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Plasma oscillation of a charge layer at «n insulator surface*
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The charged layers on a liquid-He surface and the inversion layers on a semiconductor-insulator interface
exhibit properties which are treated by assuming that they are a two-dimensional electron gas. %e have
calculated the dispersion relation for the frequency of plasma oscillations taking into account the finite width
and correlation effects. %e find important deviations from the corresponding result for the two-dimensional
electron gas.

I. INTRODUCTION

The electrons near the surface of a rare-gas
liquid are free to move parallel to the surface, but
they are trapped near the surface by the long-range
attraction due to the image force. ' ' The electrons
in the inversion layer at a semiconductor also move
freely parallel to the surface, but their motion per-
pendicular to the surface is restricted. In both of
these systems the electron motion perpendicular to
the surface can be described by considering the
stRtes of an electloD trRpped lD R one -dlmenslonal
potential well at the surface. Since the electron is
localized in the direction perpendicular to the sur-
face, many properties of these layers have been
studied by assuming that they are a two-dimension-
al electron gas' ' (2-DEG). In Sec. II of this paper,
we analyze the importance of the finite extension
and the zero-point motion of the trapped electrons
on the dynamical response of these systems. In
particular, we obtain the dispersion relation for
the plasma oscillations (LPO) in these systems and
analyze the deviations from the corresponding re-
lation for a 2-DEG.

The existence of the localized states on rare-gas
liquids has been verified experimentally by noting
the nature of the cyclotron resonance and Stark
effect. Fetter~ has calculated the thermodynamic
properties of these layers and Platzman and Fuku-
yama have studied their stability with respect to
a Wigner transition by treating them as a 2-DEG.

Sternv and Fetter~ have calculated the dynamic
response of degenerate and nondegenerate 2-DEQ.
The long-wavelength dispersion of LPO in these
layers is'

~', =(2' e'„/~)q(I+3~) +O(q'),

where n is the density per unit area of the elec-
trons, rn is the electron mass (effective mass par-
allel to surface for semiconductor), and e2~ =2e2/
(e, + &,). Here e, and cz are the dielectric constants
of the rare-gas liquid and vacuum, respectively,
or of the insulator and semiconductor, respectively.
The two-dimensional momentum in the plane of the
charge layer is q, and A. is a parameter which de-
pends on the "statistical" properties of the system.

%e consider a charge layer which has a finite
extension perpendicular to the surface (z direction)
and is uniform parallel to the surface (x, y direc-
tion). It is then convenient to Fourier transform
in the directions parallel to the surface and use a,

mixed 1 epleseDtRtloD for oui cRlculRtloDS. ID this
representation the seU-consistent equation for the
density fluctuations is

()r) (q*) a.f, e"x.(=', *,*q')
0 0

xt)(q, g', g")f)p (q, g") .
The inclusion of an external field requires that an
additional term proportional to the field be added
to the right-hand side of this equation.

The potential n(q, g, z') in Eq. (I) results from
the direct Coulomb interaction between the elec-
trons and the contribution from image charges. In
the mixed notation it is given by

~(q g ~&)
e (e-ql):-s'1 p -()Is+a'I) (3)

(2)

For a system of degenerate electrons A. is propor-
tional to the Thomas-Fermi screening length, 7 2~
=A»=E~/2vne+, where E~ is the Fermi energy.
For a classical system X is the Debye screening
length, '

A. =An =kaT/2wnqq~, where k~ is Boltz-
mann's constant and T is the temperature.

In Sec. II we consider the response function for
an electron layer confined in a one-dimensional
potential well and obtain the dispersion 'relation for
the plasma oscillations of this layer. %e are able
to show that the leading term in Eq. (I) is exact
and independent of the electron density profile of
the layer, since it results from the localization of
the electrons. (This distinguishes the dispersion
relation from that found for an infinite or semi-
infinite" system. )

In Sec. III we present R calculation of the effects
of electron-electron correlation on the LPO dis-
persion in these electron layers. %e use the cor-
relation-hole approximation ' to obtain an esti-
mate of these correlation effects. Section IV con-
tains a discussion and summary of our results,

II. PLASMA DISPERSION RELATION
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where P= (», —e,)/(e, +»,). The density-density
correlation function )i„(q,z, z') is to be computed
within the random-phase approximation and is
given by(,) g p f(k+q,j')-f(k, j)

~& ET)+~ ~& Ey ~
+ {d +ST/

&& 4, (z)4; (z)4,*(z')Q,'(z') . (4)

C„,. (q) = dz
~ y,.(z) ~' dz'qv(q z z')

(6)
where» is given by Eq. (3) and 5p„= I,"dz 5p„(q, z).
For a given q, Eq. (5) allows only specific values
of w =tuz(q) (in the remainder of this paper we re-
quire ~ to have these values and drop the co sub-
script on our functions), and in particular for a 2-
DEG both I PJ(z) I and 5p(z) are porportional to
5(z). Hence, C&(q) =4ge /(c, + c2) which gives the
dispersion relation Eq. (1) obtained by Fetter and
Stern' for the nondegenerate and degenerate 2-
DEG, respectively.

Note that C, (0) = 4v e»/(e, + &») independently of

@,.(z) and u&. Hence to lowest order in q the plasma
dispersion relation is the same as the 2-DEQ re-
sult Eq. (1), where the surface density n is given
by

n= dznz = dz fk j Q, z
0

The corrections due to the finite width of the layer

Here E»,. =E» —E, (jg =1) is the energy of an elec-
tron with momentum k parallel to the channel (all
the vectors used in this paper are in the x-y plane)
whose motion perpendicular to the channel is
quantized with an eigenvalue E, The wave function
for an electron with this energy is t/r», .(r, z)
=e'»'y, (z)/2w, i. e. , we have Zg=kz/2m and the

Q,.(z)'s are the orthonormal eigenfunctions of the
one-dimensional Schrodinger's equation corre-
sponding to the eigenvalues E, The distribution
of particles with energy E-„,. is given by the Fermi-
Dirac distribution function f(k, j) (for the classical
case this reduces to the Maxwell-Boltzmann dis-
tribution). It is also convenient for later calcula-
tions to separate )», Eq. (4), into two terms: A
diagonal term which contains the intraband con-
tributions (j = j') y~ and a nondiagonal term which
contains the interband contributions (j cj') li„".

The plasma dispersion relation is obtained by
integrating both sides of Eq. {2) over z and using
the orthogonality of the {II),'s. The only terms that
contribute are those in g„and one finds the dis-
persion relation

1 p f(k+q, j) —f(k, j)C„,q
Ef~» —Ef + ~+I'g

Here we have set

appear only in the terms of higher order in q. This
result is equivalent to the surface-plasmon result"
that, as q-0, Lim~, (q) =to~/W2 independent of the
electronic surface-density profile, where {d& is the
bulk plasmon frequency. However, in the surface-
plasmon calculations the functions corresponding
to the g,.(z)'s cannot be normalized, and the limit
q-0 (which must be performed with great care")
results in a constant rather than a q-dependent
leading term.

If the charge fluctuations are such that, as q-0,
lim6p =0, the analysis above fails. Fluctuations
of this type correspond to higher "multipole"
modes, and they have been studied for thin films'
and surfaces. ' The symmetry of the thin films
allows the fluctuations to be separated according
to their spatial character (even or odd) with re-
spect to the midpoint of the film. The dispersion
of the even modes is given by Eq. (1) with»7. re-
placed by n01., where n0 is the uniform bulk den-
sity of the film and I. is its thickness. The odd
modes correspond to a sloshing motion across the
film and the limiting value of their dispersion cor-
responds to the bulk plasmon result &u~ =4wnoe /m.
We plan to report a microscopic study of the higher
modes for a charge layer at a later date.

The remainder of this section is devoted to an
evaluation of the corrections to the quadratic term
in Eq. (1) for a layer electron gas. To accomplish
this we need to expand Eq. (5) in powers of q. For
~/q &vz+q/2m we have

f(k+q, j) -f(X,j)
k+ fl

2 2

f(k,j=), 1+»q, (% ~ q)'+O(q'/(2)

where ~ = {d+jq and q is a unit vector parallel to q.
Expanding Etl. (6), one finds

C,.(q) = — q dz ~y, (z) ~'
Ey + &2 E2 0

x dz'(~z -z'~ —P~z z'~)D(o, z)+O(q'),

D{q, z) = 5p„&,)(q, z)/5p„(, ) .
This function D(q, z) satisfies an integral equation
which is obtained from Eq. (2) by replacing &u

by ~z.(q).
To further simplify the calculation, we shall as-

sume that the electrons occupy only the lowest sub-
band (j =1) which limits our considerations to sys-
tems whose characteristic energies (kzT and Ez
for the classical and quantum eases, respectively)
are less than the level separation, &» (a„= I E,
—E, I). Using Eq. (5) to rewrite the diagonal term
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in Eq. (2), we then have

D(0, z) = — — dz'g(z, z')n(z) 2{{e'

a 0

dz" z' —z" —P z'+z" D 0, z"
0

g(z, z ') = limy" (q, z, z ')
q~0

=ny, (z)y,*(z')[G, (z, z') +G,,(z', z)] .

Here Gz(z, z') is the nonsingular part of the Green's
function corresponding to the Q,.'s when E=E1,
l. e. ,

- (,)
g'P,*(z)y;(z')

E

For a degenerate system A =2k.» and A.» is in-
dependent of the density, A» =(2me'„) . Using
the values of the parameters given by Stern and
Howard" for a (100) Si-Si02 surface at low tem-
perature (m =0. 19n{„z,=3.8, cz=ll. 8, a, =22 A,
k~ = 1.25 x 10 A, n, „„=5 ~10" cm, and b,,z

=12.4xl0 eV), one finds Xrr ——0.4 A and y=1. 0.
However, the experimental value of the level spac-
ing is larger than the theoretical value by about a
factor of 2. Hence, it is reasonable to use the
same approximation for D(0, z) that we used for
the liquid-He calculation. The LPO dispersion is
then given by Eq. (10) and X =2k» so that the cor-
rection to the 2-DEG result is large for this sys-
tem (2. 9 A/2Xrr = 3.6). The Fermi energy (Ez
= 6 x 10" eV) is less than the level spacing in agree-
ment with our assumption.

where the prime on the sum indicates the exclusion
of the term j =1. The ealeulation of the dynamic
response of the system to an external charged dis-
turbance also requires y„, Eq. (4). Hence, it is
important to evaluate the Green's function for this
model of a layer electron gas and this is carried
out in Appendix A.

The model which we use to describe the density
profile is discussed in deta, il in Refs. 2-4. This
model has been used very successfully by Brown
and Grimes' to explain their experimental data
for electrons on a liquid-He surface. The eigen-
functions are {Ii,.(z) =zR,.o(z), where R,o(z) is the
jth radial solution of the hydrogen atom with nu-
clear charge en and l =0, The energy levels in
eV corresponding to these eigenfunctions are E„
= —13.6(c{/j) and the scale of variation of {t&,(z) is
a, =a„/n, where a„ is the Bohr radius (a„=0.528
A). For liquid He one has n = —,

'
P, and for a semi-

conductor a0 is treated as a variational param-
18, 19

The integral on the left-hand side of Eq. (9)
scales as y=2{{ezqnao/h, 2 compared to the leading
term. For a nondegenerate system, it is given by
y=a, kzT/AnA, 2. For liquid He e, =1.05 and z, =1
giving a0=80 A, and for n=10 cm and T =1'K
one has ~D=10~ A and y=2x10 3&1. We shall,
therefore, use the approximation D(0, z) =n(z)/n
in Eq. (8) in order to estimate the finite size cor-
rections to the dispersion relation. Since Q, (z)
=zA, 0 is a known function, we can then evaluate
the integral in Eq. (8) and obtain from Eqs. (5)
a.nd (7),

{dz, —— {f 1+3{f &+ —11-21—' +O(q
)~

(10)
m 32 E'p

for the nondegenerate electron gas A. = AD, and we
find for this case that the corrections are sma, ll
(25 A/XD =2. 5x10 3). The level spacing here is
n, 2/kz = 5.6 'K.

III. CORRELATION EFFECTS

The effect of electronic correlation can be in-
cluded in a random-phase-approximation calcula-
tion by employing the correlation-hole approxima-
tion. "'" In this approximation the electrons are
assumed to be correlated within a range of 1/{{,
and the effective potential in Eq. (2) is replaced by
the mean-field potential, ' '

dz' dr'{i(r —r', z, z')K(r —r', z, z')f{p„(r', z') .
(11)

Here K(r —r', z, z') describes the Fermi correla-
tion hole, it approaches 1 for ~lr-r'l »1 and has
a value 0 & K & ~ when l

r' —r I x —0.
We will follow the usual practice of using the

pair distribution function to approximate K.
After accounting for spi.n the pair-distribution
function ls given by

P(r, z, r', z') = p(0, z)p(0, z ') ——,
'

l p(r —r', z, z ')
l

' .
(12)

Here ]0 is the electron density matrix,

p(r —r', z, z') = —g f(k, j)g-„ .(r', z'){ti~,.(r, z),
k~ j

which for our system is given by

p(r- r', z, z') = —Qf(k, j) e'" "' ' t( {i)P'z,( ).z
kt j

(13)
If we again limit our considerations to systems
where only the lowest subband (j=1) is occupied
this expression simplifies to

g

(
{ {) 41 (z )41(z) Q (k 1) ik {r-r

{1 {(z )41(z)nf ( I
r —"

l
)

For the nondegenerate electron gas the two-di-
mensional integration gives
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P(~) e-r /4xr2 (is)

where Ar is the thermal wavelength Ar =g/
(2mkzT)'~ . For the degenerate electron gas one
obtains

P(~) = u, (k,r)/k, r, (16)

where Z, (kzr) is the cylindrical Bessel function of
order $.

The pair-distribution function is given by

x [g(q, z', z") —v(q, z', z")]sp (q, z"), (1.8)

where U(q, z, z') is given in Eq. (3) and

(q, z. *')=2f drvlr"z', ')J"(r,)

(19}

After integrating the Coulomb potential over the
angular variable, the expression for h, is

k(q, z) =2v r &So(q, r)P'(r)(r'+z') '" . (20)

The plasma dispersion relation is again obtained

by integrating Eci. (18) over z [see Eq. (5) in Sec.
II] as

1 P f(k +q, I) f(k& I)-[
( )

-
( )] ( )

+k+g +k+ +~ 1

where C, (q) is given by Eq. (6) and C„,(q) is ob-
tained by replacing v by i in Eq. (6). The term in

Eq. (21) containing C„, gives the dispersion rela. -
tion which was evaluated in Sec. Il, and we shall
devote the remainder of this section to an evalua-
tion of the term involving C„~.

We are only interested in terms in the dispersion
relation whose order is less than q . Hence, we
can expand C and h about q =0 and retain only
terms of order q and q,

a(q, ) 2f ~sr a'(r)(r' ')='" ~ &(e'1,
D

For the nondegenerate gas P(r) is given by Eq.
(15) and this integral is easily evaluated,

k(o, z}=M2~, z"'e' "'r erfc(z/v 2 ~,)+O(q'), (22)

and we have, comparing Eqs. (2), (4), and (11),

E(r-r', z, z') =1 ——,'Pz(lr —r'I) . (i7)

Fourier transforming Eq. (11) with respect to r
and replacing the effective potential in Eq. (2) by
Eq. (11}, we can write the integral equation for the
density fluctuation which includes the correlation-
hole approximation as

dz' dz" g„(q, z, z')

where erfc{x) is the complementary error function.
Using the series expansion for e erfc(x), z' one has

where I'(k) is the gam~a or factorial function. The
thermal wavelength of the electron on the helium
surface at T =1 'K is %~= 200 A which is larger
than the scale of variation of i P, (z& I', ao/2v 2 Ar
=0.14. Again using the approximation for D(0, z)
=n(z)/n, which we introduced in Sec. II, we can
evaluate the integrals in C~(q) to obtain

C, (0, q) =2&e~qAr(0. 98)+O(q') . (23)

Using Eqs. (7) and (21), we find that the correction
to the q term in the dispersion relation, Eq. {10),
due to correlations is small compared to AD =10 A,
0. 98Ar «3RD [the correction for a nondegenerate
2-DEG is Ar( —,

' v)"2 =1.25Xr within the correlation-
hole approximation].

For the degenerate electron gas P(r) is given by

Eq. (16) and one finds

8v "dr J', (kryo)
k(q, z) = —, —,».iiz +O{q } .

kz o & (& +~ )

Evaluating this integral one finds (see Appendix B)

16v w g (-2k~) F(-,'(m+4))k„., r(m+3) I(-,'(m+5)) '

0

The scale of variation of I &]&,(z) ~' is a, = 22 A and

for this system k~ao =0.27. Again approximating
D(0, z) by n(z)/n, we find

C, {0,q) =2ve~gq{1. 69)/kz+O(q'),

and this correction for correlations is large 2ATF
&i. 'I/kz= 1.50 A (the correction for a degenerate
2-DEG using the cor relation-hole approximation
is 16/3vkz =1.7/kz). Hence it is clear that the
corrections for correlation are important in this
degenerate electron layer.

DISCUSSION

We have presented calculations of the plasmon
dispersion relations for electron layers on liquid
helium and at the Si-Si03 interface of a semicon-
ductor surface. These calculations have included
the effects owing to the finite thickness of the layer
and electron-electron correlations. Our calcula-
tions have been confined to the coefficient of the q
term A~, in the LPO dispersion relation

~', = (»s cap/~)q(I+~aq)+O(q') .
Hence q needs to be small but large enough where
retardation effects are not important. 'o We have
also limited our considerations to systems where
only the lowest subba. nd (j = 1) is occupied.

For the degenerate electron gas at the Si-SiO~
interface, we obtain
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X2 = 2 Arr +0.13ao —1."I/t/p. .
The first term on the left-hand side is the 2-DEQ
result. ~ The second term is the correction for
finite thickness Rnd the third term results from
electron-electron correlations. For the system
considered here mith n,„„=5x10 cm ~, both of
these corrections to the 2-DEQ result are impor-
tant and large.

For the nondegenerate gas on R liquid-helium
su1 face~ %'e find

mhere the terms are arranged in the same order
as they mere for the degenerate case above. For
i=106 cm 3, the corxections to the 2-DEG results
Rx'e unimportRnt. HO%'ever, 8o Rnd Az Rx'e inde-
pendent of the electron density and AD -n '. The
system is still nondegenerate for' n =2x10' cm-'
and fox' this density A~=50 A, which is of the same
01dex' of magnitude Rs go = 25 A Rnd smaller than
A~=200 A. Hence the corrections can also be im-
portant for this electron gas layer.

APPENMX A: NONSINGULAR GREEN'S FUNCTION

In this Appendix me present the nonsingular part
of the Green's function for the electrons in the
lomest level E = F& of the one-dimensional Coulomb
pote nt iRl

(. ..) ~' y*, (z)P/(z')

mhere the prime on the sum indicates the exclusion
of the term j =1. The Q,.'s are solutions of the
Schrodinger equation

c
A d @e

y, (z) = Z/y/(z),

with the boundary conditions g/(0) =0 and fo dz
x Ip/(z)12 =1 &~. Here, Ze is the effective strength
of the potential, m is the effective mass of the elec-
tron, ao=h2/mZe2, and E/= —Ze'/2aoj2. The low-
est, -encl'gy ejgenfunctjon j.s y (z) =2(ao) ze o'.

Using Eq. (A2), we obtain the differential equa-
tion fol' tile GI'cell s fllllctloll (Al)

2 1
+ —— Gz (», z') = &(z -z') —el(z}el(z').

dz Qgz Qo 2&i

lt is convenient. to change variables to x = 2»/ao
and introduce u, (x) = (-2'ao)1/2&I(z). The differential
equation for G is then transformed to

(
1 1, + ———g(x, x') = &(x —x') —u, (x)u, (x'}, (A3)

QX X 4

where g(x, x') =(b'/mao)G», (z, z'). Solutions to the
homogeneous differential equation are u, (x) =xe ""/
v 2 and u, (x) = 2u, (x) Ei(x) —v 2 e"', where" Ei(x)
=P f"„(e'/t}dt and P denotes the principal value.

A particular solution to the differential equation
when x wx' is flax) =u~(x)ul(x'), where

u/, (x) =a 2 e ""[(-,'x')+xlnx-1] .
The Green's function can thex'efore be mritten

g'(x, x') =Aul(x)uz(x') +u~(x)ul{x')

+ ul {x)u„(x') + Bul(x }u,(x ')

for x)x', and g'(x, x') =g~(x', x) for x(x'. The
constant A is determined so that the derivative of
g(x, x') has a finite jump of magnitude 1 at x =x'
and the constant I3 is determined so that fo dx'
xg(x, x')ul(x') =0. These determinations give

g'(x, x') = —u, (x)u, (x') +up(x)u, (x')

+u, (x)up(x') —(7-4y}ul(x)ul(x'), (A4)

Euler s constant is y =0. 5Q jp 215 o a o

In this Appendix the integral

"a~ Z,'(b,~)
z b r (y2~»2)I/2

needed for Eq. (24) is evaluated. The notation is
simplified if one changes to variables x =0„y and
5 =k~z,

( )
"dx Z'I(x)

(x 2 ~ b2)1/2

ff/2

Z2(x) = — d8Z2(2x sin8)

4Z, (x)/x =Z, (x)+d, (x) .
Inserting these tmo expressions into the integral
(Bl) and interchanging orders of integration, one
finds

jj'/2

I(b) = — d8 sin8[I„,(b sin8)Ã1/2(b sin8)
Tl o

+I2/2(b sin8)K2/2(b sin8)] . (B2)

Here I„(x) and K„(x) are modified Bessel functions
of oxder v, and the integral over x has been per-
formed using27

Z„(ax) ab ab
2 2)1/2 d u/2 2 v/2(x +6

Expanding the products of modified Bessel's
functions, one obtains

4 "' . g (-2bsin8) (m+2)
o -o I (m+4)

The integrals over 8 in this expression can be eval-
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uated by considering the beta functiona

B(8,t)='2 (sllle) (cos6) de = &r &s)
I'(r +s)

and yield
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