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NMR spin-lattice relaxation-time measurements have been carried out for **Co in a single crystal of
K;Co(CN)4 over the temperature range from 77 to 308 K. The results suggest that an internal optical mode of

the Co(CN), octahedron, with wave number 412 cm

, is primarily responsible for relaxation. A detailed

quadrupolar relaxation calculation based on a point-charge model provides support for this conclusion. It is
believed that this is the first situation in which such a relatively high-frequency mode has been found to be of

dominant importance in nuclear relaxation.

I. INTRODUCTION

Nuclear spin-lattice relaxation via quadrupolar
processes in ionic crystals containing complex
anions has provided information on the lattice dy-
namics and structures of these substances. Re-
cently, for example, Armstrong and Jeffrey! and
Van Driel et al.? have studied K,PtX, compounds
and have established the importance of the rotary
lattice mode, involving PtX, octahedra, in the re-
laxation of X (X=Cl,Br) nuclei. Van Driel et al.?
were able to follow the softening of this mode near
a phase transition in K,PtBr,.

There appears to have been no previous NMR
relaxation-time investigation of M nuclei in a sub-
stance of the type R,M(YZ),. In this paper relax-
ation measurements for 5°Co nuclei in a single
crystal of K,Co(CN), are reported over the tem-
perature range 78-304 K. The initial motivation
for this work came from cw studies® of the tem-
perature dependence of the °Co quadrupolar cou-
pling constant, which suggested that a rotary
lattice mode of wave number ~25 cm ™! played a
dominant role in averaging the electric field
gradient at the cobalt site. This mode has not
been found to be of importance for relaxation, and
it appears that an internal optical mode of the
Co(CN), octahedron with wave number 412 cm™
is primarily responsible for relaxation between
100 and 304 K. Other internal modes with lower
wave numbers ~100 cm ™! apparently play a neg-
ligible role in relaxation in this temperature re-
gion. In an effort to understand this result we
have carried out a detailed calculation using the
general approach of Van Kranendonk.* The de-
tails and conclusions are presented in Secs. III
and IV.

1

II. MEASUREMENTS

The single-crystal sample of the diamagnetic
complex K,Co(CN), was grown from solution.
Previous work® has established that this type of
crystal is polytypic and the sample used had an
orthorhombic unit cell containing four nonequivalent
Co nuclei. X-ray and cw NMR measurements®®
have shown that the Co(CN)4 octahedron is slightly
distorted (D,, symmetry) giving rise to a static
electric field gradient (efg) at the Co site. The
present measurements, which were made at
10.5 MHz (10.4 kQG) using a conventional coherent
pulsed NMR spectrometer, involve only the cen-
tral component of the quadrupole split spectrum.
The crystal was oriented with its c-axis perpen-
dicular to the magnetic field and was then ro-
tated about this axis until the central components
(two pairs of almost coincident lines) coincided.
This was sensitively achieved by observing the
beats on the free-induction decay (FID) and setting
for zero beat. All measurements refer to this
orientation. Temperatures could be controlled and
measured to within 1 K.

Since the spacings of the energy levels are not
equal it may be expected that relaxation will be
nonlinear. This is further discussed in Sec. III.
In the experiment the populations of + 3 and -3
states were equalized (maximum FID) using an rf
pulse whose length was about a quarter of the
length of a 90° pulse for cobalt ions in solution.
This agrees closely with the value calculated
using a fictitious spin-} approach.” Recovery of
the magnetization was studied in the usual way
using a second pulse of the same length. No de-
parture from single-relaxation time behavior
could be detected for pulse spacings up to twice the
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apparent relaxation time. We shall, however,
refer to our measured values as the initial relax-
ation times. The repetition rate was kept low to
allow the system to recover completely.

The signal to noise ratio was approximately
unity at room temperature and therefore digital
signal averaging was employed. The signals from
the rf phase detector were digitized with a Bio-
mation 610A transient recorder which was inter-
faced?® to the direct memory access channel of a
Nova 1220 computer. The system is capable of
digitizing signals at a sampling rate of up to 10
MHz in sweeps of 128 points and up to 3500 sweeps
sec”™'. Accuracy of the measured T, values is
estimated to be better than 10%.

III. RELAXATION THEORY

Since the spacings of the Co energy levels are
not equal (Sec. II) it is not possible to use the
Hebel-Slichter relationship,® which is based on the
spin-temperature concept, to obtain an expression
for T, (1/T, =W, +Wi+W! +4W, +4W} +4W}'). In-
stead we have written down the rate equations for
the populations of the various states. Fig. 1 de-
fines the various transition probabilities and these
are explicitly calculated below. Defining the pop-
ulation difference N,=ng - n,, where n, and n, are
the numbers of spins in levels +1/2 and —1/2
respectively, we obtain

%"f: SN, + W, + W2 + Ny (W | = W,)
+N,W,+4N W, - 2N,W, —4N,W} , (1)

where Ny=§(NJiw,/kT). N is the total number of
spins and w, is the Larmor frequency. [In obtain-
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FIG. 1. Energy-level diagram for a spin-rz,- nucleus
situated in a magnetic field. Quadrupolar shifts which
are ignored in this scheme would give rise to unequal
spacings of the levels. The transition probabilities per
unit time between the various states are denoted W,;, W,,
ete.

ing Eq. (1) the downward transition probabilities
are weighted with a Boltzmann factor and the
quadrupole interaction is assumed small compared
to the Zeeman interaction.] Similar expressions
are obtained for the other population differences
and in order to obtain an expression for N, it is
necessary to solve four simultaneous differential
equations. Since experiment shows that relaxation
is approximately governed by a single exponential
(Sec. ITI) we simply calculate the initial relaxation
rate given by

/T, =W, + W, +W;. )

Andrew and Tunstall!® have given a theoretical
discussion of quadrupolar relaxation for an /=3
system and have presented their results graphical-
ly for various W,/W, ratios. The recovery be-
havior of the central component depends on the
initial conditions and calculations were carried
out for two cases. For the case of initial satura-
tion of the central component only, recovery ap-
pears to approximately follow a single exponential.
Similar behavior may be expected for an /=% sys-
tem. Narath!! has treated the case of magnetic
relaxation (Am =+1) for an =% system. Again,
for the case of initial saturation of the central
component, he finds that recovery is governed by
a single exponential over the first decade but
with an apparent relaxation time substantially
shorter than 1/2W,. Our assumption concerning
the relaxation rate is consistent with these analy-
ses.

For this system spin-lattice relaxation via lat-
tice vibrations may in principle involve the acous-
tic modes or optical modes such as the rotary-
lattice mode and the internal modes of the Co(CN),
octahedron. In Sec. IV it is shown that the acoustic
modes make a negligible contribution and it is
thus necessary to obtain an expression for T,
involving the optical mode contributions. Our cal-
culation is similar to that of Armstrong and
Jeffrey,! who considered a spin-$ system in an
NQR experiment, but our final result is somewhat
different. The basic approach is due to Van
Kranendonk® and Kochelaev.'2

Assuming that only Raman processes need be
considered the transition rates occurring in Eq.
(2) may be written

2m
Wm,m+u=?z ; I<m+u’nk-”l’+l’n;l
1’ kk'

- 1|3Colm: niryy n—l:t> |2

XO6(Epmy y+Egrir =Em—E) (3)

m+ [

where m denotes the initial spin state and m + p
the final spin state (u=+1,+2). ni, denotes the
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number of phonons with wave vector K in optical
branch ! and E7; =%w,(K) is the phonon energy.
The summations are over all branches and wave
vectors. The quadrupolar Hamiltonian 3¢, may be
written’

o= Y F'Q*, @

where F* represents a lattice operator and Q* a
spin operator. In the Van Kranendonk* approach
F* is expanded in terms of lattice displacements
and only the second-order term is retained. This
may be written 3, ,pu; o AY; 4pu; s Where u;, is the
ath component of the relative displacement of
two atoms ¢ and o given by U; =F; - F¥,. The ele-
ments of the tensors A¥; have been tabulated by
Van Kranendonk for crystals of the NaCl type in
a point charge approximation and they may be
taken over directly for an octahedral structure.
The u,;, may be expanded in terms of the normal
modes in the harmonic approximation!® and one
obtains

Z UioAli, aplhis
iaB

ZX ( I ll/ a(E, l)+a‘r(—E, l)]

— w,(E)”z

L
2N
?

=
ik
12

[a(k’ l),?L:ll)g/zk, l)]’ (5)

where

XL (R, 17) = ZA [:«kl) oqa?,n]

m1/2 m;/Z

[ ealin]

m1/2

The sum over ¢ includes all neighbors (mass m ;)
of the atom o containing the resonant nucleus which
is Co in this case. For reasons discussed in Sec.
IV in summing over ¢, we shall only consider the
nearest-neighbor C atoms. The a(k, ) and a'(-k, 1)
are phonon annihilation and creation operators.
e,-a(-ﬁ, 1) isthe displacement eigenvector for the ith
atom along direction @ during execution of the
normal mode of wave vector kK, branch I. N is
the number of unit cells in the crystal.

Combining Eqgs. (4) and (5) with (3) gives

27
Wm,m+u=_;i_(<m+“"Q“im>l2
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where 7w, =E,,,, —E,. The spin operator matrix
elements are standard.” In order to proceed it
is necessary to make certain assumptions and
these are detailed below. We assume (i) that the
optical branches do not overlap and each optical
branch may be considered separately (I=1'),

(ii) the eigenvectors e;o(k, 1) may be taken to be
independent of K, and (iii) a linear dispersion
relation may be used12

wz(k)=‘*’xo‘sz(k/km), (8)

Aw;, which is the bandwidth of mode [, is assumed
small, as implied by assumption (i), so that

w(R) =~ w, (k') =~ wy.

Replacing the summations over Kk’ by integrals
and approximating the first Brillouin zone by a
sphere gives

ﬂ.3
Wm,m+u:T6.6[<m+“|Qplm>|2

x !Eix}il(lll)lz )
4 dw,wi sinh?(Bliw,/2)’

where

ZA <_m(_l) mﬂ)

/2~ 1/2

m

Equation (9) shows that if Aw, is small the tran-
sition rate is high. This is because of the high
density of states in this case. Relaxation can, of
course, only occur if Aw, is greater than the
Zeeman splitting. This condition is well satisfied
in NMR experiments.

Combining Eq. (9) with Eq. (2) gives

1.9 4 eQ >2 R
T, 16 \27(27-1)/ Aw,w?,sinh’(Bhw,,/2)’
(11)
where

-3 | Zwan

n’

+7 Z Zx o) \2

n’

(12)

The summations over I’ in Eq. (12) refer to de-
generate branches of a mode of given frequency
as implied by assumption (i) above. Calculation
of the x3(1I’) and X3(II') involve the quantities

0 0 ¢
Aiz'lszs 00 f: ’ (133)
ei fi 0
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and
20}
a, d; 0
. es P 10jo
A“=1—§Ei- d, b, 0], (13b) o o
0 0 ¢ N
where the elements are given numerically by 3;’ 2\\
Van Kranendonk.? The quantity a,; is the spacing = N
between atoms o and i and s is a factor which r N
takes into account shielding, overlap, etc. The o-sh >
>~
effects of anharmonic Raman processes are SN
briefly mentioned in Sec. IV. 02
o1+
IV. DISCUSSION
100 130 200 250 300

The experimental T, data are shown as plotted
points in Fig. 2 in a log-log plot vs T(K). As
discussed in Secs. II and III the T, values repre-
sent the initial relaxation times. For a Debye
model of the acoustic lattice modes Van Kranen-
donk* has shown that

1/T, < T*2E(T*), (14)

where T*=T/0©,, ©, being the Debye temperature.
E(T*) is a function which increases as T*® for

T <0.020, and which approaches unity for T ~©,,.
For K,;Co(CN),, ©,2~290 K, and the relaxation-
rate contribution due to acoustic modes may be
expected to follow a 7% law for T2 100 K. This
clearly does not fit the data and shows that acous-
tic modes are unimportant in relaxation. This is
not unexpected since the efg at the Co site is
primarily produced by the ligand CN groups within
the Co(CN), octahedron and their contribution is
not modulated by acoustic modes.

We next briefly consider the rotary-lattice
mode® of wave number 25 cm ™. Equation (11)
predicts that this mode should give rise to a
temperature dependence of T, represented by a
dashed curve in Fig. 2, where again the curve is
drawn to pass through points near 300 K. This
does not fit the results. The contribution due to
this mode is estimated theoretically later in this
section.

The best fit full curve drawn through the experi-
mental points has the form T,=0.06 sinh?(600/2kT)
corresponding to a mode of wave number 412 cm™!
with an uncertainty of about 10%. This result
implies that one or more intermediate-frequency
internal optical modes of the Co(CN), octahedron
are primarily responsible for relaxation in the
range 100<T <300 K. We consider the contribu-
tions of these modes in detail below.

Degeneracies reduce the 33 normal modes of
the octahedron to 13. (This ignores the small
distortion of the octahedron from O, symmetry
mentioned in Sec. II, which will lift the degeneracy

T (K)

FIG. 2. Logy,Ty vs log,T for **Co in K;Co(CN)¢. The
circles are experimental points. The lower solid curve
shows a T2 dependence while the upper solid curve is a
best fit curve corresponding to a wave number of 412

cm~!. The dashed curve shows the temperature depen-

dence to be expected if the rotary-lattice mode of wave
number 25 cm~! were important in relaxation.

somewhat.) In order to compare the contributions
of the various modes it is necessary to determine
the eigenvectors ¢; ,(I) involved in Eq. (11). We
note that T, depends rather sensitively on the

e; (I). Before doing this and obtaining numerical
values for the R! defined in Eq. (12), for each
mode, some general remarks are made. A point-
charge approach is adopted and we assume that
the efg at the Co site arises solely from the six
nearest-neighbor C atoms. This is a reasonable
approximation since it has been shown® that these
atoms contribute about 90% of the static efg due

to the CN ligands. (A relaxation mechanism of the
type proposed by Wikner, Blumberg, and Hahn,
which takes into account the efg fluctuations due
to dipole moments induced by the optical vibra-
tions, has not been considered because of the
small C atom polarizability.)

Four modes give zero contribution. These are
the two A,, modes @, and @, and the two E, modes
@; and @,. The only modes which involve Co atom
motions are the four F, modes @;, @,, @4, and
Q,. Since @, is a high frequency mode (2129 cm™)
it may be expected to make a negligible contribu-
tion at the temperatures of interest. There are
thus only eight triply degenerate modes for which
calculations must be carried out.

For the F, and F,, modes Q;, Q,, and @,, the
following expression is obtained for R’

RF1e -gg856e% , (14a)

while for the F,, modes @,, and @,, we obtain
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R™2 =45 14461, (14b)

where e is the eigenvector for the C-atom mo-
tions. For the F,, modes @, and @, the expres-
sion is
RF1=72516(el+ kec,)* + 45 144(ec T ke, )
+385344(eltkec,)(ecFhkec, P

+69 120(ec Fkec, V(e tkec,) , (14c)

where the upper signs apply to @, and the lower
signs to @,. For @, an almost identical expres-
sion applies except that all signs are positive
apart from that in front of the final term which is
negative. e/ is the eigenvector amplitude for the
C atoms which move collinearly with ec,, ec
refers to the other four C atoms and k= (mc/mc,)
~1/V5. The eigenvectors for all atoms in an
octahedron are of course normalized for each
mode and this is mentioned below.

The calculation of the eigenvectors may be
carried out using infrared and Raman spectro-
scopic results together with the standard pro-
cedures of molecular spectroscopy.!® Jones,?"2°
and Nakagawa and Shimanouchi®! have given Gand F
matrices appropriate to this situation where G is
the kinetic-energy matrix and F is the force-
constant matrix in terms of symmetrized internal
coordinates. The L matrix has been obtained by
diagonalizing the GF matrix based on the elements
of Jones® and normalizing according to the rela-
tion LL=G. The columns of the L matrix give the
eigenvectors in terms of internal coordinates
(bond bending and stretching) and from these the
Cartesian displacement eigenvectors may be de-
termined. The displacements are similar to
those given by Jones, McDowell and Goldblatt??
for other hexacarbonyls.

Table I gives the R’ values calculated using Eqgs.
(14a), (14b), and (14c) for the eight modes of
interest together with spectroscopically assigned
wave numbers.?’*® For the rotary-lattice mode
Q, of wave number ~25 cm ™ we estimate that
R%0x 1 for the slightly distorted octahedron. (An

2791

undistorted octahedron would give R%=0.) At
high temperatures (8% w,,~1) we may write ap-
proximately

1 R' ) 2
Tim<w?kox . (15)

Table I together with Eq. (15) suggests that cer-
tain F,, and F,, modes should play a dominant

role in relaxation. Unfortunately the Aw; are not
known at all reliably. However, the low-frequency
(~100-cm™) modes may be expected to be strongly
coupled to the lattice modes and consequently to
have larger bandwidths than intermediate-frequen-
cy (~400-cm™) modes. Comparing the F,, and

F,, modes we see that for @, to be dominant

Awgq,, >5woa. Similarly, in comparing the F,
modes @, and @, we find that for @, to be domi-
nant, Awg, >7Aw¢)9 if we use the frequencies as-
signed by Nakagawa.® These results are not un-
reasonable. While R97~2R%% this is offset by the
populationfactor. We conclude that the point-charge
calculation offers substantial evidence that @, is
the mode responsible for relaxation.** The spec-
troscopically assigned frequency for @, is in
agreement with the best fit frequency of 412 cm™!
obtained from Fig. 2.

Finally we comment on the quantitative agree-
ment of theoretical and experimental T, values.
For definiteness we shall consider the contribu-
tion of @4 but the calculation may be readily ex-
tended to several nonoverlapping modes. As-
suming a bandwidth of 5 cm™ and a R98 yalue of
7000 gives T,~(4x10%)/s* at 300 K. Comparison
with the data of Fig. 2 gives s~ 200, which is not
unusual for point-charge quadrupolar relaxation
calculations. Clearly, the inclusion of other
modes will reduce this value somewhat. If an-
harmonic Raman processes are taken into account
by incorporating microscopic Gruneisen parame-
ters into Eq. (11), this may result in a further
reduction in the theoretical T, values. The pre-
dicted temperature dependence will, however,
remain unchanged.

TABLE 1. Relaxation contributions due to various internal modes of the Co(CN)q octahedron.
R is defined in the text. The eigenfrequencies in parentheses are tentative assignments or
calculated values given by the authors referred to.

Representation Fyg Fyy Fy, Fyy Fq, F,, Foy Fy,

(Mode) Qs Q @ €y Q1o Q14 Q1 Q13

. Ref. 20  [358] 564 416  [84] [480] 98  [440] [72]
Eigenfrequency

wyem™)  Ref. 23  [303] 565 414 129 [450] 129  [380] 100

R} 170 14 300 7100 450 360 20 1700 130
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V. CONCLUSION

Analysis of **Co NMR spin-lattice relaxation
time measurements in K,;Co(CN), suggests that
intermediate frequency (~400 cm™?) internal modes
of the Co(CN), octahedron dominate in relaxation.
A detailed point-charge quadrupolar relaxation
calculation, which takes into account the contri-
butions of the various internal modes, substan-
tially supports this conclusion and shows that one
of the F,, modes (@) is likely to be of dominant
importance in relaxation. The present work has

shown that nuclear relaxation can provide infor-
mation on the internal dynamics of ionic complexes
if the probe nucleus occupies a central position,

of high symmetry, in the complex.
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