differ-
ent distributions or one long ring which would in-
clude all such distributions along its length. We
have chosen the latter method.

Both Monte Carlo calculations and perturbation
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FIG. 1. Magnetization vs reduced field for T =0.4
noninteracting case ; ferromagnetic interac-
tions — —;antiferromagnetic interactions———;perturbation expansion for random bonds
Monte Carlo data for random bonds O.

expansion evaluations were made over a range of
field and temperature with the coupling constant
J= 1. Results from the two methods at low tem-
peratures are significantly different, as shown in

Fig. 1. This is not surprising since the perturba-

Random Bond Chain
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I'IG. 2. Magnetization vs reduced field for T =1.0
noninteracting case; ferromagnetic interac-
tions — —;antiferromagnetic interactions———;perturbation expansion for random bonds ..
Monte Carlo data for random bonds O.

tion method is really a high-temperature expan-
sion. The Monte Carlo data show that the magne-
tization for the random bond chain lies clearly be-
low the curve for the chain of noninteracting spins,
and between the results for pure ferromagnetic and
antiferromagnetic chains, which are shown for
comparison. The same behavior is seen in the
higher-temperature data shown in Figs. 2 and 3.
In addition, as the temperature increases, the ac-
curacy of the perturbation expansion improves, al-
though for all temperatures in the intermediate
region between low and high fields the results be-
come unreliable. As the temperature increases the
behavior of the magnetization approaches that of
the noninteracting chain. This can be seen quite

Random Bond Chain
Equation of State, T=4.0

FIG. 4. Magnetization vs reduced field for the random-
bond model at constant temperature.

clearly from the Monte Carlo data shown in Fig. 4.
The depression of the magnetization below that

for the noninteracting case is easily understood in
terms of the elementary excitations of the system.
In a noninteracting Ising model in a field the ele-
mentary excitations are single-spin flips. All such
single flips are equivalent and are split by b, =2h
from the ground state. In the random bond model
the elementary excitations are still single-spin
flips but are no longer all equivalent. Those spins
with two nearest-neighbor bonds will now require
6 = 2h+4J to overturn whereas for those with two

AF bonds 6 =2& —4J, and for those with one F bond

and one AF bond 6 =2h. Since the Boltzmann popu-
lation is nonlinear in the temperature, those ex-
citations involving a spin with two AF bonds will
be more like1.y than those involving two F bonds so
that the mean energy of the excitations will be low-
er than for the case of a noninteracting chain. In

Fig. 5 we show the internal energy for 7=1.0. The
differences in the internal energy between the ran-

Random Bond Chain
internal Energy, T=l.0
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FIG. 3. Magnetization vs reduced field for T =4.0
noninteracting case; ferromagnetic interac-

; antiferromagnetic interactions——-; perturbation expansion for random bonds
Monte Carlo data for random bonds Q.

FIG. 5. Internal energy vs reduced field for T =1.0
noninteracting case ; perturbation expansion
for random bonds; Monte Carlo data for random
bonds G.
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dom bond model and the noninteracting chain are
pronounced for small fields, whereas the two are
quite close at high fields. The Monte Carlo data
presented here describe the thermodynamic be-
havior of a simp1. e but unsolved model. Because
the method can be extended to more complex Ham-
iltonians, it is well adapted to the quantitative
study of the properties of other random systems
which cannot be described by exact theories. Sim-

pie examples include models with more distant
neighbor interactions, or variable g values.
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