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The applicability and usefulness of a fundamental two-electron description of the exchange interaction in

magnetic rare-earth insulators, has been tested by applying it in spherical tensor-operator form to the analysis

of the observed exchange splittings of GdC1, . The experimental splittings were obtained by extrapolating the
optical transition energies from the ground state to five excited levels as a function of large magnetic fields

back to zero field, thereby determining the splittings in a nearly completely ordered Gd'+ environment. An
analysis of the mechanisms which can give rise to the splittings shows that only the exchange and magnetic
dipole-dipole interactions can contribute. The contributions from the latter and from the dynamic exchange,
which we show must be included in the analysis of the k = 0 exciton exchange splittings in concentrated
materials, are isolated, allowing the determination of the static exchange contribution. An analysis of the
selection rules on the exchange Hamiltonian in this host for the states of the 'P manifold allows us to
eliminate all but two parameters in the two-electron exchange operator which is applied to the observed static
exchange contributions. The two parameters were determined from data on five exciton states and the

resulting isotropic parameter is shown to be identical to that determined from magnetic studies of the ground
state. Further studies indicate that the fitted two-electron exchange parameters are applicable not only to
other levels of Gd + in GdC13, but also to those of other rare-earth ions.

I. INTRODUCTION

For problems involving exchange interactions
between ions in both the ground state and a number
of excited states, it is desirable to use a formula-
tion of the exchange interaction which not only
provides an adequate description for each state
but also allows the exchange matrix elements for
different states to be related theoretically. The
effective-spin-Hamiltonian method clearly pro-
vides an adequate and quite successful description
for the limited group of states spanned by the ef-
fective spin, but unfortunately the empirical pa-
rameters are, in general, not directly applicable
to other states.

The simplest form of coupling between seal
spins is the isotropic exchange -2JS, ~ S„but this
form of interaction has been shown to be inade-
quaie for describing many experimental observa-
tions. ' ' The reason for its inadequacy in the gen-
eral case is that the exchange interaction is fun-
damentally an interaction between individual pairs
of electrons. The "two-electron" exchange inte-
grals' which describe this interaction generally
depend upon the orbital states of the electrons, and
this orbital dependence leads to an inherent anisot-
xopy in the interaction. '' '8 %hen the orbital
dependence is taken into account, there may be as
many as 1225 different "two-electron" exchange

integrals for problems involving rare-earth ions.
Symmetry fortunately reduces this number in most
cases. Even so, experimental determination of
all the remaining exchange integrals would seem
to present an intractable problem.

A major simplification arises, however, when
it is noted that in some cases, only a fete recur-
rent linear combinations of "two-electron" ex-
change integrals are required for a complete de-
scription of specific phenomena. It is then feasible
to experimentally determine these linear combina-
tions and to readily calculate the relationships
between exchange matrix elements for different
ionic states, making it possible to Predict results
for other electronic levels. Indeed, as we have
shown in an earlier letter, the calculated rela-
tionships may be independent of experimental pa-
rameter s in favorable cases.

The simplification regarding the number of ex-
perimental parameters is most apparent when
the exchange interaction is expressed directly
in terms of the real orbital and spin angular mo-
menta of the ions involved. The basis for applying
this approach has been provided by the two-elec-
tron spherical tensor operator formulation de-
veloped by Levy' and E11.iott and Thorpe. ' The
parameters involved in the theory are just the
linear combinations of two-electron exchange
integrals mentioned above. Moreover, the power-
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ful tensor operator methods are well suited to
multielectron calculations, particularly by compu-
ter.

We have already applied this approach success-
fully to the transfer-of-energy exchange inter-
ac tion which is respons ible for the exci ton dis-
persion in GdCl, .' Cone and Wolf' have used this
method to relate the exchange splittings of Er"
impurity levels in ferromagnetic Tb(OH}„and
Levy, ' Orlich and Hufner, " and Dean et al."
have applied it to exchange splittings of Er" in
erbium iron garnet. More recently, Meltzer and
Cone" have studied the systematic variations of
the orbitally dependent exchange parameters in

GdCl, using the exchange splittings of Nd" and
Er ' impurities.

The purpose of the present paper is to extend
the earlier analysis in GdC1, to describe the ex-
change splittings as well as the dispersion of the
exciton levels. The isotropic and relevant anisot-
ropic exchange parameters have been determined
from the excited-state data. A striking test of the
success of this description of the exchange inter-
action is the agreement between the isotropic pa-
rameter determined from the excited-state analy-
sis with that of the ground-state measurements by
Clover and Wolf" based on a study of the high-
frequency susceptibility.

In Sec. II we apply the two-electron spherical
tensor operator formulation of the exchange inter-
action to the exciton states of GdCl, . We describe
the experimental determination of the exchange
splittings in Sec. III. In Sec. IV we determine the
GdCl, two-electron exchange parameters from
the observed spectra and compare the isotropic
parameter determined from the optical data with
that determined from high-frequency susceptibility
studies of the ground state. In Sec. V the impor-
tant conclusions are summarized and suggestions
are made for extending the method to other sys-
tems.

II. THEORY OF EXCITON LEVEL SPLITTINGS

In the simplest cases, particularly those in-
volving impurities, the single-ion model involv-
ing an "exchange field"" or a much more general
exchange potential' has been useful in the de-
scription of exchange splittings. In a pure crystal
such as GdCl„however, Frenkel excitons rather
than crystal single-ion product states are the
true eigenstates of the system due to the trans-
lational symmetry and resonant interionic cou-
pling. Meltzer and Moos' have in fact shown that
the excitonic nature of the states in GdCl, has
important effects on the observed optical spec-
trum.

The purpose of Sec. II is to separate the non-
dispersive and dispersive contributions to the
observed splittings and to apply the tensor opera-
tor theory to the k = 0 exciton states, thereby
enabling the true experimental exchange splittings
in different excited states to be related theoreti-
cally. In Sec. II A the exciton states for ferro-
magnetic GdCl, are described. The interaction
matrix in the k = 0 sublattice exciton representa-
tion is derived for the case in which all matrix
elements coupling excitons derived from different
single-ion states are ignored. (This assumption
is justified in Sec. IIB.) The matrix elements
consist of two classes: the so-called "static"
matrix elements which are k independent and are
responsible for the band shift and the "dynamic"
matrix elements which lead to energy transfer
and dispersion. In the present case of GdCl„ the
band shift and dispersion are shown to give simply
additive contributions to the experimentally ob-
served energy separation between the k = 0 ex-
citons arising from a single-ion Kramers doublet.
These separations are often called "exchange
splittings" in magnetic systems although the mag-
netic dipole-dipole interaction, and in some cases
the electric multipole interactions, may give
significant contributions to the total splitting.
Since the dynamic matrix elements have been
previously determined from line-shape studies,
the dynamic contribution to the splittings may be
simply subtracted from the experimentally ob-
served splittings to yield the static contribution.

In Sec. II B the various mechanisms for the
interionic interactions are considered, and it is
shown that only the exchange and magnetic dipole-
dipole interactions are expected to give important
contributions. In Sec. IIC the two-electron tensor
operator exchange Hamiltonian is described and
applied with the results of Sec. IIA to the exchange
interactions between the nearest and next-nearest
neighbors in GdC1, . It is shown that the exchange
splittings of several excited states can be related
to one another and to the exch'ange splitting of
the ground state.

A. Exciton representation and the interaction matrix

We start with single-ion states whose Hamilto-
nian includes the free-ion terms, the crystal
field, and the Zeeman interactions. For almost
all states of interest in the present analysis, J
and M~ remain good quantum numbers. " In inter-
mediate coupling the single-ion states are expres-
sed as linear combinations of the form

I
J Mg)=gn( , SJL)iS, L, , J)M=~ p. ),

S,L
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where p, identifies the single-ion state and the
a(S, I, J) are coefficients which have been de-
scribed previously. " The crystal field for GdCl,
has been discussed by Schwiesow and Crosswhite. "
In all experiments to be discussed here, the ex-
ternal magnetic field lies along the hexagonal c
axis, so the Zeeman term takes the form

Kr„=—)),e (I.,+2S,)H„

the k =0 sublattice I epresentation. All matrix
elements coupling excitons derived from different
single-ion states p. are ignored. This approxima-
tion is justified in Sec. II B. Thus each single-ion
state gives rise to a 2 x 2 matrix

11 12

where J[j,~ is the Bohr magneton, l., and S, are the
z components of the total orbital and spin angular
momenta, and H, is the applied field.

The interactions between the Gd" iong are de-
scribed by the Hamiltonian

where

~ x ~t(p)gj(q) [ ~j(p) j(q) ) ~ j(p) gj( q) f y

j(q)

V (p) j(.)
](p),j(q)

where i and j label ions on sublattices p and q
and where the prime signifies that all ion pairs
are to be included in the sum only once. To de-
termine the crystal eigenstates of this Hamiltonian
we begin by forming translationally invariant
Bloch waves from products of the single-ion
states. These are defined for the two sublattiees
in GdCl, by

I) r, P&=f(t '" ge '""'(~)l);(,)&,

where N is the number of unit cells, k is a re-
ciprocal-lattice vector, and T;(p) is the pure lat-
tice translation connecting the origin to the Pth
ion of the ith unit cell. The state

~
)).;(»& denotes

the N-ion product state

l 0 (n)&= I
e (() II g'() )&

j(p) ~ c(p)

where e,"(~) denotes the ion i(P) in excited state )(
and g,.(~) denotes ion j(p) in the ground state
('s„„))f,= —';).

Each single-ion state p. thus gives two degene-
rate sublattice states for each of the N values of
k.2 The transfer-of-energy interaction couples
these Bloeh waves, forming two exeiton branches
in k space from each single-ion state. Meltzer
and Moos'6 have given the transformation which
diagonalizes the transfer-of-energy Hamiltonian
and the resulting eigenvalues. The energy dis-
persion was found to be up to 1 cm ' in the states
within the 'P manifold of GdCi, and as large as
2 cm ' in the isostructural compound Gd(OH)»
hence, it makes an important contribution to the
measured exchange splittings.

We are primarily interested in the k = 0 excitons
as these are the ones which are observed in opti-
cal transitions from the ground state. The matrix
of the interaction Hamiltonian is now formed in

is the static part of the interaction responsible
f or the band shift,

~11 ~ ~ ~i(P) gf'(P) ~ ~t(P)~'(P) I g&(P)f'(P)~ ~

(8)

is the dynamic part of the interaction responsible
for energy transfer between ions on the same
sublattice, "and

~12 —~ ~~t(p) g~(q) I V~(p) j(q) ~+a(p)&j(q)i ~

is the dynamic contribution of the interaction
responsible for energy transfer between ions on
opposite sublattiees. "

This matrix is essentially identical to that de-
rived by Meltzer and Moos" except that it is
specialized to the k =0 exeitons and includes ex-
plicitly the band shift 8'". When the sum in Eq.
(8) is restricted to the two nearest neighbors with
energy transfer matrix elements v," and the sum
in Eq. (9) is restricted to the six next-nearest
neighbors with energy transfer matrix elements
v," the 2x2 ma. trix becomes

f W" +2v," 6v,"
exch

6~," W" + 2t,"

A sum over neighbors is still implicit in 8'". The
resulting eigenvalues are

E"(+) = %'" + 2()," + 6
~ v," ( .

Transitions from the ground state are allowed
to the k =0 excitons which are even (+) [odd(-)]
under inversion for magnetic [electric] dipole
transitions. The observed splittings thus cor-
respond to the energy difference between the even
[odd] k=0 excitons arising from the two single-
ion components within a Kramers doublet. Label-
ing these two states + p. and -p, and noting that
for a Kramers pair of states
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gr+ 9 — gr-)I = ~&
the exchange splitting is

QEMD[ED] 2+1~ + 2(v t' —v ~)

(12)

P7/2+-F' ' ~E MD

~EED

where the brackets refer to the case of electric
dipole transitions. For GdCl, the dynamic con-
tributions for the upper components of the Kra-
mers pairs are zero"; hence, Eq. (13) can be
written

32,000 cm

ED
MD

ED or MD

4E" " =2W" —2v, " —I+]6I v, " I. (14)

Thus, the contributions of the static and dynamic
matrix elements are simply added to give the
total observed "exchange splittings. " As a result,
the previously determined" dynamic terms may
be subtracted directly from the observed splittings
to isolate the static contributions for analysis.

The roles played by these two types of interionic
coupling are shown schematically in Fig. 1. The
static terms destroy the Kramers degeneracy,
the external field further increases the splitting,
and the dynamic terms produce a k dependence of
the exciton energy. The transitions from the
k =0 ground state are shown by the vertical ar-
rows. The observed splittings for the case of
magnetic dipole (AE" ) and electric dipole tran-
sitions (AE ) are shown on the right. It can be
seen that the total observed splitting includes a
contribution from the dynamic terms.

Since the dynamic terms may in principle be as
large as or even larger than the static terms,
they should clearly be considered in any analysis
of the exchange splittings ~ In determining whether
the dynamic terms contribute one must be par-
ticularly careful to note that large exciton affects
can become manifest in a variety of ways. For
transitions involving the simultaneous creation
of two excitons or for those occurring between two
exciton bands, the exciton affects are revealed
directly in the line shapes since k can be con-
served for all points in the Brillouin zone. Ex-
amples of these two-exciton processes which have
revealed significant energy dispersions in rare-
earth systems are the magnon-exciton optical
absorption in GdCl„" the band-to-band fluores-
cence observed in Tb(OH)„" and the band-to-
band light scattering in PrA1O, ." When a single
exciton process occurs for which the initial or
final state is the ground state, the presence of
exciton dispersion will not appear in the line
shape, but rather in the factor group or Davydov
splitting of the k =0 excitons. Such splittings
have been observed in several transition-metal
magnetic insulators such as "Cr,O, and in the
rare-earth orthochromites, "but they have not

8
S7/2 etc.
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FIG. 1. Illustration of the contributions to the split-
ting of a Kramers pair. The splittings of the k= 0 ex-
citons for magnetic dipole transitions 4 E and elec-
tric dipole transitions DE~D are shown to contain a
contribution from the dynamic part of the exchange in-
teraction.

to our knowledge been observed in rare-earth
systems. In GdCl„ the selection rules forbid
optical transitions from the ground state to one
of the two k=0 excitons so that the fa.ctor group
splitting cannot be observed. The evidence for
exciton dispersion was derived instead from
band-to-band transitions from the magnon band.
Thus, in GdC1, the evidence for significant dynam-
ic contributions to the exchange splittings is not
an outstanding feature of the optical spectrum, but
must be carefully extracted. Care must there-
fore be exercised in drawing conclusions in other
concentrated rare-earth systems.

B. Contributions of the interionic interactions to the
exciton matrix elements

The static and dynamic matrix elements dis-
cussed above may in general contain contributions
from electronic exchange, the magnetic dipole-
dipole interaction (MDD), the static electric multi-
pole-multipole interaction (EMI), and the induced
EMI resulting from an exchange of virtual phonons
(VPE). Reviews of these mechanisms have been
given by Wolf' and Baker. ' In an earlier letter
we showed that only anisotropic exchange con-
tributed to the dynamic terms. In this section it
is shown that only exchange and MDD can con-
tribute to the static splittings in GdC1, as was
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found to be the case in a similar analysis of im-
purity level splittings by Cone and Wolf. ' The
MDD and exchange contributions are simply ad-
ditive when the matrix elements W" of Eq. (7}
are evaluated. Thus, by accurately calculating
the static MDD contributions, it is possible to
isolate the static exchange contributions. De-
tails of the analysis are considered for each of
the interactions below.

3C,„,„=—Q Q Q I'",, ,
'
u',"(a}u",, '(5)(,'+—2s,~ s,),

a, & k, k' q, q'
(16)

where the I,k, . are linear combinations of the two
electron exchange integrals':

J. E/ectronic exchange interaerion

In order to provide an adequate description of
the exchange interaction between electrons on

neighboring ions, the orbital dependence of the
exchange is taken into account by writing for the
exchange Ham iltonian

X.,„,„=Q -8(m,m„m,'m,')(—,'+2s, ~ s,),

x g(m, m„m,'m,') .

IThe quantities in large parentheses in Eq. (17)
are the usual 3 - j symbols. ] The u," are the
spherical tensor operators which act in the orbital
spaces of the individual electrons and are defined"
by

where the summations are over the electrons on
ion i(p) and the electrons on ion j(q). IThe labels
i(p) and j(q) for the ions are omitted here for
brevity. ) Both two-center or direct exchange and
three-center or superexchange processes involv-

ing the ligands are considered to contribute to the
integrals 8(m, m„'m,'m,'). Except for relationships
derived from symmetry, the 1225 8's are inde-
pendent. Minimal requirements for the validity
of Eq. (15) would be dominance of a pa. rticular
electronic configuration in the states of interest
and negligible effects due to higher-order permu-
tations.

As we pointed out in the Introduction, applica-
tion of the above expression to many problems
is greatly simPl~fied by the fact that only a fraction
of the total number of exchange constants are
relevant to a description of specific phenomena.
Moreover, for GdCl, and a number of other real-
istic systems, only a fez wee~,u.vent linear combi-
na. tions are required.

This is most easily demonstrated by exploiting
the symmetry of. the rnultielectron states of the
individual ions resulting from the much larger
"'free-ion" and crystal field single-ion terms.
Elliott and Thorpe' 2nd Levy' have rewritten the
above exchange interaction in a different but

completely equivalent form which is mell-suited
to this approach. The exchange constants are ex-
panded in terms of irreducible spherical tensor
operators which act in the orbital spaces of the
individual electrons on the respective ions and
which have mell-defined symmetry properties
given by the representations D~k~ of the full rota-
tion group.

The exchange Hamiltonian for a pair of ions is
then written

As before s is the spin angular momentum opera-
tor for a single electron, and the summations
over a and 5 include the electrons on ions 1(p) and

j(q), respectively. The remaining summations are
over the ranks k and components q of the orbital
operators, where k, k' «2 l. The I po term is the
usual isotropic Heisenberg exchange as we show
in Sec. IV. Terms with k or k' nonzero are
anisotropic. Oux earlier work' on dynamic ex-
change in GdCl, has demonstrated that the k, k''40
terms QlRy be Rs lRrge Rs the lsotroplc term ln
rare-earth systems.

The requirements of time reversal symmetry
and R HermitlRn eI1ex'gy matl ix give

(Pkk )g ( 1)Q+ q

k+k' even.

There are of course as many independent I',k

as there are@(m, m~;m,'m,'); however, as we
shall see below, the symmetry of the Qd" states
dramatically reduces the number of I kkI relevant
to the present analysis although the number of
P's involved is still quite large. The advantage
of Eq. (16) over Eq. (15) for the empirical analysis
of experimental data is thus quite striking. We
wish to emphasize again, however, that Eq. (16)
ls covlPletelp egM7volepgt to Eq. (15).

In GdC1„ the nearest-neighbor (nn) Gd" ions
are situated adjacent to each other on the c axis
as shown in Fig. 2. The pair symmetry is C»
with the O„reflection plane perpendicular to the
c axis and passing through the intervening triad
of Cl ions. Application of the a„and c, opera-
tions respectively gives

1",,.(nn) = (-1)"' I', ', (nn)
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FIG. 2. Cr'ystal structure of GdCl& showing a unit cell,
the 1st and 2nd nearest neighbor Gd lons» and some of
the symmetry operations of the lattice used in deter-
mining the form of the exchange Hamiltonian.

I „'(nnn) = I «,'",(nnn}. (23 }

No specific restrictions on q and q' result from
this operation.

Both the static and dynamic terms involve a
summation over neighbors. The two-electron
exchange parameters I'"„ for the two nearest
neighbors are xelated by applying the a„operation
through the central Gd'" ion. Those of the six
nnn ax'e related by applying the C» operations
about the central Gd" ion. When these operations
Rx'e CRxx led out and the various contrlbutlons of
the different neighbors summed, only terms with

g +g' =0, +6, + 12 give nonzero contributions for
either type neighbor and for either static or dy-
namic matrix elements. This is a quite general
result for the GdCl, -type crystal structure and
does not depend on the Qd" states; nevertheless,
a relatively large number of parameters remain.

(22)

Each Gd ' ion has six next-nearest neighbors
(nnn) located in triads ~c above and below it.
The only symmetry opex"ation for these pairs other
thRn the ldentlg operation Is the lnvex'sion opelR-
tor I acting through a point halfway along the line
joining the two ions. This gives

The most dramatic reduction in the number of
parameters results from consideration of the
symmetry of the Gd" states of interest, and in
this case different results are obtained for static
and dynamic terms. We consider first the static
matrix elements, which are of the form

{ei (a )+j( a) 1 ~i (( )j ( a) 1
e i ( j ) A j ( a )) (24)

The intermediate coupling free -ion wave functions
for Gd" indicate that the '5», ground state and

Pg excited states ale essentially pure wlt31 only
slight admixtures of 6P and 'D, respectively. '8

Fox' pure 'S and 'P states only the real terms
I~(&() (1sotl'oplc) a)id II (alii so'tl'op1c) coll'tl'lilllie 'to

the static matrix elements. The terms with k' =1
are eliminated by the requirement of k+ k' even. ;
moreover, Cone and%'olf' and Levy'o have shown
that only even k terms need to be considered in the
analysis of static splittings. The 6D admixture
into 'P~ allows a contrIb«Ion by ~oo but there ls
a reduction of its contribution by a factor of 0.13
due to the admixture coefficients. Other terms
allowed by admixtures into 'S», or 'I'~ are re-
duced by factors of 0.02 even in the most favorable
cases. Barring the possibility that the additional
I'",", themselves are significantly larger than those
allowed for the pure states and considering the
present experimental accuracy, it is quite reason-
able to ignore all terms except I~oo and I'ooo in
evaluating the static matrix elements fox GdCl, .
Since only two exchange para me ter s must be de-
termined from data on five observed levels, the
internal consistency of the analysis provides a
test of this conclusion.

Using the same assumption of essentially pure
SS», and 'I'~ states, we have concluded in an
earliex letter' that the anisotropic terms l,",
= I""» and Fool make the dominant contributions
to the dynamic matrix elements for nearest
neighbors. Both are real and their values are
r,",(nn) =0.28+0.05 cm ' and I'o",(nn) =0.14
+ 0.07 cm '. The data for next-nearest-neighbor
dynamic matrix elements which are smaller and
have large relative uncertainties do not allow firm
conclusions to be drawn in that case, although the
same terms would be expected to dominate. (For
either type of neighbor, reduction factors of 0.13
apply to the I",, dynamic contribution due to the
small calculated 6D admixture coefficients. ")
This model for nearest neighbors involving only
the k = k'= 1 terms predicts the ratios of a number
of dynamic matrix elements ~ndePendent of the
values Of the Parameters, so the excellent agree-
ment of the predicted and observed ratios provides
strong evidence for this interpretation.

Vfe now consider the dynamic and static ex-
change contributions to "off-diagonal*' matrix
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elements of the form

(I@i(p)ei(c) ) ~i(i)9(lr) ~ ei(i') gi«)}

or

( ei ((p) g j(e) I ~i(p) j(a) ) ei(p) gi(e)} ~ (26)

where e" and e" represent different excited
states. As the L values for the states of interest
limit A, k' ~ 4 even with 'D admixtures, q+q' = 0
for the exchange interaction. Whether static or
dynamic texms are considered, this requires that

M~ =M~ for the two excited states. Since such
states are in different J manifolds, coupling of
excitons by such terms is completely negligible'8
in this system. It should be noted in particular
that the two single-ion components of a Kramers
doublet cannot be coupled.

Off-diagonal ma, trix elements of the form

or

p I(g((p)e j(a) ) ~i(n))(a) ) ei(t) &i(c)} (27)

(28)

where e" and e" may be the same or different
and where g' represents a spin deviation, could
seriously affect the a.nalysis of Sec. IIA a.t low

fields, but their contributions are reduced at the
higher fields used in the analysis of Sec. IV.
Further discussion of the fields and temperatures
required to eliminate the effects of such terms
is given in Sec. IV.

2. Magnetic dipole-dipole interaction

Unlike the other interactions, the MDD inter-
action may be accurately calculated. Therefore
its contribution to the observed splittings can be
easily determined. The static terms may be cal-
culated using the magnetic moments for Gd" in
the various excited states determined from Zee-
man effect measurements and the known dipolar
field Hdp'.

~ dlP P' g d1P (29)

where Il„;p is computed from the known magnetic
moment of the ground state, the crystal struc-
ture, and the demagnetizing factor for the crystal.

In our earlier analysis of dynamic matrix
elements~ we concluded that the dynamic MDD
contribution was negligible compared to that of
the anisotropic exchange. The same is true for
off-diagonal terms of the type described in See. I
above, although other MDD matrix elements in-
volving only S7&~ states do play a role in admix-
ing spin deviations into the ground state.

3. Electric Inultipole interaction and virtual phonon exchange

The static terms provided by the EMI impart
equal band shifts to each of the excitons arising
from the components of a single-ion Kramers
doublet in a. first-order analysis, thus giving no
contribution to the splittings. ' Higher-order con-
tributions by EMI in GdCl, could arise only from
the electric quadrupole-quadrupole coupling (EQQ)
due to the small orbital angular momenta in-
volved for the states of interest. As a result of
the unusual properties of the half filled 4f' shell
under charge conjugation, "even EQQ requires
the admixture of both 'P and 'D into the ground
state as svell as admixture of 'D into the excited
state. Comparison of Gd'+ EQQ static matrix
elements with those for Ce" which are on the
order of 2 cm ' in the rare-earth trihalides, '
reveals a reduction by 10 '; hence, EQQ contri-
butions to the splittings via higher-order pro-
cesses are entirely negligible in GdCl, .

As we pointed out in our earlier analysis of
the dynamic terms, the EMI makes a negligible
contribution to the dispersion. The off-diagonal
EMI matrix elements are also negligible.

Since the VPE interaction has the same form as
the EMI, similar reduction factors apply to its
contributions; moreover, the energy denominator

dependence of the VPE coeff icients"' effectively
rules out a large contribution for the highly ex-
cited 'P~ states.

III. EXPERIMENTAL DETERMINATION OF THE
ZERO-FIELD EXCHANGE SPLITTINGS

In order to facilitate a theoretical description
of the "exchange splittings" of GdCl„we wish to
detexmine the zero-field splittings under condi-
tions in which all electronically unexcited Gd'

ions are in a single mell-defined state, the ferro-
magnetic ground state. It should be emphasized
that for GdCl, the difficulty of treating other ex-
perimental conditions arises strictly from many-
body effects which we discuss below, not fr om
limitations of our description of the exchange in-
te raction.

A ferromagnetic crystal mould clearly be in the
ferromagnetic ground state at T=0 K, but at 1.2
K, the lowest temperature achievable in these
optical experiments, higher levels of the Gd'+

spin system are significantly populated in a ferro-
magnet such as Gdcl, (T, =2.20 K) due to the rela-
tively small magnon energy gap. These Gd" spin
excitations broaden the optical transitions from
the 'S,~, manifold and produce unresolved exchange
splittings, since the energy separations between
the exchange split transitions are on the order of
the linewidths due to the statistically varying in-
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teractions between the excited Gd" ions and the
"sea" of thermally populated neighboring spins.

Alternatively, one ean study the exchange split-
tings in a strong external magnetic field which
greatly reduces the linewidths at finite tempera-
tures by driving the magnon branch up in energy,
decreasing the magnon population and producing
a mell-aligned paramagnet. The exchange split-
tings are then found by extrapolating the high-
field results to zero field. This technique, which
was employed in our experiments, has several
advantages. The observed exchange splittings re-
sult from the interaction of an electronically ex-
cited Gd" ion with a nearly perfectly aligned spin
system, so that approximations concerning the re-
lationships between the observed splittings and
the average spin state of the Gd" environment
are avoided. Moreover, the technique is also ap-
plicable to paramagnetic systems which do not
order spontaneously at accessible temperatures.

The experiments mere performed briefly as fol-
lows. Polarized absorption spectra of samples of
GdCl, were studied in fields up to 30 kG directed
parallel to the c axis. The spectra were recorded
photographically on a nine-meter Ebert spectro-
graph with a resolution of 0.3 cm '. The samples
were grown from the melt using a Bridgeman tech-
nique. " Since the hygroscopic samples were
sealed in quartz tubes under —,

' an atmosphere of
helium, they were not in direct thermal contact
with the liquid helium bath. Therefore, to mini-
mize the heat input to the sample, all absorption
spectra were recorded using a 50 A bandpass con-
tinuum obtained mith a low resolution monochro-
mator placed between the AH-6 high-pressure
mercury capillary lamp and the sample. The
helium bath temperature was maintained at 1.2
K. Alignment of the samples was assured due to
the strong torque exerted on the ferromagnetic
crystals by the external field.

The nearly pure M~ eharaeter of the crystal
field states in the 'P manifold presented serious
problems in the experimental determination of
the zero-field exchange splittings due to the re-
strictive selection rules for transitions from the
S,&„M~= ——,'ground state mhich are summarized

in Table I. In the first and second columns are
listed, respectively, the cr ystal quantum numbers
p. , which label the irreducible representations of
the point group C», and the major, and in paren-
theses, minor, M~ composition of the states. In
Column 3 the selection rules for the M~ compo-
nents comprising the crystal field state are de-
scribed where that of the minor component is in
parentheses. Here M and E signify magnetic and
electric dipole transitions while m and 0 indicate
light polarized mith the electric vector parallel

TABLE I. Calculated and observed selection rules for
transitions from S7(2, ~g=-2 to the single-ion states in
the 6P manifold.

Selection rules from S7g2, —~
Excited level Calculated" Observed

All P rnanifolds I 7 j2 &;y I 312

7( 5)
2 2

(&Vlvt ) (~)

-(--)5 7
2 2

The coefficient
very small for the

Selection rules
klz component.

Polarization in

weakly.

of the component in parentheses is
6P& states.
in parentheses are those of the minor

parentheses is observed only very

and perpendicular to the c axis. Columns 4-6 de-
scribe the observed spectra for the J = —', , -'„»d
—,
' manif olds, respectively. Parentheses signify
that the transition in that polarization is very
weak.

As can be seen from Table I, transitions to the
M~=+-,' and +—,'states are forbidden by either
transition mechanism. Therefore the upper com-
ponent of the p. =+ —,

' Kramers doublets may be ob-
served only by virtue of a small admixture of M~
= ——', and ——,', respectively. The 'P,&, manifold
contains both M~=+ —', and M~=+-', states so both
pairs of Ij, = a-,' states have a slightly impure M~

character. As a result the upper component of
each was observed in sufficiently thick samples.
However, in thick samples the lower component
is strongly overabsorbed in the allowed polariza-
tion, making it difficult to accurately locate its
transition energy. It does, however, appear very
weakly in the forbidden polarization, where its
energy at all fields is identical, within experimen-
tal accuracy, with the transition energy of the
allowed polarization. In the fitting procedure de-
scribed below, data from both polarizations were
included for the lower components. For the 'P,~,
manifold, there are no M~=~ —,

' states so the p,

=~ -', states are essentially pure M~=~ -'„especial-
ly as the 600 cm ' energy difference from the
P,~, manifold is sufficient to make J mixing neg-
ligible. The upper transitions to p, =+-,' were
therefore not observable, and a determination of
the 'P, &, p, = a -', exchange splitting was impossible.
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FIG. 3. Transition energies at 1.2 K of transitions

from the gound state to the components of the 6P mani-
fold as a function of appbed magnetic field along the c
axis. The dominant M& value of the state is listed on
the right-hand side.

This is particularly unfortunate as the coefficient
of the I'2«anisotropic term for this state is larger
than that for any of the other 'P states as we shall
see in Sec. IV.

The exchange splittings of the p. =*—,
' states in

all three manifolds were not observable since
the p, =+ ~ states are pure M~ =+ —,", and the transi-
tion to Mz=+-,' is forbidden (see Table I}. Transi-
tions to both components of the p, = a & Kramers
pairs of states are allowed so their splitting could
be determined in all three manifolds. The transi-
tion to p, = —

& appears weakly in the forbidden po-
larization at the same energy as in the allowed
polarization. In the analysis below, data from
both polarizations were included.

It was shown in Sec. II that the dynamic and
static contributions to the exchange splittings ap-
pear as separate terms along the diagonal of the
exchange matrix in the k = 0 exciton representa-
tion. Since no significant "off-diagonal" matrix
elements connect different k =0 exciton states
of the 'P~ manifolds, the dependence of transition
energy on field should be linear in the aligned
state. The exchange splittings were thus deter-
mined by extrapolating the observed transition
energIes to zero field.

The magnetic field dependence of the tI ansition
energies to some of the Kramers pairs of states
in the 'P, /, and 'P,&, manifolds of GdCl, at 1.2 K
are shown in Fig. 3, where the solid lines are lin-
ear least-squares fits to the data between 14 and
30 ko. Th6 nonlinear dependence on fielcl below
14 koresults from the increasing population of
sp1n devlahons Rt loweI' fields.

The zero-field exchange splitting AE,b, and g-
factor g,„, of each Kramers pair were determined
by performMg R 16Rst-squRres fit to the energy
differences between the two components of the
pair as a function of field. The results of these
fits are given in Table II. The resulting values

TABLE II. Contributions to the observed exchange splittings of Gd3 in GdC1& and a calcu-
lated least-squares fit to the stati:c contribution.

6@ g 7

'&z/2~ Z

6~

6~

~obs ~epic

5.35 + 0.3 5.92

4.13+ 0.2

0.17+0.5

0.76+ 0.7

2.02+ 0.8

5.85 —0.30+ 0.2 1.57+ 0.1 4.08+ 0.6

0.00+ 0.2 1.12+ 0.14.31 4.18

0.80 0.84

0.92 0.92

1.16 1.16

3.01+ 0.5

-0.04+ 0.5

0.54+ 0.7

1.99+ 0.80.03

4.20

1.20

Contribution vf
COIltI'ibutlon of
Contribution of
Conti ibution of

(31).

dynamic exchange to observed splitting.
magnetic dipole-dipole interaction to observed splitting.
static exchange to obseI'ved spllttlng. ++tat)c =+Eobs —++dy~ —++MOD,
static exchange calculated using fitted parameters showman in Eqs. (30) and
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of ~F.,b, should be identical to the splittings at
T =0 K since all data used in the least-squares
fit was obtained in large fields at 1.2 K where
GdC1, is a well-aligned paramagnet. " The agree-
ment between g „,and g,~, , calculated on the basis
of intermediate coupling wave functions, " is ex-
cellent.

The dynamic exchange 4E„„„and magnetic di-
pole-dipole contributions &E„» to the observed
splittings are also shown in Table II. The former
were determined from a line-shape analysis of
band-to-band transitions from the magnon state. "
The latter were obtained using the dipole field,
which has been accurately calculated for GdCl„"
and the observed g-factors. The demagnetizing
factors employed in the determination of the di-
pole field were those calculated at the center of
the two rectangular samples used in this study. "

As we have shown in Sec. II, the zero-field
splittings &E,b, represent the simple algebraic
sum of the magnetic dipole-dipole contribution
and the static and dynamic exchange contributions
to the splittings of the k = 0 excitons of a Kramers
pair of states. The dynamic part of the exchange
and the MDD contribution were thus subtracted
from the observed splittings to yield the static
exchange contribution 4E,„„.„which is also shown
in Table II.

and

I",, =2I",,(nn)+6I",,'(nnn) =0.9+0.1 cm '

(30)

) P I",, ~ =2I"(nn)+61'„'(nnn) =0.1+0.6 cm '.
(21)

and the Gd" wave functions. " The coefficients of
the I"",, and I po contributions are given in Tables
III and IV with the factor of 2 from Eq. (14) in-
cluded.

Since the static exchange splittings &E„„;,de-
pend linearly on the two-electron exchange para-
meters I",, and I'«, a standard least-squares-fit-
ting procedure was used. Each level was assigned
a weight of I/o' where c is the uncertainty in

&E,t,t,, The results of the fit are shown in the
last column of Table II, where they may be com-
pared with the observed static exchange contribu-
tions.

It can be seen that the two parameter exchange
operator provides a reasonable description of the
static exchange contributions to the 'P level split-
tings. Only the 'P„/„M~=~ —,

' state shows a differ-
ence slightly in excess of the experimental error.
The two-electron exchange parameters resulting
from the fit are

IV. EVALUATION OF THE TWO-ELECTRON EXCHANGE
PARAMETERS

The two-electron spherical tensor operator of
Eq. (16) is now used to analyze the observed static
exchange contributions to the zero-field exchange
splittings discussed in Sec. III. As we have shown
in Sec. IIB. 1 it is sufficient to consider only the
I",", and I'0,'terms in the exchange operator of Eq.
(16), since the 'S,&, and 'P~ states of Gd" in

GdCl, can be considered essentially pure. In ad-
dition, off-diagonal matrix elements give no sig-
nificant contribution in the present analysis. The
splittings are therefore a first-order effect, and
the observed values of ~F.,„„,may be directly
equated to 2g " as we have shown in Sec. IIA.

The diagonal matrix elements W" defined by Eq.
("l) were evaluated for the exchange operator of
Eq. (16) using spherical tensor operator methods"

They represent the total static exchange contribu-
tion of all interacting neighbors, generally as-
sumed to be only the two nearest and six next-
nearest neighbors.

One of the major goals of this study was to dem-
onstrate that the same two-electron parameters
are applicable to both ground and highly excited
states. Success in this respect for GdCl, is con-
firmed by a comparison of the isotropic parame-
ter determined from the excited-state optical data
with the corresponding parameter determined
from high-frequency susceptibility studies of the
ground state by Clover and Wolf." They deter-
mined the nearest and next-nearest-neighbor ex-
change parameters, J„„=—0.271+.0014 cm ' and
J„„„=0.0333 + 0.0014 cm ', using the exchange
Hamiltonian appropriate for the ground state,
which in more conventional notation is given by

TABLE III. Contributions of the I"600 and &00 terms of the two-electron spherical tensor
operator to the static exchange splitting &+„„;,for the experimentally observed P~ levels.

rpp coefficient

I 00 coeff icient

7

+7/2 y

4.506

1.478

6 5

3.218

0.019

6
&7/2 p

0.643

—0.203

6 1
+5/2 p

0.829

0.226

6 1

1.329

0 ~ 101
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TAB?.E IV. Contributions of the I'pp and I'pp germs of
the two-electron spherical tensor operator to the static
exchange splitting &&,t, t,-, for "Pz levels which were not
observed.

6 3 6 5 6 3 6 3
7/2 ~ 5/2 „@5/2 o 3/')

I'p() coefficient 1.931 4.147 2.488 3.988

I'()z coefficient —0.402 —2.156 0.024 0.566

+exch JS i (32)

The exchange parameter J is related to the two-
electron exchange integrals g(m, mb, m, ' m, ') by

J = —' g g(m, m~; m, grat, ) .
, mi,

(33)

When the isotropic exchange parameter I'„' in the
spherical tensor operator notation is related to
the g's through Eq. (17), it is found that

I',, = 7J . (34)

Since our measured isotropic two-electron ex-
change parameter is the sum of contributions
from all important neighbors, we must compare

P I',, =0.9+0.1 cm ',

with

7(2J„„+RT „„„)= 1.0 + 0.1 cm ' . (35)

It is quite significant that the excited-state and
ground-state two-electr on isotropic exchange
parameters are, within experimental error, in

complete agreement, as this demonstrates the
ability of the two-electron tensor operator ap-
proach to relate exchange effects in various wide-
ly separated states such as the ground state and
the highly excited 'P~ states at over 30000 crn '.
This represents the first demonstration in rare-
earth insulators that the same two-electron para-
meters are universally applicable to a wide range
of states within a configuration.

Strong conclusions regarding the anisotropic ex-
change contribution to the 'P static level splittings
unfortunately cannot be made on the basis of the
present analysis. The relatively large uncertainty
for the I",, parameter given in Eq. (31) is the re-
sult of both the experimental uncertainties in
&E,», and somewhat smaller coefficients" for the

rpp parameter than for the I",, parameter, as
shown in Table III. Obtaining a better determina-
tion of its value for this system would thus require
either a dramatic improvement in experimental
accuracy, which is not possible with the present

technique due to problems discussed in Sec. III,
or a search for other levels which are more sen-
sitive to its value. For completeness, coefficients
of 1,", and I'„' are given in Table IV for 'P levels
which could not be observed. Examination of
Tables III and IV reveals that the largest I'-„", co-
efficient for states in the 'P manifold occurs for
the "P,/„M~=*-', level whose splitting was not ob-
servable by either electric dipole or magnetic di-
pole transitions from the ground state 'S,/„31~
= ——', as pointed out in Sec. III. For neither that
level nor for the 'P, /»ll1~=+ —,

' level should the
I'» contribution be regarded as negligible on the
basis of present evidence. '

It is possible that further information regarding
I'«could be obtained from the higher-lying 'I and
'D manifolds; however, at present we have chosen
to study it and other anisotropic terms by explor-
ing Gd" interactions with rare-earth impurity
ions in GdCl, . Preliminary studies of Er" im-
purity level splittings do indicate that higher rank
anisotropic terms are important. "

Examination of Tables III and IV indicates a
possible dramatic reduction in the number of para-
meters required for the application of the funda-
mental spherical tensor operator method to other
systems. The coefficients of the I'0', parameter
vary from level to level by over two orders of
magnitude, indicating that it may be reasonable
to ignore some terms in more complicated sys-
tems after calculating the appropriate coefficients
and estimating which terms seem unimportant. "
Consistency of the results would then provide a
check of the assumptions. Indeed in the present
system, the 'P, /„M~=+ —,

' splitting provides essen-
tially a direct determination of the I'„' parameter
since the I",, coefficient is only 0.3 jp as large as
the I'«coefficient for that level. " Further study
of this point is certainly warranted.

V. CONCLUSIONS

The fundamental two-electron tensor operator
description of the electronic exchange interaction
has been applied to the measured exchange split-
tings of Gd" in GdCl, and the appropriate two-
electron exchange parameters have been deter-
mined. It was shown that for ions occurring in
large concentrations, such as the present case of
Gd" in pure GdCl„a proper analysis of experi-
mental exchange splittings requires that dynamic
or transfer-of-energy contributions be considered
in isolating the static exchange contributions.

From an analysis of the selection rules on the
various possible mechanisms for the exchange
splittings and a consideration of the composition
of the five observed 'P states of Gd", it was
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shown that only the magnetic dipole-dipole and ex-
change interactions can contribute significantly.
Using the Gd" wave functions and the symmetry
properties of GdCl„ the form of the two-electron
tensor operator for the exchange interaction was
obtained, and it was found that only the isotropic
term I'pp and one anisotropic term I",, contribute
significantly to the static terms. The contributions
due to dynamic exchange and the magnetic dipole-
dipole interaction were determined and removed
from the total observed exchange splittings, thus
isolating the static contributions for the five ob-
served states. These were then analyzed using
the two-electron tensor operator which is applic-
able to all observed states. The two fitted para-
meters reproduce, within experimental uncertain-
ty, the five observed exchange splittings.

The work reported here is part of a continuing
series of studies whose major goal is to elucidate
the nature of interactions and to improve the funda-
mental description of them in rare-earth and tran-
sition-metal insulators. Thus we will now explore
how these results fit in with our more general
goals.

First, the agreement between theory and experi-
ment both in the present study of static exchange
splittings and the earlier study of exciton disper-
sion4 demonstrates that the two-electron descrip-
tion of the exchange interaction of Eqs. (15) and
(16) (which we again emphasize are equivalent)
provides an adequate description of the exchange
interaction for rare-earth insulators. Second,
and equally important, the agreement between the
isotropic exchange parameter determined from
excited-state optical data in the present study and
that obtained from high-frequency susceptibility
studies of the ground state properties" of GdCl,
demonstrates that this description of the exchange
interaction is fundamental in the sense that the
same two-electron parameters are applicable to
dramatically different multielectron states sepa-
rated in energy by as much as 30000 cm '.

A third goal involves determination of the rela-
tive importance of the many anisotropic exchange
terms. The I",, anisotropic parameter was un-
fortunately not well determined in the present
study; however, its calculated coefficients indi-
cate that it possibly makes important contributions
to the splittings of selected 'P levels. The aniso-
tropic I", , and I'p() terms determined earlier' are
quite comparable to the isotropic I'pp term and
give rise to exciton dispersions of up to 2 cm '
for 'P states in GdCl, and Gd(OH), . As described
elsewhere, "" these same anisotropic terms are

responsible for observable anisotropic effects in
the ground state 'S,&, splittings of Gd" pairs in
Y(OH), and Eu(OH), .

A further goal is the discovery of simplifications
which can reasonably be made in the number of
parameters to enable this approach to be applied
to a wider class of systems. The large variation
in the size of calculated coefficients of the I pp

parameter (0.019-2.2) indicates that its contribution
is negligible for some levels. This indicates that
some terms allowed by symmetry may be reason-
ably neglected for some levels on the basis of cal-
culated tensor operator matrix elements. These
calculations may be readily programed for a com-
puter, so that a wide-ranging examination of the
coefficients is feasible.

Finally, the ultimate goal of these studies of
the exchange interaction is the demonstration that
the same or very slightly adjusted two-electron
exchange parameters are applicable to different
rare-earth ions in related systems. The results
of the present study combined with an analysis of
Nd" and Er" impurity level splittings in" GdCl,
indicate that the two-electron isotropic exchange
parameters for Nd"-Gd", Gd"-Gd", and Er"
-Gd" interactions show a slow, smooth, syste-
matic variation over this sequence of ions which
spans over two-thirds of the rare-earth series.
Such a smooth variation is consistent with a slow
change in the spatial extent of the 4f wave func-
tions, and indeed the apparent decreasing trend"
for (Q I",,) from Nd" to Gd" to Er" is just what
would be expected on the basis of tighter binding
for increasing atomic number. In addition, the
anisotropic parameter (QI'~«'j = —0.2+ 0.2 cm '
obtained from the Er" splittings in GdCl, is,
within experimental uncertainty, consistent with
that obtained in the present study, (QI', 00) = 0.1 + 0.6
cm '. Thus it may be that with further develop-
ment the two-electron spherical tensor operator
method can play a similar universal role in the
description of the interionic exchange interaction
to that of crystal field theory in the description
of the single-ion energy levels of solids.
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