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Attraction between energy levels in the presence of relaxation
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The excited quartet states of the Mn++ ion in a cubic crystal are investigated from the point of view of the
attraction amongst themselves as a result of the spin-phonon interaction. The diagonal relaxation probabilities
and the level shift are computed. An attraction between the quartets is established theoretically and compared
with experimental data of the optical absorption in Mn++-doped Nacl single crystal.

INTRODUCTION

Recently Clauser' studied the relaxation effects
in spectra using the technique of superoperators.
Some general features of the first- and the second-
order perturbation corrections to the eigenvalues
of the superoperators were discussed in the limit-
ing cases of fast and slow relaxations. The first-
order corrections produce a broadening in the
spectral lines while the second-order corrections
shift the line positions. In the case of fast relaxa-
tion, the second-order correction to the frequency
ls

ference between two eigenstates ( i& and ( j& .
From the frequency-shift expression (1), it is

possible to show a shift in electronic energy if we
consider the relaxation of the electronic system by
the transfer of energy to a phonon bath by the elec-
tron-phonon interaction.

Presently, we study the effects of spin-lattice re-
laxation on the spectra of the NaCl:Mn ' system.
Clauser' explored the general feature that the
second-order correction to eigenvalues of super-
operators gives r ise to attraction between the
spectral lines. The general treatment is specified
here for the first time, by choosing a particular
system and a well-defined spin-lattice I elaxation
interaction. Our calculation of the second-order
correction to the energies shows that attraction be-
tween energy levels in presence of relaxation does
exist, i.e., the levels are indeed shifted towards
each other. In this paper, "attraction" as a func-
tion of temperature is also investigated for the
excited spin quartets of the Mn" ion.

(1)
where p,, v are the states of a system A, and m,
m', n, n' are the states of the system &, and Xz~
is the relaxation interaction treated as a perturb-
ing Hamiltonian, g„ is the probability of occupation
of a state ( v& separated by energy &u„, from the
state ( g&, and A. „,=-(W» + W„„) is the sum of
relaxation rates.

In case A, „„/&u„,«1 and Q, q, =1, the fast relax-
ation line shifts reduce to the slow-relaxation form.
However„ the property of attraction between spec-
tral lines is unchanged. For slow relaxation, the
line shifts are

(,) ~ &fgj~juf& &af)w]f)&~ay— ~(0) ~(0)
Al( &if) t~ 4t

where w is the perturbation that causes relaxation
and u, &

= —(E; —E&) is the unperturbed energy dif-

The ground state of Mn" ion is 'S. There are
three excited quartet states that form an interest-
ing system to study the possibility of mutual attrac-
tion in presence of relaxation. The quartet energy
levels arising due to mixing of the free ion states
by the crystal field" are

where i = I, 2, 3, in the increasing order of energy.
The coefficients et„p;, and y; are listed in Table
I. The Hamiltonian responsible for spin-lattice re-
laxation" to the lowest order is
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TABLE I. Values of mixing parameters of Eq. (3). RELAXATION PROBARILITIES

0.633
0.761
0.143

-0.127
0.285

-0.950

0.763
-0.583
-0.277

For the ealeulation of the relaxation probabilities,
we write the spin-lattice Hamiltonian in a slightly
rearranged form:

h
I ~ I (s»+s» )

where V& are the derivatives of the crystal poten-
tial terms with

A'=9(-' v)'i'ee'(r')ft '
in which e' is the charge of a nearest-neighboring
atom, e the electronic charge, r& the radius vector
of the jth electron of the Mn" ion, and A is the
separation between Mn" ion and the nearest
neighbor. The phononic factors are described by
generalized coordinates,

I /2
(s»+ s»),2M ~~

where M is the mass of the crystal, e~ the phonon
frequency of wave vector A', and c~ and a~ are the
creation and destruction operators, respectively.
The Q~ are Van Vleek's averaging parameters
given by

& a'„& =&a,',&
= ~ ~ ~ = &a', &

= —'u'R' +u', 8' ( I)

for longitudinal and transverse branches, respec-
tively, in the small-wave-vector approximation.
In the Debye model the average value of the

fluctua-

tionn is calculated to be

Ng'
(q»& (2 -5 -5) [ 2(lal j»»r 1) 1

+ I]iFdM .

In our problem, we are interested in the processes
which contribute to relaxation amongst the three
symmetric excited quartets separated from each
other by almost j.0000 cm '. Under these circum-
stances, a one-phonon direct process is not pos-
sible since a phonon of such a large frequency is
not available. For much the same reason, the Or-
bach process which is another way of looking at
the direct process is not possible. However, it
requires a little more than a cursory look to find
that the standard Raman process is also excluded.
In the later process, first a transition from a
state [&, n», n»;, . . . , n» ) to a state [c, n» —1, n»,
. . . , n» „& takes place with the absorption of a pho-
non of wave vector k', and then to the final state
[a, n~ —1, n» + 1, . . . , n» & with the emission of a
phonon of wave vector O'2. Apart from the matrix
elements of the crystal-field factor of the inter-
action and the energy denominators of the inter-
mediate state, this gives rise to phonon-matrix
element of n( »n+»1)&(E, -8» —h~» + @~» ) with
the double integration over 0, and k2 spaces. For
the ~-function to give non zero probability, E~ —E,
= Au~, —km~, . In our problem, E, —E, is so large
that the phonons of such energy differences are
nonexistent. Mathematically speaking, the number
density of phonons evaluated at such high energies
is zero. Therefore, a two-phonon Raman process
is not permissible. It is, of course, possible to
consider a multiphonon process' with the partici-
pation of P phonons (P & 6 or so) with the probabil-
ities like

p» v ~ ~ ~ (n + 1)(n + 1). ~ (n + 1)~'~' ~ ~ u'~(&» —&, -@&,—@&,' ' ' —@&»)d&i d&»' ' 'd~» i
P 1

in which constants, spin matrix elements, and
similar terms are left out that cannot be predicted
too easily. The only process which can occur
within the second-order perturbation theory is a
diagonal process, beginning and ending at the
same electronic state. In this process, a transi-
tion from a state ( b, n», , n», . . .& to an intermedi-
ate state [c, »»» —1, n», . . . takes place by the ab-
sorption of a phonon hu» and then to the state

i
~
b, n» —1, n„+ 1, . . .& by the emission of a phonon

of energy h~~ so that the phonon part of the ma-
trix element appears as s» (n» + l)5(h&u» —E~» ),1 2 1 2

which is always nonzero. However, such a pro-
cess does not contribute to Van Vleck's relaxation
time T, but instead, gives rise to a lifetime T, to
the level ( &) . In general, the effective width is
determined by X =1/T, + 1/T, . In onr case, it ap-
pears that the approximation 1/T, « 1/T„will not
upset the order of magnitude of the linewidth and
therefore we restrict ourselves only to the T,-type
process, contributing to the lifetime broadening,
which has not been previously considered in the
excited states of Mn+' ion. The diagonal relaxa-
tion transition probability is given by the Fermi's
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golden rule

2w ~ (fIx'If&&tIx, Ii&h~ Z-Z I i

(10)

where i and f stand for initial and final states
while I; is an intermediate state. In the present

work t has two values, consequently, there are
two terms in each case, so that we write

%11 %121 +

+'SS = @'S13+ @"32S

where the individual probabilities are defined by

+ 1 I
x'

I .r na —1, na. & (,r, na —1, s, . I xI,r, na, n, .&

121 Q1 —S&1

(,r, n, —1, n, . + 1IxI,r, n„n, .+ 1& (,r, n„n, . + 1Ix'I, r, n„n, &
+ 2 1 k~ k 2 i k& 0 1 1 kS

+21 + A&1 ~

and like terms. In the Debye model,

9 ur ' - '" (,rIzvI, r)(,rIzvI, r)
11 ~ 3 2 10 2n n+ l)x'dx

8x pv

&,rIzvI, r)(,r Iz vI, r&

1

where 8 is the Debye cutoff temperature and 6,
and g, are the electronic energy separations of
21; and, E~ with respect to, F~ and the approxi-
mation Q, » h~~ has been used. Since the elec-
tronic energy is very much larger than the phonon
energy, the phonons are extremely retarded and
the lifetime of the electronic level depends on 7.'

In other cases, where this is not so, the reverse
approximation of swift phonons (h&u, » 6) leads to
T ' behavior. The values of matrix elements

At 1 'K, the above probabilities reduce to

lV» = 86.7 sec ', 8'22 = 100.3 sec

lV» = 13.6 sec

and at 4.2'K,

8'„= 1.99~ 10' sec ',
%22 = 2.31~ 10 sec

8'„= 3.14 & 10' sec ',

(18)

(19)

(20)

&,r I z v I,» = 1.90m',

(,r I
z v I,r) = o.ovM',

a,nd at room temperature they become of the order
of 10"-10' sec '. Since our energy-level separa-
tions are

&,r IzvI, r&=1.02&',

are calculated using the Ra,cah algebra" as des-
cribed in Ref. 2. Substituting various parameters
for NaC1:Mn", (13) becomes

H/r
8 „=0.121' 8"—1 8"x r&, 14)

similarly,

co = E p —+ p=3~10 sec12

&d„= E I-- E &
= 5 & 10" sec ',

= g q —F. p=1.8&10'

-(Wgq + W~&) (22)

o/g
W» = 0.14T' (e' —1) 'e'x'dx,

0

o/y
= 0.02T e" —1) e x dx,

indicating that the widths are smaller than the
separations. Consideration of (22) in (1) shows
that for all the levels the ratio of relaxation rate
to the frequency difference is such that the ratio
X„„/&u~, being small compared with unity, can be
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ignored in the denominator of (1). Thus the relax-
ation amongst various levels can be treated as a
case of slow relaxation.

ATTRACTION BETWEEN QUARTET LEVELS

hE p
1 4 o/T'
= 4x10-'e'+ 3x10 'T' (e"-1) 'x'dx,

0

(26)

In this section simplified expressions for the at-
traction, i.e. , the shifts of levels defined by (3)
are given. We use the spin-lattice Hamiltonian (4)
and calculate the correction to the energy in sec-
ond order. The changes in the energy of the levels
are

1.5x 10-884
2 4

0/$
—1.2 x 10 'T

0

~ q = —2.3& 10 '0'
3 4

(ex —1) 'x'dx,

o/T
—1.8x 10 'T4 (e" —1) 'x'dx.

0

(27)

(28)

d,z, , = &,r, lxl, r,& &,r. Ix'I, r.&/(E, , —E, ,)

+ &, r, (x), r, &&,r, (x'), r, &/(z „-z,),

(23)

m, = &,r, )x),r, &&,r, )x'(,r, &/(E —E )

+&,r, (xI,r, &&,r, [x'(,r, &/(E „-z„),
(24)

nz, = &,r, )X(,r, &&,r, [X'],r, &/(E r —E r )

+ &, r, ( x,jr, &(,r, ( x'(, r, &/(E, -z, ).

(25)

Here the phonon contribution to shifts is contained
in the Hamiltonian (4). Again, the matrix ele-
ments are found using the seniority scheme of
Racah as described by Blume and Orbach, and the
constants of Table I are employed. The energy
shifts for each level in (23)—(25) are found to be the
sum of two contributions. For the levels, I'4 and

3 I4 the dominant attraction arises from, I'4

whereas the second contribution is smaller by a
factor of 10 '. However for the level, I'4, the at-
traction from, I4 and, I'4 is of the same order of
magnitude and therefore both contributing levels
are important. The energy shift of, I4 is the re-
sultant of two oppositely directed contributions
from the levels, I'4 and, I; and the attraction due
to 1I4 is somewhat stronger than that of, I'4 as in-
dicated by the negative sign of the energy shift.
It may be noted that for the lowest level, both the
energy denominators are positive whereas for the
top level, both the denominators are negative and
for the intermediate level, one of the denomina-
tors is positive and one negative.

For' p = 2.168 g/cm', A = 2.78 x 10 ' cm, v,
= 4. 'I8 x 10' cm/sec, v, = 2.43 x 10' cm/sec, &t &

= 1.584 a.u. , e=e', the expressions for the attrac-
tion after ignoring negligible terms are

These energy shifts have temperature-dependent
as well as temperature-independent parts. The
temperature-independent contribution is due to the
zero-point vibration, whereas the temperature-
dependent part in the Debye model varies as T'
at low temperatures owing to the approximations
employed (Appendix A).

The excited quartet states of the Mn" ion in
NaCl have been measured in the optical absorp-
tion' ' at the liquid-nitrogen temperature and the
room temperature. So far in our theory there is
no adjustable parameter. We now allow the Debye
cutoff to be the only adjustable parameter. For a
value of 0 = 150 K, for which the best agreement
occurs, we show our calculated quartets along
with the experimental values in Fig. 1. Indeed,
Clauser's attraction between the quartets is very
clearly displayed, and as far as we know is dem-
onstrated here for the first time in electronic
spectra.

CONCLUSIONS

In the present work we have discovered that the
spin-lattice-relaxation interaction causes an at-
traction between the energy levels. The attraction
is inversely proportional to the separation between
the levels themselves. Clauser's possibility of at-
traction of spectral lines using superoperators is
explained using perturbation treatment and experi-
mental evidence is provided for the first time. In
addition the diagonal self —energy process for the
excited quartets is calculated here for the first
time.

APPENDIX A

In the expressions (26)-(28) we have employed a
long-wavelength approximation (7) for the lattice
phonons. There has been a considerable amount of
discussion" on the validity of this approximation,
and though "more accurate" calculations have been
performed, it is not answered as to how much is
the difference. Therefore, in this appendix, we
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and the longitudinal phonon wave vectors are as-
sumed equal, all of the second-order Bessel func-
tions vanish and instead of the integral

pends on the lattice constant, the Debye cutoff,
and the sound velocity, it will acquire somewhat
different values in different materials. We define
a correction factor

(A3) C= Z/L, (A 6)

we get
H/1'

Z= 6 (e' —I) '[I j,(b—x)]xdx, (A4)

where

k = a (T/6), a = (k/k)(6/v)A. (A 5)

The solution of (A3) has been discussed by Herber-
le. " However (A4) cannot be solved too easily and
must be machine integrated. As the value of a de-

with which the approximate value (A3) must be
multiplied to yield the "improved" result. In Figs.
2(a)-2(c), we show numerically integrated values.

Indeed, the correction (A6) is not serious unless
the value of a given by (A5) is unfavorably large,
which does not happen in our problem. We have
also numerically integrated the Bessel functions
of the second order involved in (A2) and find that
their effect is small and indeed vanishes for iso-
tropic phonons.
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