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Electronic structure, spectra, and properties of 4:2-coordinated materials. I. Crystalline and
amorphous SiO2 and Ge02~
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A two-parameter tight-binding theory of the electronic structure of 4:2-coordinated materials is proposed. The
parameters, a covalent and a polar energy, are fitted to the optical absorption spectra. The valence energy
bands and density of states are calculated. In terms of these a consistent interpretation of all the observed
photoemission and x-ray-emission spectra of SiO, is obtained. The x-ray-absorption spectra are also analyzed.
A bond-orbital approximation allows a simple calculation of the refractive index (or dielectric constant) of the
various allotropic forms of silica and germania. Finally, the variation in total energy and charge distribution
with local distortion is analyzed in order to study structural stability, elastic rigidity, and the efFective charges
(including dynamic contributions) which determine the piezoelectric constants and infrared absorption
intensities.

I. INTRODUCTION

Silicon dioxide (SiOz) is one of the most common
materials in nature. It is the main constituent of
more than 95% of all the earth's rocks. Sea sand
is essentially pure quartz, one of the various al-
lotropic forms of SiQz . Most gems, such as
amethyst, sapphire, opal, geode, etc, are also
quartz containing impurities which impart char-
acteristic colors. Most glasses in our everyday
surroundings are made of SiO~, combined with a
variety of other substances. In technology, SiQz
is present in most devices containing metal-oxide-
semiconductor transistors.

For these and other reasons Si02 has been
studied quite extensively over the years. There
exist a variety of measurements of the optical-
absorption spectra, both in the uv'~ and x-ray
region, s' of photoconductivity, ' x-ray emission
spectra (XES),' '6'7 nv and x-ray photoemission
spectra (UPS and XPS, respectively), 8'9 and in-
frared absorption spectra. Much of the theoretical
work thus far has attempted to interpret the ob-
served spectra in terms of simple molecular-or-
bital schemes. " Quantitative work with rather
similar motivations has been carried out by a
number of authors using clusters of various
sizes. ' " Much of the earlier work has recently
been reviewed by Buffa. " His conclusion was that
the various models were designed to interpret
particular spectra, but, in general, when appl. ied
to other spectra, they do not do so well. The re-
cent cluster calculations of Yip and Fowler are a
step forward, ' but still, by and large, a com-
prehensive account of the electronic structure and
properties of the various forms of SiO~ is still
lacking.

The purpose of this paper is to present a broad
and systematic study of the electronic structure and
properties of SiQ~ and GeQz. The latter has not
attracted as much attention as Si02 but the two
materials can be described in parallel rather con-
veniently. In a second paper'7 we will turn to
other materials of similar coordination but more
complicated chemical composition, e. g. , AIPQ,
(compare with SiO2 by rewriting it as SisiO4). The
method we will employ is somewhat crude and
limited in accuracy but will enable us to address
a large number of questions some of which have
been unappx oachable thus far. More specifically,
the method extends the bond-orbital model intro-
duced earlier by Harrison" for the study of simple
tetrahedral crystals of diamond and zinc-blende
structure. The model is based on a linear-com-
bination-of-atomic-orbitals (LCAO) approach
which has in the past been used by several authors
for various studies. 9' The important aspect of
the model, which distinguishes it from previous
LCAO studies, "'9' o is what we have called the
bond-orbital aPProxi rn ation, which makes the
calculation of various properties rather straight-
forward. The model has thus far been successful-
ly applied to study many properties of simple
tetrahedral solids (dielectric constants, '~'~~ elas-
tic constants, ~~'~3 transverse effective charges, ~'~4

piezoelectric charges, ~'*~' photoelectric thresh-
olds, ~' magnetic susceptibilities, 35 x-ray core
shifts, ~ energy bands, ~ etc. ). The bond-orbital
approximation is also crucial in the present study
of 4: 2-coordinated materials, for which it natural-
ly takes on a slightly different form.

The plan of this paper is as follows. In Sec. II
we describe the crystal structure of the various
forms of SiQ2 and GeQ~ and summarize structural
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data. In Sec. III we review briefly the bond-or-
bital model and discuss the bond-orbital approxi-
mation as it applies in the present case of Si02
and GeO~. In Secs. IV and V we discuss the va-
lence energy bands and corresponding density of
states and interpret the UPS and XPS spectra
which probe these levels. In Sec. VI we analyze
the optical- and soft-x-ray-absorption spectra.
In Sec. VII we make use of the interpretation of
the observed spectra to obtain values for the two
fundamental parameters of the model. In Sec.
VIII we derive an expression for the refractive
index and dielectric constant and study its depen-
dence on the structural parameters of the various
allotropic forms. In Sec. IX we turn to a study of
effective charges, which leads us to address a
variety of total- energy- related properties including
the determination of the observed Si-0-Si angle,
elastic constants, piezoelectricity and infrared
absorption intensities. We finish with our con-
clusions in Sec. X.

II. CRYSTAL STRUCTURES

to the oxygens (cassiterite structure) as is stisho-
vite. Finally Ge02 exists in a vitreous form
(vitreous germania) analogous to vitreous silica. .
The relevant structural parameters are also given
in Table I.

III. BOND-ORBITAL APPROXIMATION

For the convenience of the reader and for pur-
poses of introducing notation we first review brief-
ly the bond-orbital approximation as it applies to
the simpler tetrahedral solids of diamond and zinc-
blende structures. ' ' ' ~ The starting point of the
model is the construction of four tetrahedrally
directed s&3 hybrid orbitals on each atom. This
would result in a total of eight orbitals in each
primitive unit cell so that an LCAO-type calcula-
tion would give rise to an 8&&8 secular matrix and
to a total of eight bands (four valence bands and the
four lowest conduction bands). One can then form
bonding combinations of these hybrids, the bond
oxbitals, which for diamond-type crystals are
simply given by

Si02, whose common name is silica, exists in
many allotropic forms. Most of them are found
in nature in abundant quantities, but some have
been made only under laboratory conditions. The
best known are quartz, tridymite, cristobalite, and
amorphous vitreous silica. Coesite, keatite,
stishovite, and melanophlogite are rare forms.
With the exception of stishovite, all these forms
are built from the same fundamental structural
unit, the Si04 tetrahedron. In other words, all
silicons are surrounded by four oxygens in the
tetrahedral directions. At the same time each
oxygen is bonded to only two silicons and the Si-
0-Si angle, denoted by P, varies from one allotrope
to another. This kind of bonding is often referred
to as 4: 2 coordination. The manner in which the
tetrahedra are linked together determines the
over-all symmetry, which may be hexagonal,
tetragonal, monoclinic, etc. In Table I we list the
various forms of silica and the relevant structural
information. + In Fig. 1 we show a phase diagram
for Si02 showing at which temperatures and pres-
sures the various forms are stable. ~9

The simplest form of Si02 is 8-cristobalite (the
high-temperature form of cristobalite) which is
assumed to have straight Si-0-Si chains with the
Si atoms forming a diamond lattice as in the Si
crystal. A study of the hexagonal. forms of SiOz
reveals that P-tridymite has its Si atoms in a
wurtzite lattice but with the Si-O-Si chains likely
to be bent.

GeO~ is not as polymorphous as SiO~. It is
known to exist in two crystalline forms, a hexag-
onal quartzlike form and a tetragonal form in
which the germaniums are octahedrally coordinated
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FIG. 1. Phase diagram of Si02 (from Ref. 29).

where h, and h2 are the hybrids on nearest Si
atoms pointing toward each other, and S is the
overlap

S=&h, ~f,&.

There are four inequivalent bond directions in the
crystal and hence four bond orbitals per primitive
unit cell. There are, of course, four antibonding
orbitals given by
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TABLE I. Structural parmeters of the various forms of silica and germania.

Phase

(A) Si02

e-quartz

P-quartz

e-tridymite

P-tridymite

e-cristobalite

P-cristobalite

Keatite

Symmetry

Hexagonal

Hexagonal

Monoclinic (? )

Hexagonal

Tetragonal

Cubic

Tetragonal

a= 4.913
c = 5.405

a=5. 01
c=5.47

a=18.54
b=4. 99
c= 23.83
P = 105.6'

a=5. 03
c= 8.22

a=4. 973
c= 6.926

a=7. 16

c=
7.456
8.604

Cell parameters
!A)

Si-0
(A)

l.61

1.63

l.52

l.59

1.55

l.57-1.61

O~
(A)

2.60-2, 67

2. 60

2. 57

2, 58-2.63

2. 53

P (deg)

144

144 (?)

147

180

Coesite Monoclinic
(hexagonal)

a=
b=
c=

7.17
12.38
7.17
120'

1.60-1.63 2.60-2.67 120

Stishovite

Melanophlogite

Fibrous silica

Vitreous
silica

(B) Ge02

Germania
quartz

Tetragonal
germania~

Vitreous
germania

Tetragonal

Cubic

Or thorhombic

Amorphous

Hexagonal

Tetr ago nal

Amorphous

a=
b=
c=

8.36
5.16
4.75

a =4.972
c=5.648

a =4.395
c= 2.859

a=4, 179

a = 13.402

1.61

1,74

l.86

2. 63

2.84

(144)"

130

(90&"

These forms have the rutile structure so that each silicon (or germanium) is surrounded by six
oxygens in the octahedral directions.

"The brackets ( ) indicate averages.

for a total of eight orbitals. The corresponding
8&& 8 matrix differs from the 8 & 8 matrix of the
hybrids by a unitary transformation and thus would
result in the same eight bands as before. This
unitary transformation of the eight hybrids into
four bonding and four antibonding orbitals is very
crucial, however, because the I a) and I b) at the
same site do not interact. One can then assume

that off-diagonal coupling between 1 a)'s and I b)'s
at different sites is small, and concentrate on the
four valence bands arising completely from the
four bond orbitals. As a consequence, one can
obtain the total electronic energy by simply evaluat-
ing the trace of the 4&4 matrix. Since this trace
turns out to be independent of k one does not have
to solve the band problem in order to calculate
total energies. In other words, the total elec-
tronic energy is simply proportional to the sum of
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Ib& = ~. lb. &+ ~, lb, &, (4)

where n stands for anion, the nonmetallic ion, and
c for cation, the metallic ion, and w, and w, a,re
numerical. coefficients. Now, because of the bond-
orbital approximation, the total electronic energy
per unit volume is given by 8N(b I Hl b) = 8N&3,
where N is the density of valence electrons and H

is the crysta. l Hamiltonian. Thus, minimizing e„
is equivalent to minimizing the total electronic
energy. The result is simple when the overlap
S is neglected. ' It may conveniently be expressed

where ca~, which is a measure of how polar the
bond is, and is therefore called the polarity), is
given by"

o~ = V3 /(V 3+ V3)' ~ (6)

A more complicated expression is obtained for
I b& when S is included. 3 The expression for o.~

remains unchanged, however. Vz and V, are the
following matrix elements:

bond energies and the total charge density is pro-
portional to the charge density of the bond orbitals.
Since most response functions are measures of
distortions imposed on the total energy, and one
is able to calculate the total energy in the presence
of external perturbations, one ca.n explicitly and

simply calculate dielectric constants, elastic con-
stants, effective charges (caused by redistribution
of the charge density), etc.

The importance of the bond-orbital approximation
is immediately and explicitly seen when we turn
to the bond orbitals of zinc-blende-type compounds.
Because the two atoms participating in a bond are
no longer identical, the bond orbital is not the sim-
ple form (1). One must write

B&=«.lf.&+«. I«&. (10)

There exists, of course, a corresponding anti-
bonding combination I A) so that (B I A) = 0. We
thus have a set of five noninteracting orbitals,
na. mely (B, A, b, p„, p,). At this stage we im-
pose the bond-orbital approximation and neglect
off-diagonal elements between the subset (B, P„,
p,), which gives rise to the 12 full valence bands,
and the subset (b, 4) which gives rise to the low-
est conduction bands. The approximation is par-
ticularly good in this case in view of the relatively
large gap between valence and conduction bands,

now have a total of five orbitals, (b, , b3, p„, p, ,
or, equivalently, (b, a, p„, p„p,), where h

and «are as in (1) and (3). Either set would give
us a 20& 20 matrix and 20 bands (because of the
four inequivalent bond sites), only 12 of which
would be occupied. The other eight would be the
lowest conduction bands. We thus seek three
linear combinations of the five orbitals which will
be orthogonal to the remaining two, whereby a
bond-orbital approximation that decouples the oc-
cupied from the empty bands will become possible.
This step is analogous to forming the bonds I b)
[Eq. (1)] in the diamond-type crystals and seeking
the linear combinations (4) in the zinc-blende-type
compounds. In the case of P-cristobalite, the task
is still rather simple because from among the five
orbitals (b, a, p„, p„p,) only la& and Ip, &

inter-
act. [For choice of axes see Fig. 2(a). ) We thus
form some kind of superbond orbital which we
write

v = —(h,
I HI b,&/(1 —s ),

2v = ((b.
I
Hlb. &- (b. Hlb. »/(1 —s')'"

= (e —e )/'(1 —S3)'

The bond energy e, is given by

E3 —3(E~+ 6~) + SV3 —(V3+ V3)'

(8)

For a homopolar diamond-type crystal V3= 0,
e~= 0.

We now turn to an analogous bond-orbital de-
scription of SiOz. For purposes of motivation we
start with the ideal P-cristobalite structure which
is presumed to be a diamond lattice of Si atoms
with O atoms inserted at each bond site. The
natural choice of orbitals is then sp' hybrids on the
Si's, as in the Si crystal, plus the three oxygen 2p
states (the oxygen 2s states are essentially core
states; we will have occasion to discuss this
later on). Thus associated with each bond site we

(b

Z

FIG. 2. Orbitals and choice of axes in the case of (a)
P-cristobalite; ~b) the other forms of Si02.
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forward. The Si hybrids are still constructed to
point in the direction of the oxygens (tetrahedral
directions) and the set is once more extended to
include lfz„&, Ifz, &, and lfz, & orbitals on the oxy-
gens [Fig. 2(b)]. We again form I b) and I zz& as
before and the basis set becomes {b, zz, p„, fz„p,j.
When me allow these orbitals to interact, the new
symmetry allows mixing between Ifz, & and Izz&, as
before, and also between I fz, & and I b). We thus
form two new superbond orbitals: I B,), as in
(10), and an analogous I B„). The occupied or-
bitals are now JzB„B„B,), (where for uniformity
we defined I B,) = I p, &) and the empty ones are the
corresponding f4„4„]. These levels are il-
lustrated in Fig. 3. Other designations in that
figure mill be discussed later. The same minimiza-
tion- of-total- electronic- energy procedure yields

I B.& = [-'(1.~,.)]'"lf.&+ [-'(1 —~, )]'"I.&,

IB,&=[-'&1+V~.)]'"If.&+[-'(1-~,„)l'"Ib) (»)

I3„,= W„/(2W', ,+ W,',)'z',

I3,„=w, „/(aw,'„+ w,'„)'~'.
(18)

(19)

FIG. 3. Schematic of the occupied and empty orbitals
in Sio~ from which the valence and conduction bands are
formed.

s, =z~, /(2W', + W,')zZ', (12)

where me use W's instead of V's for "internal"3~
interactions. The W's are defined by

w, =- (b
I HI f,&/(1 —as'), (13

aw =(&~IHI ~& —&o. l
ffl f, &)/(1 —as' )'"

)/(1 2S 2)z /2 (14

s=&blf, &. (15)

The extension to treat the more general SiO~
crystal, or vitreous silica, in which the Si-O-Si
cha. ins are not straight (P v 180'), is straight-

9 eV. ~ As a consequence, the trace of the 12&12
matrix arising from &B, p„, fz,j gives us once
more the total electronic energy whereby we can
minimize (BI Hl B) with respect to zz, and zz, of
Ezl. (10). The result is ana, logous to (5) (when

S=(zzlfz, & is neglected), but, instead of np, for
the corresponding polarity me employ the notation'

p~.

IB&=[-'(1+~)]'"If & [-'(1-~)]'"I.&
The definition of P~ is similar to (8), but slightly

different:

It might look that the problem is getting exces-
sively complicated, but, in actuality, the entire
description is based on just two matrix elements,
W2 and W3 as defined in (13) and (14). A rather
straightforward calculation results in

1 —2S~
H &

——
W& z & eosg,

1 —2S cos g

1 —2S~
W2„= Wz, „~ . ~ sing .1 —2S sin g

(20b)

[See Fig. 2(b) for the definition of 9. It is given
by 9 = 2(180 —P). ] lV,„and Wz, are given by ex-
pressions analogous to (14), but, to a good approxi-
mation, one can take W„= W„= W, . It is clear
that all the quantities of interest are simple ana-
lytical functions of W3, W~, and the angle 8. We
mill extract values for W~ and W, from experi-
mental data in Sec. VII. We may just note one
more thing here, namely that the bond energies
are given by

e, =(B,IHIB,&=vas, w„- (aw', ,+ w,')zi', (21)

~, =(B„IBIB,&=&VS,W,„-(2W',.+ W,')'z', (22)

where S,= Scosg and S, = Ssing.

IV. ENERGY BANDS AND DENSITY OF STATES

As we noted already, within the bond-orbital
approximation, the problem of the energy bands is
separate from the calculation of other properties
which depend only on the trace of the secular ma-
trix. The energy bands are essentially deter-
mined by the off-diagonal matrix elements, namely
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the interactions between bond orbitals at different
bond sites. The band structure is of course in-
teresting because it can be used to interpret photo-
emission spectra, x-ray-emission spectra and
optical-absorption spectra. However, a valuable
feature of the bond-orbital approximation is that
one does not need the bands at all in order to
calculate other properties.

We turn first to the valence bands, which are
determined by the minimal basis set (B„B„B,}
(recall that B,= p, and, in the case of p-cristobalite
8„=p„) at each bond site, which for SiO~ and Ge02
means at each oxygen site. The size of the secular
matrix depends on how many bond sites there are
in the primitive unit cell. For P-cristobalite
(diamond-lattice, full O„symmetry) there are four
bond sites (oxygens) per primitive cell (i. e. , there
are four distinct bond directions in the diamond
lattice) which results in a 12x12 secular matrix
and 12 bands, just enough to accomodate the 24
electrons per primitive unit cell. In quartz, on
the other hand, there are six oxygens per primi-
tive unit cell for a total of 18 valence bands. In
each case one could in principle get the bands to
any accuracy by including an adequate number of
distant-neighbor interactions.

The simplest case is of course P-cristobalite.
The calculation of the valence bands has a num-
ber of similarities with the corresponding cal-
culation for Si (Ref. 27). Both crystals have the
full symmetry of the diamond lattice (07). In the
case of Si, we had one bond orbital 5 at each bond
site which gave us a 4&&4 matrix. The bands
were adequately described by retaining only two
matrix elements, B, between adjacent bonds and

B4 between second-neighbor bonds along the same
direction. In the present case of P-cristobalite
we have three bond orbitals, p„, p„and B„at
each bond site. The result will of course be a
12x12 matrix, but we may expect that each of the
three bond orbitals will give rise to a 4&4 sub-
matrix along the diagonal which is analogous to
the 4&4 matrix of Si. It turns out that B, does
indeed give such a 4&&4 submatrix, but p„and p,
cannot be split up. The reason is that, by sym-
metry, the x and y axes cannot be uniquely de-
fined. The resulting 8&8 submatrix comes purely
from oxygen p orbitals, whereby the nearest-
neighbor interactions can be expressed entirely in
terms of two matrix elements, as has been shown
in the case of the p bands of rocksalt-type com-
pounds: V~ for p orbitals pointing toward each
other, and V, for p orbitals pointing in directions
perpendicular to the vector connecting the two
atoms. In Ref. 34 V, was found to be a 12% cor-
rection to V~ and therefore we drop it completely
in this study.

For the final calculation of the valence bands
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FIG. 4. Valence bands and density of states of P-
cristobalite.

of cristobalite we retained V~ for interactions be-
tween the p orbitals and B, for interactions be-
tween the B, orbitals. 8, is in turn expressible
in terms of V~ and V, , the matrix element be-
tween two Si hybrids on the same atom, as defined
and evaluated in Ref. 27. Assuming the bond
energies e„, E„and E~ along the diagonal are
known (Sec. VIII), only a value for V~ is needed
before the bands may be calculated. The value
used here is V~=1.45 eV, estimated from the
observed total width. (See Sec. VII. ) The result-
ing bands and density of states are given in Fig. 4.
The symmetry designations for the bands uses the
notation of Ref. 35 and have been determined by
standard group-theoretic arguments.

The bands are rather interesting in themselves
but we shall postpone a detailed study of them to
another paper. The interesting observation for
our present purposes is that the "nonbonding" p
bands are rather wide and give rise to peaks,
which, when viewed from a Si atom, have either
odd (mostly p like) character (high-energy peaks)
or even (s like) character (low-energy peak). The
"bonding" bands follow at even lower energies.
Note that though these bands are not quite like the
Si valence bands, due to strong interactions with
the nonbonding bands, they nevertheless give
rise to a p-like peak, a mixed s-p peak and a pre-
dominantly s-like peak. The gap between bonding
and nonbonding bands is produced by the strong
interactions between the two sets of bands. If
these interactions were turned off (so that the
12& 12 matrix separates into an 8 & 8 and a 4 & 4
submatrices), the two sets of bands overlap con-
s id erably.

We have not attempted to calculate the valence
bands of any other form of SiO~ at this time. We
expect the bands will look very different in the
other forms (e. g. , as we saw, quartz actually
has 18 valence bands and a hexagonal Brillouin
zone). On the other hand the density of states
will probably not vary appreciably. This is born
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V. INTERPRETATION OF PHOTOEMISSION AND

X-RAY-EMISSION SPECTRA

No experimental data are available on J3-

cristobalite. (The existence of a form with
straight Si-Q-Si chains has not actually been con-
clusively established. ) It is therefore not pos-
sible to provide a direct experimental verification
of the explicit calculations of Sec. IV. The analy-
sis we presented, however, enables us to provide
a systematic interpretation of all the observed
photoemission and x-ray-emission spectra on
other polymorphs.

0)
2

CL- -4
UJ

CO

~ -8
CO

-10

-l2'LAr X ZW K X 1 DENSITYOF STATES

FIG. 5. Valence bands and density of states for a
hypothetical system with the atomic positions of P-
cristobalite but with g «~, See text.

out, for example, from the study of Joannopoulos
and Cohen who calculated bands and densities of
states for Si in various hypothetical crystal struc-
tures. We do expect one important change, how-
ever. For bent Si-0-Si chains the x and y axes
(Fig. 2) are no longer equivalent so that e„we, .
The eight nonbonding bands would then split into
four p, bands which are truly nonbonding (except
for s ome hybridization) and four B„bands which
are also bonding, though not as much as the B,
bands. We have attempted to simulate this effect
by evaluating the P-cristobalite bands with &„
lying l. 5 eV below e, (see Sec. VII for this
choice). The value of &, was also changed to that
appropriate for bent chains (see Sec. VII). The
resulting bands and density of states are shown
in Fig. 5. As one might expect, the x-y bands
show more peaks in the density of states. The net
result is a predominantly s-like and a predominant-
ly p-like peak from each subset of bands.

Finally, we can attempt to simulate the density
of states of amorphous vitreous silica by refer-
ring to the well-known results, both theoretical3~
and experimental, on amorphous Si. This is
shown in Fig. 5 by the dashed line in the density
of states; it amounts to a filling up of the dip be-
tween the two lower-energy peaks. Recent un-
published experimental data on amorphous and
crystalline Si02 show that this is in fact the only
difference in the two spectra.

In photoemission one illuminates the sample with
light of given energy and measures the kinetic
energy of the emitted electrons. The resulting
spectrum is assumed to resemble the density of
occupied states except possibly for the heights of
peaks, which may change by matrix-element ef-
fects. In particular, uv photoemission (UPS) picks
out p electrons more strongly than s electrons
whereas x-ray photoemission (XPS) does the op-
posite.

In x-ray emission one first bombards the sam-
ple with high-energy electrons which create
holes in the inner shells of the atoms. Valence
electrons then drop into these empty states by
emitting x rays. Again the observed spectrum
resembles the valence density of states, but ma-
trix-element effects are now more pronounced.
For example, when the core level is an s state
the corresponding s-like valence levels are sup-
pressed almost totally. The various x-ray-emis-
sion spectra are usually identified by the spectro-
scopic notation of the relevant core level.

For SiO~ there exist both UPS and XPS data,
taken on amorphous samples. We show these in
Fig. 6 along with the x-ray-emission spectra of
Si 1s (Si KP), Si 2p (Si L2, ,) and 0 1s (0 Ko) core
levels taken on crystalline quartz samples. In
all the spectra in Fig. 6 we do not show the Q 2s
peak, which occurs at about —21 eV. By making
use of the theoretical description of the valence
bands given in Sec. IV these spectra could be
positioned on the energy axis as shown leading to
a consistent interpretation for all of them. In
all cases the zero of energy marks the top of the
valence bands. The numbers in parentheses under
the labels of the XES spectra denote the position
(in eV) of the corresponding core level from the
valence-band top.

The basic premise used was that the nonbonding
bands arising from B„and B, each give rise to a
predominantly s-like and a predominantly p-like
peak and that XPS emphasizes s peaks while UPS
emphasizes p peaks. In addition, the selection
rules for the XES spectra, namely that s core
levels pick out the p peaks and p core levels pick
out the s peaks, were used. The consistent in-
terpretation arrived at is illustrated in Fig. 6 by
the vertical lines through the panels. It should
be noted that the top panel, marked "theory, "
was only used as a guide as to what kind of struc-
ture one might expect. It should not be viewed as
a direct prediction of the experimental spectra.

The correctness of the positioning of the XES
spectra in Fig. 6 can be verified directly by mea-
suring the position of the core levels relative to
the top of the valence bands by XPS. These have
recently been measured and are in excellent
agreement with the values shown in Fig. 6.
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FIG. 6. Photoemission (XPS and UPS) and x-ray
emission spectra of Si02 positioned on the energy axis
so that the zero of energy marks the top of the valence
bands. The top panel is a simulation of the density of
states of the valence bands as described in the text.

A few words about each spectrum are in order.
Starting with the bottom panel of Fig. 6, the 0 Kn
spectrum, we note that the main peak arises
from the nonbonding oxygen p, orbitals while the
shoulder on the left arises from the "partially-
bonding" oxygen p„orbitals. The height of this
feature is reduced because p„ is a component of

8, and its population is reduced by the factor
[—,(1+ S~„)]'~ appearing in Eq. (17). Since p~
=0. 73 (Sec. VII), this would predict a reduction
in intensity of about 15% which is in good agree-
ment with experiment. The lower peak farther
on the left arises from the p, oxygen orbitals which
are components of B, [Eq. (16)]. The reduction in
intensity is now determined by the factor [—,'(1

+ P~, )]'~3 which comes out to be 65/q, again in rather
good agreement with experiment. The overall in-
terpretation of this spectrum is in good agreement
with interpretations proposed previously. "'"'"

The Si Lz, spectrum consists of two main
peaks4~'4' which, from atomic symmetry considera-
tions, sample Si s-like states in the valence bands.
The 8, bands have no such components and thus
do not appear in this spectrum. The two observed
peaks thus arise from the B„and B, bands. Notice,
however, that the peak on the right does not
coincide with the corresponding peak in the 0 Kcy

spectrum. This demonstrates the importance of
banding in the B„orbitals as noted earlier: owing
to band- s tructu re effects, the B„orbitals give rise
to an s-like peak, picked out by Si L2, , and a /-
like peak, picked out by 0 Ko. Thus the orbital
energy of B„cannot in principle account for all the
observed spectra, which explains the failure of
previous attempts to interpret all the spectra in
in terms of molecular orbitals. This is the first
time that band-structure effects are shown to be
important in obtaining a consistent interpretation
of all the observed spectra. Similarly, the peak
on the left corresponds to the s-like peak of the
B, bands. Again, the importance of band-structure
effects is demonstrated. The relative heights of
these two peaks, however, are not directl. y in-
terpretable (one would expect the low-energy peak
to be stronger).

The Si KP spectrum is expected to sample the Si
p-like states in the valence bands. Once more,
the B, bands do not appear. A strong peak arises
from the B, bands which corresponds to the same
peak picked out by the 0 Ka spectrum. A smaller
feature on the right corresponds to the p peak of
the B, bands as in the 0 Kcy spectrum. Note that
the intensity ratios are now essentially reversed
because the Si orbitals are more heavily occupied
in B, states rather than the B„states [Eqs. (16)
and (17)]while the opposite was true for the oxygen
orbitals.

Finally, it is clear that the UPS and XPS spec-
tra sample all the peaks mentioned above, but with
different emphasis. Note, however, that these
spectra were taken on amorphous samples. The
dotted line in the leftmost peak of the XPS spec-
trum (Fig. 6) is drawn to indicate what the spec-
trum might look like for a crystalline sample.

Figure 6 also helps il.lustrate another important
point, namely that trying to extract total band-
widths and/or band edges from XES spectra. may
be an unreliable procedure because some structure
near the edge may be totally wiped out by vanish-
ing matrix elements. This difficulty is particularly
evident in the Si Lz 3 and Si KP panels of Fig. 6
where the band edge is seen to be considerably
higher than any extrapolation of the tail would
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indicate. XPS spectra seem to be the best choice
for extracting bandwidths and edges.

VI. OPTICAL- AND SOFT-X-RAY-ABSORPTION SPECTRA

We turn now to the excited states of these crys-
tals. At this stage, in the absence of a full band
calculation, only qualitative arguments can be
made. The tight-binding scheme of Sec. IV is not
suitable for calculating conduction bands but it
can give an indication as to what orbitals will give
rise to them and at what energies the oscillator
strength with the valence bands is concentrated.
For example, in Si the valence bands arise from
the bond orbitals I b) [Eq. (1)] while the conduction
bands arise from the corresponding antibonding
orbitals I a) [Eq. (3)]. Similarly, we can expect
the conduction bands in SiO~ to arise from the
antibonding orbitals IA„) and I A,). (There is no

I A, ) because I 8,) =
I p,). ) Other orbitals that may

be present are the O 3s orbitals and the Si 3d or-
bitals though the latter are safely neglected4~ in
view of the fact that in Si the 3d bands lie rather
high in energy. The position of I A, ) may be in-
ferred in a straightforward manner (Sec. VII) to
lie high in energy. I A„), however, interacts with
the 0 3s orbital giving two states IA,) and I A )
("bonding" and "antibonding" combinations). I A )
is likely to be pushed at high energies leaving IA.)
to give rise to the lowest conduction bands. Its
composition is
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FIG. 7. Valence- and core-electron excitation spec-
tra of Si02. Top panel: solid line from Ref. 1, dashed
line from Ref. 44; middle panel: solid line from Refs.
3 and 4, dashed line from Ref. 44; bottom panel: from
the conduction-band edge.

I A, &
= c,

I
5&+ c2

I 0*&+ cL I
»& (23)

where the coefficients cannot be determined ex-
plicitly. In P-cristobalite, however, with /=1.80',
ca=0. The symmetry of I A,) is then even, much
like I b), and, in S-cristobalite, it will give rise to
four bands, resembling the valence bands of Si.
The resulting symmetries at F will be FL (fully
symmetric) and Fz,

A. Optical-absorption spectra

The first spectrum of interest arises from ex-
citations of the valence electrons to the conduc-
tion-band states and to excitons constructed there-
from. This can be measured by optical absorp-
tion, ' by energy-loss experiments '" or photo-
yield experiments. It is also the hardest to in-
terpr et becaus e of dispersion in both in the initial
and final bands and because of excitonic effects.
The presence or absence of the latter can be
checked to a certain extent by measuring the band

gap with an independent experiment, such as pho-
toc onductivity.

The optical-absorption spectrum' of Si02 is
shown in the top panel of Fig. 7 by the solid line.
The dashed line is the energy-loss spectrum for
the same excitations as measured recently by
Koma and Ludeke. 44 The vertical line at 9 eV

marks the band gap as measured by photocon-
ductivity by DiStefano and Eastman. ' The absence
of structure below 9 eV signifies that excitons
are absent in this material. This is analogous to
the tetrahedral semiconductors where excitons
have small binding energies and little oscillator
strength requiring high-resolution data to re-
solve. In fact it may suggest that the band gap is
indir ect.

This analogy with tetrahedral semiconductors
suggests that the observed spectrum may be in-
terpreted by analogies with the optical spectrum
of Si. In that case the excitations are from the
bonding I b) bands to the antibonding I a) bands and
the result is one prominent peak, usually denoted
by E2. This was actually identified by Harrison
and Ciraci~' to represent the bonding-antibonding
separation denoteda' by 2'. We may therefore
expect similar peaks arising from excitations
from the bond orbitals I8,), I 8,), and I 8,) to the
antibonding orbitals I A,) and I A,). Symmetry,
however, forbids some of these excitations. In
Fig. 8 we show a pictorial of all the orbitals in-
dicating by arrows those of the transitions that are
allowed. The numbers in the circles represent
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s„+

FIG. 8. Pictorial representation of the bonding orbit-
als B„, B~, B, and the antibonding orbitals A» and A, .
The arrows denote the allowed transitions. The labels
are the component of the electric field 6 that makes the
transition possible and the number of the peak (compare
Fig. 6, top panel) with which the transition is tentatively
identified.

tentative identification of the transition with the
peaks in Fig. 7, top panel. "h. e. " denotes high-
energy excitations. We may note that our inter-
pretation is similar to that of Ibach and Rowe in
that we identify a single excited state being re-
sponsible for the observed spectrum. Our assign-
ment of initial states is, however, different.

If our assignments for the first two peaks in the
SiO~ spectrum are correct, we are able to predict
the corresponding peaks in GeOz (see Sec. VII).
The first peak is predicted to lie at 11.1 eV. The
experimental spectrum4' is shown in Fig. 9. The
structure around 6-7 eV is probably not due to
excitations in bulk GeO2. (Phillips'6 has suggested
it is due to a metastable GeO„ layer on the sur-
face. ) This structure is then followed by a distinct
peak at 11.0 eV, which compares very well with
our prediction of 11.1 eV (Fig. 9). Above the
first peak at 11 eV, however, GeO~ does not show

the distinct peaks observed in SiO~. We neverthe-
less indicate our predictions for the locations of
these peaks. We observe that these peaks are
now more closely spaced which may be responsible
for the rather washed out structure.

valence-to-conduction-band gap. The validity of
this approach is a rigorous theorem proved recent-
ly by one of us (S.T. P. ). '7'8

In Fig. 7, in the lower two panels, we show the
Si L,~, and 0 K excitation spectra from Refs. 3,
4, and 41. The conduction-band edge in each
panel is denoted by the solid vertical line. The
three panels are positioned with respect to each
other so that the three band edges coincide, in
order to facilitate discussion. This makes clear
that the interpretation given by Koma and Ludeke44

for the three spectra cannot be supported.
The most interesting feature of the two core

spectra in Fig. 7 is the presence of structure be-
low the band edge which signifies the presence of
excitons. This is in agreement with the analysis
of the respective spectra in insulators47 where
excitons were found to be dominant with large
binding energies and also the tetrahedral crystals
where excitons are also present. ' " Koma and
Lud eke4' appear to have res olved the cor e exciton
in the Lz, spectrum of Si and have also seen a
surface state below it.

The interpretation of the two core spectra in

Fig. 6 cannot be conclusive at this time. Both
of them exhibit a prominent peak at about 2. 5 eV
below the band edge (the band edge is of course
uncertain by about 0. 5 eV). Alkali halides have
been shown'7 to have core excitons with binding
energies of several eV, whereby an interpretation
of the observed peaks in the SiO~ soft-x-ray spec-
tra may very well be excitons with binding energies
of about 2. 5 eV. The possibility of surface states
(both true surface states or states associated with
internal dangling bonds present in the amorphous
phase) cannot be ruled out, however.

(sy —d+)
(B„-A)

B. Soft-x-ray-absorption spectra

The x-ray-absorption spectra (or x-ray energy-
loss spectra) might be expected to give more
direct information about the excited states of
crystal because the initial states (core levels) are
dispersionless. This would in fact be true if ex-
citonic effects were not present whereby the final
states would be the conduction-band states. The
presence or absence of excitons can again be
checked by an independent determination of the
conduction-band edge relative to the core level.
This can be done by a simple addition of the energy
separation between the core level and the top of
the valence band from XPS or XES spectra and the

4 6 8 I 0 12 l4 l 6 I 8 20

ENERGY(eV)

FIG. 9. Optical-absorption spectrum of Ge02 com-
pared with that of Si02.



TABLE II. The parameters of the model for SiO~
(quartz) and quartzlike Ge02. Note that only g 2 and gr
are the tv''o fundamental parameters determined from ex-
perimental data on SiO2. All other quantities, including
all GeO2 parameters (other than d and (t ) are derived
from these.

P {deg)
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Si02 (quartz)
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144'
18'

0, 3
0.093
0.285
4, 35 eV
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10.00 eV
5.85 eV
5.10 eV
7.48 eV
3.26 eV
0.73
1.00
0.29
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Ge02 (quartzlike)

1.74 A.
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25'

0.3
0.127
0.272
4.49 eV
9.13 eV
3.30 eV
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FIG. 11. Quantities V2 and V2„(corresponding to the
first two optical-absorption peaks at 2Vh, and 2V2„) and V2,
as functions of the Si-0-Si angle.

the notation 2V2 employed for Si in Ref. 21. This
will be useful in Paper II (Ref. 18) where the

present picture is extended to study AlPO4 and other
compounds. In terms of the W's introduced in

Sec. III it is rather straightforward to obtain

VII. DETERMINATION OF FUNDAMENTAL PARAMETERS 2v,„=2(2w', „+ w,')'~', (24)

(25)
Before we proceed to study further properties

it is useful to obtain values for the fundamental
parameters of our model, which are basically two,
Wa and W3. The description of the valence and
excited states given thus far enables us to do that
in a convenient way.

For this purpose we refer to Fig. 3. The dia-
gram contains in a concise and illustrative fashion
all our assignments. We denoted the excitation
energies by 2V~„, 2V~, and 2V~, in analogy with

2Vs, ——Ws+ (2Ws„y Ws) ~

(28)
In view of (20), the only parameters that need

to be determined are W~ and W3. The value of S
we estimate from the overlaps calculated by
Gilbert et al. ' to be 0.3. By using an angle Q
=144' (quartz), whereby 8=18, we obtain values
for all parameters by setting 2V3, = 10.2 eV and

2V2„= 11.7 eV according to our optical-excitation
assignments. This is enough to determine our two

fundamental parameters to be W3=10. 75 eV and

W3 4. 35 eV. The resulting values for the other
parameters are listed in Table II. In particular
we note the values of the two internal polarities
Pp =0.73 and Pp =0.29 which are measures of
how polar the respective Si-O bonds are. For
completeness we also define P~ = 1 denoting the
fact that the p, orbital does not interact at all with
the neighboring Si hybrids.

Having determined Wa and W3 we can also
evaluate all the parameters for angles other than

P =144', which corresponds to quartz and amor-
phous silica (Table I). As an example, in Fig. 10
we plot the polarities Pp and Pp and in Fig. 11
the quantities V2„V~„, and Vz, as functions of the
Si-0-Si angle.

Perhaps even more interesting, we are also able
to predict all the relevant parameters for GeO~.
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FIG. 10. Polarities p~ and p~ of SiO2 as functions
of the Si-O-Si angle. Also shown is the net effective
charge on the oxygens.

EI ECTHONIC STRUCTURE, SPECTRA, AND PROPERTIES. . .



SQKBATES T. PANTEI. IDES AND WAI. TER A. HARHISQN

W'e turn now to the refractive index at long
wavelengths, usually denoted by pg, or, equivalent-
ly, the electronic dielectric constant e„. The two
are related by

82= (28)

In order to calculate an expression for the di-
electric constant generally one starts by caleulat-

For the fundamental parameters W2 and W~ we
are guided by the results of the bond-orbital. model
on simpl. e tetrahedral crystals as follows. 8'2,
the bonding matrix element is of the same nature
as V2 of the tetrahedral crystals, which was found

by Harrison and Ciraei2I to vary as d 2 from ma-
terial to material. This same d 2 dependence of
similar matrix elements was subsequently found
by Pantelides34 to hold in ionic crystals of the
rocksalt structure as well. We therefoxe assume
a simple d rule for W2. From its value for
SiO2 we obtain

Wg = 3.6 (h /I) d 2 . (27)

For GeO&, fox which d=1. 74 A, we obtain TV2

=9. 13 e7.
As for IV3, we use Eq. (14) and the fact that the

hybrid energy5 of Si is lower than that of Ge by
0. 27 eV to obtain a value of g&, =4.49 eV for Ge02.
Using the observed angle p =130 for GeQ2 we
then proceed to calculate all the other quantities
of the model. They are listed in Table II along
with those of SiQ2. In terms of these quantities,
physical properties may be directly predicted.
This was done, for example, for the optical-ab-
sorption spectrum, as mentioned in Sec. g, and
will be done for other properties in the remainder
of this paper.

Finally, we conclude this section with a note on
how the band parameters of Sec. IV were deter-
mined. For the diagonal matrix elements one
needs e~, ~~, and e~ . These are directly
evaluated from Eqs. (21) and (22) by using the
parameters of Table II. &, is used to set the zero
of energy. For example, for P-cristobalite the
result is &„=q, and &, = &„-5. 0 eV. For the off-
diagonal. elements we need to evaluate V~. We do
this by noting that the top of the valence bands is at
&,+ V~ and the bottom at e, -68„ for a total width
of c, —e, + V~+ 68, . By using the expression

Bg=~(1 —8,,)I'g+ 3(1+ iI,,)~,
and a value of VI- 1.4 eP from our previous re-
sults on Si, we obtain the total width explicitly
in terms of V& and known parameters. The value
of V~ is then determined to reproduce the ob-
served total width in quartz, i. e. , 11.3 eV.

VII. REFRACTIVE INDICES AND DIELECTRIC
CONSTANTS

ing the change in the electronic charge density
caused by the application of an external potential.
In the general formalism5 this is done by cal-
culating the changes in the occupied Bloch func-
tions to first order in the appl. ied field and sum-
ming over the Brillouin zone. The standard ex-
pression for q„ is then

where E„~ are the energy bands, n is summed
over the occupied bands and n' over the empty
bands, and the oscillator strength f„.„~ is given by

f„.„~= (2h /m)(p„. ~~&
~
iil„~) /(E„,~- Z„~) . (30)

Here p„~ are the Bloch functions.
Clearly, this general formal. ism requires that

one knows both the energy bands and Bloch func-
tions over a sufficiently large mesh of points in
the Brillouin zone. Moreover, the calculation,
which in the end will yield one number, must be
done numerically. In contrast, in our model,
the bond-orbital approximation makes the cal-
culation of &„a much simpler operation. We do
not start with (29). Instead, we notice that, with
the bond-orbital approximation, the total energy
and char ge density are given by the bond orbitals
themselves, without a need for explicit Bloch
functions and energy bands in 0 space. In par-
ticular, the total electronic energy is propor-
tional to the sum of bond energies and the total
charge density is proportional to the charge density
of the bond orbitals (see Sec. III). Thus, for the
dielectric constant calculation, one only needs to
calculate the changes in the individual bond or-
bitals. This is equivalent to saying that the di-
electric constant may be calculated by treating the
crystal as a collection of polarizable bonds. Hence

6 ~ = 1 + 4 7TNp cv p )

where e, is the bond polarizability and X, is the
density of bonds. [Equation (31) would apply in

the case of the tetrahedral crystals where there
is only one kind of bonds. In Si02, one must sum
over the 8„, B„and B, bonds; see below. ]

Before we go on to how n, is calculated, it is
useful to compare this approach with analogous
approaches to the dielectric constants of ionic
crystals, such as the alkali halides. The classical
approach5' has been to treat the crystal as a col-
lection of independently polarizable ions so that '

q„= 1+ 4v(N, o.,+N a ) .
The polarizability of each species of ion has been
thought to be independent of its environment.
This appx oach has recently been criticized by
Pantelides. '6 In fact it was shown'6 that the con-
cept of independently polariable ions is invalid
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(33)

where N is the density of anions with e given by

e =gCd',

where g is a geometric factor, "C is a constant
that depends only on the cation and d is the inter-
atomic spacing (see also Ref. 58).

Going back to (31), it remains to be seen how

z, is to be calculated. For tetrahedral solids,
Harrison calculated +~ by simply calculating the
dipole P induced in each bond by an external field
8 whereby

P=n, S . (34)

Alternatively, it may be calculated by using the
general quantum-mechanical formula for a
localized system, namely

2ez ~ &1t&/lxl1t1/. &'

m ~y. E~. —E,.

where Q,. are the occupied orbitals and Q, are the
available excited orbitals. This proves to be a
simpler calculation in the case of SiO~ and there-
fore we first see how it works for tetrahedral
crystals.

For a bond in a tetrahedral crystal, Q& is simply
the bond orbital I 5). By including only the anti-
bonding orbital I/2& in the sum over j ', the cal-
culation becomes very simple. The energy de-
nominator is simply 2(V22+ V2)1/2 (notation of
Refs. 18 and 21), while the matrix element may
be expressed

—~,&I.IxIa,&, (36)

where e~ is the polarity and z, is the covalency
given by

(1 2)1 /2

In Ref. 21, the second term in (38) is set equal to
zero by assuming symmetrically disposed hybrids.
By defining3' the quantity in square brackets equal
to 4ya, where a is the lattice spacing, as in Ref.
21, and substituting in (35) we get for the bond
polarizability

ezy 2d 2o2/8 (V 2 Vz)1/2 (38)

and that the extreme opposite assumptions hold.
This criticism does not apply to the assumptions
leading to (31}for tetrahedral crystals and Si02.
In fact it does not invalidate (32) either. Instead,
the results of Ref. 56 could be summarized by
saying that n, is in most cases negligible and n
is not an intrinsic property of the anion but is
rather determined by the cation and the interatomic
spacing. En other words, one could still write

where d is again the interatomic spacing (bond
length). Substituting this in (31) and using N2= 2N

(N is the density of electrons) we get Harrison's
formula

~„=1+ [y'1/Ne'd'/3(V, '+ V,')'/2]n' , .
For the diamond-type crystals (V, = 0, o/, = 1),
this reduces to

(38)

e„=1+ y 1/Neid /3V2. (39')

(B,Ir I
W,&- —y'P„-.'d,

&B,Ir I/I, &- y'[-,'(1+ P, )]'/'-.'d,
(44)

(45)

We turn now to the dielectric constant of SiO3.
The bond-orbital approximation again allows us to
treat the crystal as a collection of polarizable
bonds. Each "bond" now is, however, in effect
three bonds (the B„, B„and B, bond orbitals)
whereby the sum in (35) will give us at least
three terms. By including only the three main
excitations we identified in Sec. QE, namely 8„

8,—4„and 8,- 4„ the three energy de-
nominators are 2V~, 2V2„and 2V2„respectively
(Fig. 3}.

We now need the corresponding matrix elements.
If we take l.4,) = I/I„&, then

I&.&= I4.&=[ (I+I3„}]'"I»
—[-' (1 —II,„)]'"

I
/ „& , (40)

and the necessary matrix elements could be written
in terms of &//lxl(1, &, &I/Iylf1, &, &I/lz le,&, &blz irz&,

and the center of gravity of each orbital, such as
&5 ix I » In the .simple tetrahedral solids the
corresponding matrix elements were reduced to
a single one by selecting the origin such that
&/1, I r I /1, &= 0 and writing (h, lz I/1, &-&/1, lz I/1, &= yd.
Thus y would be unity if the hybrids were localized
at the nuclear sites. We may see that this point
of view is inadequate in SiO~ by assuming localized
orbitals leading to

(B„IxI /I, &- —2(t}, dsine), (41)

&B,IvI/I, &-0, (42)

&B Iz I/I+& [(1—
po )(1+ 82 )]'/ —,(deosg} . (43)

This point of view wil. l provide a useful description
when we describe the change in dipole with the
movement of the atoms since the orbitals move
with the atoms. However, Eq. (42) provides no
coupling with the I B,) mode though the optical
properties (Sec. VI) show that such coupling is
comparable to the others. The reason is quite
clear: The orbital I » included in I/I, & closely
resembles the oxygen I3s) orbital [(3s I 5&&1; ef.
Eq. (23)] and therefore has strong coupling with
all three oxygen p orbitals. Assuming this is the
dominant term, one is led to
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&B.l l~.)-&'['(I+ P „)(I+P )]'"'d (46)

where y'=2(p„lxl3s)(3s I 5)/d and is the same for
y and z orientations. This form would of course
not be useful in the displacing of atoms since the

I b) orbitals move with the silicon atoms, not the
oxygen atoms.

It is important to recognize that the terms of
Eqs. (41)-(43) and Eqs. (44)-(46) are not additive
contributions to the matrix elements but different
parametrizations useful for different properties.
The same differences would have arisen in the
simple solids, had we looked at graphite rather
than diamond structures. The l.ocalized orbitals
picture would have remained appropriate for de-
scribing charge movement under distortion but
would have missed the coupling of the m states
with the antibonding bands under fields perpendicu-
lar to the layers.

Using Eqs. (44)-(46) the dielectric constant be-
comes

wXe'd'y" fl ~, 1+ Pp„(1 P+p. ) (1+ P~.)

(47)
All quantities are known except y' which may be
fitted to the experimental value. A value of y' =1
in fact gives &„=2.37 for n-quartz, compared to
the experimental 2. 40.

We may expect y' to be relatively insensitive to
structure and can therefore predict the values of
q„ for the various forms of Si9z using values of
N, d, and p from Table I. These are compared
with the experimental values in Table III. Qood
agreement is obtained in all cases except for P-
cl lstobRllte Rnd coeslte. This dlscl epRncy may
be understood by noting that P-cristobalite and
coesite are the only forms for which P is thought

I ) ) I I

4J
C5x 1.55—
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)- l.50—
«t

h.
w 1,45—
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FIG. 12. Empirical correlation between the refrac-
tive index n of the various forms of Si02 and their re-
spective specific gravities.

to deviate appreciably from 144', the value in
quartz. The results of Table III may therefore
mean one of two things. y' might have appreciable
dependence on P. On the other hand, it is likely
that P =180 is unrealistic even for P-cristobalite.
Taking (II) =144 gives us &„=2.05 in better agree-
ment with the experimental value of 2. 17. Similar-
ly the value P =120' for coesite may be erroneous
in view of the fact that the suggested structure
does not agree with the observed density (see Ref.
26 and footnote b of Table III).

There exists an empirical linear correlation
between the refractive index n, or, equivalently
(&„)'~2 and the specific gravity of each of the forms
of SiOz. This is shown in Fig. 12, taken from
Ref. 60. It is not altogether reliable, however.
For example, when P. P. Keat ' first grew crys-
tals of what later was called keatite, he measured
the index of refraction to be 1, 513 (&„=2. 29) and
then used the empirical plot of Fig. 12 (sans
keatite) to infer the specific gravity (density) of
the new form of silica. In subsequent quotations
of the plot (such as Ref. 60) this fact was not

TABLE III. The density of electI'ons X and theoretical and experimental. (Ref. 63)
values for the die1ectr ic constants &„ of the various forms of SiO2 and GeQ, . The angu-
lar dependence of y

' has been neglected.

Si02 e-quartz
P-quartz
e-cristobalite
P-c ristobalite
P-tridymite'
Coesite
Keatite~
Vitreous silica
Quartzlike
Vitreous germania

0.3187
0.3028
0.2802
0.2615
0.2665
0.3483 (0.3614)
0.3011
0.2573
0.2977

(Theor. )

2.37
2.30
2. 25
2.74
2, 02
2.04
2, 29
2.11
2, 89

2.40
2. 34
2, 21
2, 17
2.19
2.56
2.31
2. 10
2.92

We assued (t) = 144 as in quartz.
"The value 0.3483 assumes 16 SiO~ molecules per cell, according to the suggested

structure. The measured density, however, points to 16.6 molecules per cell, whereby
)V=0, 3614 A
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l.3—8

l„2—

l.4

were calculated from the structural data listed in
Table I (See Table III). It is clear from Fig. 12
that both (49) and (50) are rather well satisfied.
Note that the solid line in Fig. 12 passes through
the origin, as it should. The dashed line does not.

Finally, we attempt to predict &„ for the quartz-
like form of GeQz. We use the parameters of
Table II, y' =1 and evaluate Eq. (47). The result
is &„=2.36. This number must, however, be cor-
rected for the effect of d electrons which is Bef.
21 were included by multiplying y by a factor
1.18. Using the same factor here we get a final
value of &„=2. 89 in excellent agreement with the
experimental63 value 2. 92.

IX. TOTAL ENERGIES AND EFFECTIVE CHARGES

& & MELANOPHLOGITE

! I I I I

0.24 0.26 0.28 0.30 032 0.34
ELECTRO' DEVSIn (A 3)

0.36

FIG. 13. Plot of e„-1and also n against the electron
density N for the various forms of Si02. Linear rela-
tionships are satisfied in. both cases but theory predicts
only the relation for &„+l. See text.

e„-1= CN, (49)

which is not the same as the empirical relation of
Fig. 11, which may be expressed

(e„)'"=c,+ c'N .
However, Eq. (50) may be regarded as a linear fit
to (e„)' = (1+ CN)', which appears to be ade-
quate in the region of observed N's. To illustrate
this we have plotted in Fig. 13 both &„—1 and
n= (c.„)~~ aga. inst the electron density N (N is pro-
portional to the specific gravity). The values of
&„were taken from Bef. 63 and the values of N

pointed out. It is not clear whether such inter-
polations were made for any of the other forms
of silica. Another difficulty with Fig. 12 is that
coesite is shown with specific gravity 2. 9 where-
as Coese~ measured it to be 3.01.

In any case, it; might be worth checking whether
our formula for e„, Eq. (4I), can explain the ori-
gin of this empirical observation. We immediately
observe that since d, the Si-0 distance, is rather
constant for the various forms (Table I) Eq. (47)
yields

&„=I+ C(g)N,

where C(g) is only a function of 9. 'Ihe variation
of 9 is, however, also small and in fact the func-
tion C(8), when evaluated, is found not to vary
appl eclably with g. We would thus predict that
roughly

At this point we turn to examine a series of
problems relating to effective charges on the
atoms. The simplest case is the static effective
charge which corresponds to the net charge on
each atom in the unperturbed crystal. It gen-
erally involves some arbitrariness in the way
it is defined but the tight-binding model we have
been using provides a natural definition ' '~'~'~
For example, for the simple bond orbitals lb) in
zinc-blende-type crystals [Eq. (4)], it is natural
to identify ju, j and jw, j as the fraction of each
electron to be associated with the anion and cation
respectively. The effective charge on each ion is
then calculated in a straightforward manner to be

z.*=9/&, ['-z, ,

z,* =9 /n, /'- z, ,

(»)
(52)

in units of the electron charge e. Here Z, and Z,
are the formal valences of the anion and cation,
respectively. Since Z, + Z, = 8 and 4

j ~~, j + j g, j
~ = 1,

we note that Z,*+Z,*= 0 or

01
y

since P~ = ly

Z+O = p~ + I3~

as it should.
As we saw in Sec. III, u, and ~x, were obtained

by minimizing the bond energy (5 i H l b), a step
which, beca, use of the bond-orbital approximation,
corresponded to minimizing the total electronic
energy. In view of (ll), the result for zinc-blende-
type crystals is

Z+ = —Z~+ = 4ey~ —AZ,

where hZ=Z, —4.
The analysis for the static effective charges in

SiOz and QeO2 is now straightforward. We sum the
contributions of all three bond orbitals B„, 8„
and I3, and the result is
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The value of this charge in SiOz (quartz) and GeOz
is 1.02 and 1.05, respectively, as listed in Table
II. For the various forms of SiQz, Zo is plotted
as a function of the Si-0-Si angle in Fig. 10 in
the approximation that W~ does not depend upon g.
The values are in good agreement with those cal-
culated by cluster methods. ' '

The static effective charges we just discussed
do not enter experiments very directly, however.
Any experimental measurement perturbs the sys-
tern and the measured value contains contribu-
tions from the redistribution of charge caused by
the perturbation. This, in turn, changes the
value of 8'3. The problem is fundamentally more
difficult in SiQz than in the simple tetrahedral
solids. In the latter, symmetry guarantees that
there is no net change in the charge on an atom
linem. in displacement, whereas in SiQz there is.
The algebra is rather involved and for simplicity
we will first carry out the analysis for a simple
tetrahedral solid. The generalization to SiQ~
will then be straightforward. In order to simplify
the algebra even further we will neglect the small
effects of the overlap S. The analysis is directed
at the total energy and charge distribution as a
function of local distortion; effective charges are
only one aspect.

In simple bonds, the bond orbital was written
as a linear combination of hybrids on the two atoms
sharing the bond, I 5) = u, I h, )+ u, I h, ). The matrix
element of the Hamiltonian between any two hy-
brids was called —V~ (or —H~~ for the correspond-
ing situation in SiOz). The difference in the ex-
pectation value of the Hamiltonian with respect to
the two hybrids, was written 2V3 and the form of
the bond orbital was obtained by minimizing the
energy

(5 iHI5)= —(u, —u, )VS —2u, u, Vz . (57)

We now note that the energy difference 2V3 will
shift with a change in effective charge and there-
fore itself depends upon u, and n, . We may in-
corporate this dependence explicitly in order to
see more clearly the meaning of our empirically
determined Vs and to see how to include the ef-
fects of changing effective charges.

We write the value of V3 which would be ap-
propriate if all constituent atoms were neutral as
V3 We might estimate it from the difference in
hybrid energies, calculated from the atomic term
values; a value of 1.88 eV, for example, is found

for GaAs. We then imagine transferring elec-
trons to the nonmetallic atom, giving it extra
charge and therefore changing the potential seen by
an electron on that atom in proportion to the charge
transferred, z. The magnitude of the correspond-
ing reduction in V~ is written Aoz e /d, where d
is the equilibrium bond length, introduced to make

z =4(uz- uz) —nZ,

where 4Z is one for GaAs, two for ZnSe, and
three for CuBr, etc. We then use also the nor-
malization condition, n, +@~=1, to solve for u,
and 'tl and obtain the bond ellergy

(5~ff~5)=- —,'(z+ ~Z)V,

—[l ——,', (z+ ~Z)']'~'V, .
We may write V, explicitly in terms of z,

V3(z) = V~ —(40 —A„)e z/d .

(59)

To obtain the total energy we may sum the bond
energies, Eq. (59), but subtract the Coulomb
energies which have been counted twice, as usual
in a self-consistent-field theory, and add Coulomb
interactions between atoms. This yields the total

40 dimensionless. The A~zez/d is taken to depend
only on the atoms involved and independent of the
positions of the atoms. This increase in energy
is partially compensated by the lowering of the
electron energy due to the neighboring atoms
which are now positively charged. The magnitude
of that correction is written A„ze /d, where A„
is the familiar Madelung constant. for the struc-
ture, s' frequently written ~z, and does depend
on the atom positions. This term is known; the
constant A~ is 1.638 for the zinc-blende struc-
ture, leading to a contribution to V, of 9.6 eV in
GaAs. Comparison with the known value of V,
=1.21 eV in GaAs, yields an equilibrium value of
doze /d of 10.3 eV. Thus there is very strong
cancellation between the two electrostatic terms;
that is perhaps not surprising in view of the subtle-
ly of the changes in charge distribution involved
in the transfer charge in the polar solid. In the
SiQz calculation we will in fact take Ao and A„
equal in the equilibrium crystal structure, an ap-
proximation which would be reasonable here but
which we would not make use of.

It is clear that the shift in V, due to charge re-
distribution is just what is traditionally called
"screening. " It is frequently treated on the basis
of a dielectric constant, but is here considered
on a microscopic level. If this calculation leads
to charge accumulation and long-range fields,
the polarization of the distant bonds may be in-
cluded using the dielectric constant. That addition-
al step will in fact not arise in the discussions here
but would, for example, if we sought the I.yddane-
Sachs- Teller splitting. 67

It is convenient at this stage to rewrite the en-
ergy of Eq. (57) in terms of the atomic charges
z introduced above rather than in terms of ~z, and

We first write the charge on the atom in
terms of the contributions from the four bonds sur-
rounding it and from the nuclear charge,
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energy per atom pair (eight times the energy per
electron) of

E«, ——2z V,'+ (A, —A~)z'e'/d

—6V,[1——,', (z+ ~Z)']'" . (61)
z

This is the quantity to be minimized with respect
to z to obtain the equilibrium effective charge and
equilibrium energy.

A simpler way of obtaining this expression,
which will be used when we go to SiO~, is to inte-
grate the work done in transferring charge be-
tween atoms, starting from neutral atoms,

2V3(z) dz, (62)

which yields the first two terms in Eq. (61). We
then add the covalent energy Ez(z) which is defined
to be the last term in Eq. (61); it came directly
from the last term in Eq. (57). This gives the
same result.

Taking the derivative with respect to z we see
that indeed the V, evaluated from Eq. (60) at the
z corresponding to minimim energy plays the role
of the polar energy V, in the simple theory and is
the quantity fit to experiment, and that the value
of z which minimizes the energy is Z~ =4V, /(V22

+ V3z)'~ —hZ as in the simple theory [Eq. (54)].
Of particular interest here is how the charges

and energies change when the system is distorted.
We consider some distortion parameter g, which
might be a particular shear strain, for example.
The expression above for E„,remains appropriate,
but now A~ and V~ become explicit functions of g.
Et t is a function of the two independent var iabl es,
q and z. In Fig. 14 we show a schematic contour
plot of E„,(7I, z) appropriate to q as a shear strain.
For fixed q we may minimize with respect to z to
obtain effective charges and the energy of the state.
We may also minimize with respect to q to obtain
the equilibrium g, which will be at q=0 if g is a
shear strain.

To compute the elastic shear constant we note
that both A, „and Vz vary only quadratically with

q so Z* also varies only to second order in q,
and since at equilibrium E„,is stationary with
respect to z, we may obtain the change in energy,
to second order in q, in terms of s'E„,/aq' at
constant z. This is also apparent from Fig. 14.
There are two contributions: the first, from
& A~/s'il, is just the electrostatic contribution
from fixed charges of Z*. (Note a2Z*/sr) does
not enter. ) The second, from 8 V2/Bq, is just
the contribution calculated by Harrison and

Phillips, ~~ who ignored electrostatic effects. The
Madelung contribution to the elastic shear con-
stant has been calculated by Blackman and dis-
cussed by Martin. " The contribution to cyg cyg

FIG. 14. Schematic contour plot of the total energy of
a tetrahedral solid as a function of shear strain q and

effective charge z. At any given strain, the ground
state is obtained by minimizing the energy with respect
to z. This leads to values Z~(p) indicated by the dashed
line, which crosses each contour at the vertical tangent.
According to this plot the effective charge would in-
crease in proportion to the square of the shear; the
elastic shear constant itself can be computed using the
equilibrium effective charge Z*(0).

W3(z) = Ws —(Ao —A~)ze /d . (63)

The value we have fit to experiment is W, (Z*),
where Z* is the value of z which minimizes the
total energy.

To obtain the total energy explicitly we may, as
in the tetrahedral solid, compute the work done in
trans ferring char ge, starting fr om the neutral
atoms, —f 2W, (z) dz, and adding a. covalent con-
tribution E~ which is the appropriate generalization

is given by 0. 053 Z* e /d'. In GaAs, for example,
with Z* =1.0, the electrostatic contribution is
0. 34x10" erg/cm2, very small compared to the
experimental 6. 5x 10" ergs/cm . Thus this gen-
eralization does not significantly affect the findings
of Harrison and Phillips. Similarly, the effective
transverse charges and piezoelectric charges '
concerned changes linear in strain and are not at
all affected.

The situation in SiO~ is analogous. We have de-
fined W, to be half the energy per electron in trans-
ferring charge from Si hybrids to O fi states at the
equilibrium positions and charge distributions.
We now decompose this into a value W, appropriate
to the neutral atoms and a term —(Ao- A~)z ez/d,
where z is the effective charge on the oxygen (or
half the effective charge on the silicon) and d is the
equilibrium Si-O distance. Thus we define a
charge-dependent W, given by
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of the expression in the tetrahedral solids. It is
convenient to divide the total energy by the number
of oxygen atoms to obtain what we call the energy
per bonding unit,

E„,= —2zWs+ (As —As)z e /d+ Es(z) . (64)

Ez= —2v 2 Wz[(1 —P~ ) ~ sing

+ (1 —Pz )'~'cosg] . (65)

As a simple check we may substitute this in Eq.
(64) for the case when As=A„. Then substituting
the equilibrium values of P~„and P~, from Eqs.
(18) and (19) we obtain the equilibrium energy
corresponding to Eqs. (21) and (22).

We may recall, however, that the charge z on
the oxygen is given by [Eq. (56)]

z=p~ +p~ (66)

Then Es(z) is the value of Eq. (65) which minimizes
it subject to the condition, Eq. (66). Taking the
derivative of Eq. (64) with respect to z confirms
the fact that Ws(Z*), from Eq. (63), plays the
role of the W~ in the simple theory and that in
fact the equil. ibrium value of Z* is given by Eq.
(66).

We will need the Madelung constant A~ which
could be calculated for any structure using Ewald
methods. ~ Pf more direct use here is an ap-
proximate calculation which will serve for all
Sip~ structures. A~ has been defined such that
the electrostatic potential at an oxygen atom due
to all of its neighbors minus the potential at a
silicon atom, due to all of its neighbors, is
2As(- ze)/d. Here —ze is the charge on the oxy-
gens (+ 2ze is the charge on the silicons) and d is
the silicon-oxygen distance. Kittelv has described
a way of estimating such potentials by summing
over groups of atoms which have net neutrality,
noting that such estimates converge rapidly and
meaningful estimates can be made for small
groups. The groups we choose are shown in Figs.
15(a) and 15(b). The electrostatic potential can
be written down immediately by inspection,
(4 —vt s )ze/d- (- 4+ 1/cos9)ze/d, corresponding
to a Madelung constant of

A„=3. 1 —1/(2 cos 0) (67)

The energy E~ actually depends on the coeffi-
cients in the wave functions for both the states
B„and 8, , but for fixed z we will use the forms
of B„and 8, which minimize F~ and therefore can
discuss Ez as a function of z only. We see from
Eqs. (18)-(22) that the contributions from (B„lHl B„)
and (B,IHI B,) a.re —V2(1 —Pz~)'~z Wzsine and
—v 2 (1 —Pz~,)'~z Wz cos6, respectively. Adding the
contributions from both spins, the energy for the
bonding unit, consisting of the oxygen and the two
silicon hybrids from its neighbors, is

,
Px

FIG. 15. (a) Neutral group used to obtain the elec-
trostatic potential at an oxygen. atom, shown as a large
circle. The group also includes two silicon atoms, at
twice the oxygen charge, 2z, and the six oxygen neigh-
bors completing the silicon tetrahedra; each of these is
counted as of charge 2z. For silicon the group (b) is
used, including four oxygen neighbors and each of those
oxygens' other neighbors, each counted as f z (c)
Three distortions of the bonding unit which are discussed
in the text.

or 2. 6 for S10s (qua, rtz). Some measure of the
accuracy can be given by, for example, extending
the group for the silicon potential by completing
the four outer silicons in Fig. 15(b) and adding the
three neighboring oxygens to each, with each added
oxygen counted as charge &z. If these three are
concentrated at their center of gravity, the cor-
rection to A~ for SiO~ is+0. 24.

We have obtained values of 8'z and the equilibrium
83 from fitting the spectra. If we esti mate W3

from the atomic term values, as we did in the
tetrahedral solids, we obtain a value 8'3o= 2. 93
eV, for Sig~ in comparison to the experimental
Ws =4. 35 eV and our estimated AsZ*es/d of 24 eV.
As in the tetrahedral solids the large electro-
static terms very nearly cancel ea,ch other, but
in this case the Madelung term appears slightly
larger. This is surprising, though not incon-
ceivable. The estimates are somewhat uncertain
in any ease and we choose here for simplicity to
take A.o equal to 4~ in the equilibrium structure
(and thus W,' equal to the equilibrium W,). This
does not affect our results in an important way
and provides us with definite values for all parame-
ters in the problem as well as a procedure for ex-
tending the calculation to all systems.

We are now prepared to address specific prop-
erties. The first, and perhaps most important,
class of properties we will consider concerns the
variation of the bond angle at oxygen. We will
address both the energetics involved in changing
the bond angle and effective charge questions.
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FIG. 16. Total energy in Si02 (in electron volts per
bonding unit consisting of a single oxygen atom and the
two silicon hybrids with which it bonds) shown above as
a contour plot as a function of bond angle at the oxygen
and the effective charge z on the oxygen. The dashed
line Z* gives the effective charge in the ground state as
a function of angle as in Fig. 14. (Cf. with curve in
Fig. 10.) 60 is the equilibrium angle. The behavior at
small angles and high charge is qualitatively different;
analytic continuation from the other region yields P~
greater than one, which is unphysical. The region above
the corresponding phase boundary has not been explored
carefully though it may be essential to an understanding
of the transition to any high-temperature phase of Si02
in which 8 is zero. The lower curve is a plot of the
minimum energy as a function of 8. The dashed line is
obtained by adding the R" 2 interaction between silicons
discussed in the text.

A. Variation of the bond angle at the oxygen

The covalent contribution to the energy, given in
Eq. (65), is minimized when the bond angle at the
oxygen is 90' (i. e. , 8 =45'). It has long been
understood that such contributions are the origin
of the asymmetric position of the oxygen atoms
between the silicon atoms. We thought initially
that the observed ang1. e near 144, rather than
90, came from the electrostatic term, the A.~

term in Eq. (64); this term tends to keep the
silicon atoms apart, opening up the silicon angle.
We will see, however, that that term is much too
small.

We may make this quantitative using the total
energy given in Eq. (64). We have taken Ao equal
to A.~ at the equilibrium angle so that at fixed
Si-0 distance the second term in Eq. (64) becomes
simply + z e (1/cos9 —1/cos8, )/2d, where 9, is
the equilibrium angle, [see Eq. (67)] and W3O is
the value of W3 given in Table II. E~ is evaluated
from Eq. (65) by minimizing it as we have de-
scribed. A contour plot of the resulting energy
is shown in Fig. 16, analogous to the correspond-
ing plot for the tetrahedral solids in Fig. 14.

We see immediately that the minimum occurs
near 40 (8=0.7 rad), in poor agreement with the
experimental 18 . Though the electrostatic in-
teraction has been included it has only opened up
the oxygen angle a few degrees. We may look
back at what has been omitted in the calculation.
The change in W2, and W2, [Eq. (20)] due to the
sin 8 or cos~8 in the denominator is a tiny effect.
The contributions from the first terms in Eqs.
(21) and (22) are proportional to sin 8 and cos 9

and, when added, are independent of angle. The
matrix element between the two silicon hybrids,
which we have neglected, can be estimated from
the atomic matrix elements and separation de-
pendence~~ to be about 1 eV; it enters by effectively
decreasing the 8', entering the B„by & eV and
increasing the R~ entering B, by the same amount.
Its effect on the total energy is very small.

However, the direct repulsion between the
silicon atoms due to the overlap of the electron
densities may be appreciable. This is the con-
tribution which dominates inert gas interactions
where no bonding occurs; it is also the zero-
order interaction between silicon atoms to which
we have found the bonding corrections. We note
that in SiOz the Si-Si distance is 3.06 A, only 30%
larger than the separation in pure silicon. We

0
note also that the spacing in solid argon is 3.76 A;
it is determined by the overlap interaction between
atoms which we might expect to be more compact
than silicon due to the additional nuclear charge.
A study of this overlap interaction in open-shell
systems is in progress and will be reported else-
where. Here we simply introduce an R '2 re-
pulsion of the usual form73 and see that it could
account for the observed properties. We write the
overlap interaction between a pair of silicon atoms
separated by R in the form V,(R, /R)", where R,
is the separation 3.06 A observed in Si02. Uo is
adjusted such that this term, added to the E„,
of Fig. 16, gives the observed equilibrium angle;
the value obtained is Uo=1. 68 eV. Thus only a
relative weak interaction is required to bring the
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gZ* z 1 ~ W3= tt (t —tt t — —COttt)
g(9 lx lx W Qg

1 8W3
p p (1 —p2 ) — —tan8

W Bg3
(66)

8 W, —Z*e sing
Bg 24cos g

or —1.57 eV for Si02 and —2. 28 eV for QeOz.
All other values are given in Table II leading to
sZ*/98 of —1.33 for SiOz and —1.26 for Ge02.
These are large changes; physically their origin
may be understood as the tendency of the silicon
atoms to become more neutral (by drawing elec-

calculated angle into agreement with experiment.
We may next look at the angular rigidity, asso-

ciated with the second derivative of the total. en-
ergy with respect to angle, which may be derived
from the lower curve of Fig. 16. It is remarkable
that though d E„,/d8~ is large at the minimum
(at 8=0. 7 it equals 30 eV), it becomes smaller
and finally negative at smaller 9 (taking the value
—4. 5 eV at the observed angle, 9=0.31). The
reason for this is essentially that given by Kleinman
and Spitzer" in explaining a small or negative
angul. ar force constant for this distortion in quartz;
the bond energy is a minimum at g =45' and a
maximum at g = 0 and the inflection may be ex-
pected near the observed angle. However, the
overlap interaction we have introduced above,
which gives the correct equilibrium angle, has a
second derivative with respect to angle of 12 U'p

(13 tan29+ 1) =46 eV at the observed angle. The
experimental situation is not so clear. Kleinman
and Spitzer" could fit their data as well with
values between —21 and + 6 eV. There is of course
considerable uncertainty in our estimate due to the
assumed form of the overlap interaction. It seems
unlikely that this will be cleared up without a com-
plete study of the overlap interaction. We might
mention one other omission from our calculation,
the correlation energy. However, an estimate of
this effect, in analogy with the treatment of the
corresponding term in the tetrahedral solids~'
suggests that the angular-dependent part (the in-
terbond term) is small though it does favor small 8.

These additional terms in the total energy do not
affect the value of Z* at given (9 and so we may
proceed with a treatment of effective charges with
more confidence. In particular, the values of
1.02 for oxygen in SiO2 and 1.05 in QeO2 can be
regarded as meaningful. Similarly the change
in effective charge with angle can be calculated.
We could read the value of SZ*/99 from the slope
of the dashed curve in Fig. 16 or can obtain it by
differentiation of Eq. (66). The latter leads to

trons to them) when they are brought closer
together.

B. Arbitrary lattice distortions

We have considered the variation in energy as
the bond angle at the oxygen is modified. The
energy will of course also change when the bond
length between adjacent silicon and oxygen atoms
changes and, as in the tetrahedral solids, ~~'~4 this
contains contributions to the energy other than the
bonding terms we have considered. Kleinman
and Spitzer have fit the vibration spectrum using
a radial force constant for this interaction cor-
responding to a change in energy of the bond of
—,Co(6d/d)2. Fitting this to the highest frequency
vibrational mode led to a value of Cp=70 eV,
comparable to the corresponding values in the
simple tetrahedral solids (e. g. , 70 eV for dia-
mond and 55 eV for silicon obtained from the bulk
modulus). This arises from the kind of overlap
interaction mentioned above but not treated ex-
plicitly. They also introduced a force constant
giving a change in energy due to a change in angle
between two bonds measured at the silicon,
—C, (6$)2, to be summed over all such angles.
They could fit the vibrational spectra reasonably
well. with a C, in the range 3.9-6.3 eV. A full
calculation of the energy in terms of our model
would lead to a more complicated set of force con-
stants than that assumed by Spitzer and Kleinman;
however, we could treat the change in energy due
to a particular distortion as Harrison and Phillips
treated the shear constant in the simple tetra-
hedral solids. This would require the addition
of another scaling parameter A. of order 1. This
does not seem fruitful until a full consideration of
a range of materials is made.

We can, however, treat the effective charges
which arise under various distortions of the
bonding unit. We will define effective charges by
taking our origin of coordinates at the midpoint
between the two silicon atoms, computing the elec-
tric dipole induced under a given distortion, and
defining the effective charge to be the fixed charge on
the oxygen which would produce the same dipole
under the same distortion. This is a natural
generalization of the definition of effective charges
in the simple tetrahedral solids, and has the ad-
vantage that it does not depend upon how charges
are associated with the silicon atoms or silicon
hybrids.

There are three atom positions required to
specify the distortion of the unit. This corre-
sponds to nine degrees of freedom, but the three
uniform translations are not of interest. Three
are pure rotations and therefore correspond to
effective charges equal to the equilibrium charges
Z* which we have discussed previously. Two
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BZ+ u—cos8, (69)
Bg d

from which we immediately extract the effective
charge e„*= 5p, /(- eu). We could have inserted a.

factor y of order unity in the second term of Eq.
(69) in analogy with the corresponding factor in
tetrahedral sol.ids. This y would be the factor
required to make the relations (41)-(43) proper
equalities. It could be adjusted to take into account
asymmetries in the charge distributions. %e
chosen instead y= 1 so that unambiguous effective
charges ean be obtained and then compared directly
with experiment. The change in Z~ with 8 (at con-
stant d) was given in Sec. IXA. The change in
d (at constant 8) comes through the change in W2

and the change in W, . Differentiating Eq. (66)
gives

sd =(PP,(I —PP„)+ PP, (I —PP,)l

8"3 Bd Wa Bd
(70)

8'3 depends upon d through the Madelung term and
ls given by

(Note that the change in Z* did not contribute to
the change in TV, since A~ was taken equal to Ao;
note also that A,e /d was taken independent of d. )
8'z is taken to vary as d ~ as in the tetrahedral
solids so (d/W2)aW2/ed= —2. Substituting num-
bers from Table II into Eq. (70) gives (d/Z*)8Z*/
Bd equal to —1.95 for both SiOz and GeOz. The
effective charge

BZQ BZQe* = Z~+ d sin g+ sing cosg
Bg

takes the values given in Table IV.
Similarly if each silicon is displaced by u away

from their center of gravity, the change in

correspond to displacements of the oxygen in the
z direction or in the x dir ection while the silicons
remain fixed, and one corresponds to moving the
two silicons apart while the oxygen remains fixed,
Displacement of the oxygen in the y direction is a
pure rotation so we call the rotational charge e,*.
It equals Z*.

%e consider next the displacement of the oxygen
in the x direction. We write the magnitude of the
displacement n and write the change in dipole due
to the displacement of the atom and due to the coI-
responding changes in Z*. This change in dipole
is given by

BZ
5p = —eZ~7z- edsing usingx'

TABLE IV. Oxygen effective charges (in unit, s of elec-
iron charges).

Si02 KS Model (Si02)

1,02 l.05 l.50

For this deformation it is convenient to write the
ratio of the change in dipole moment to the dipole
moment itself (-Z*edsin8) in terms of the frac-
tional change in the silicon-silicon distance R:

BP„d BZ+ g 1 BZ+
cos g-— cosg sing;

BR Z+ Bd Z+ Bg

(73)
values for this dimensionless constant are given
in Table IV.

Finally we turn to the charge e*,. The evalua-
tion is straightforward but a little more compli-
cated. There is no change in 8"~, by symmetry
and as in simple tetrahedral solids, but we ex-
pect W~ to vary as d ' when the Si-0 distances are
changed. The simplest way to compute the charge
is to consider a distortion in which one Si-Q bond
length is shortened by 5d and the other is length-
ened by 6d with no change in angle. If we then add
a rigid rotation around the oxygen (by an angle
5d tan8/d) and a rigid displacement (by 5d/cos8),
we are led to the displacement corresponding to
the cha, rge e,* shownin Fig. 15 (with magnitude of
displacement 5d/cos8).

The first step gives the charge transfer due to
distortion. The increase in W2 in the right-hand
Si-0 bond is —2W, 5d/d; Wa decreases on the
left. %e treat these changes in matrix element
as a perturbation and construct the perturbed
states I B„)and I B,) The matrix .element, for
example, between I B,) and the antibonding state
I A„) is directly obtained using the form of the
states from Eqs. (17) and (40). We obtain

(A„i Hi B,) = (1 —I8, )'i'(I —p, )'i'(p„iHiu)

—(I+ II,„)'"(I+P~.)'"(&
I HI&.) (74)

with (j&, I HI c) = &2sin8 2 W2 5d/d and (5 I HI P,)
= v2cos8 2W25d/d. This gives (A„I HI B,) = —16
& 5d/d eV. Similarly, the matrix element between

I B,) and I A,) vanishes for this distortion. The
matrix element (A, I HI B„)turns out to be less than

dipole is

BZ* BZ Q
gQ = —edsj, ng u cosg — —SHlg . V2

Bg d
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a volt and so the distortion of the B„state is
negligible. The energy difference between I 8,)
alld I A„) 1s

8 = (W + 2W2}'~2sin 8+ (W3~+ 2Wz)'~2cos'8

or 18.4 eV. Thus the perturbed state may be
written immediately, I 8,)- I A„) (A„ I HI 8,)/8„.
This may be squared and the term in the probabili-
ty density for the right-hand silicon hybrid, linear
in displacement, is seen to be

—(1 —P, )'"(1+P,„)'"(A,
i Bi 8.)/28„(V5)

or 0. 48 8d/d. The corresponding charge has been
transferred a distance 2d cos9; me sum over both
spins to obtain a dipole 1.83 end. To relate this
to the effective charge we return to the deforma-
tion shown in Fig. 15 for e,*. The displacement
5z gives a ~d= Dz cos(9. The induced dipole given
above, which arises from the distortion alone, is
1.83e~z cosg contributing 1.74 electrons to e*, .
This is to be added to the Z~ obtained from direct
displacement. The result is given in Table W,
along with the corresponding result for Ge03,. in
that case, the deformation of the state I 8„)con-
tributed 20% as much as that of I 8,) and was in-
cluded. These effective charges enter a number
of properties. Unfortunately the treatment of
each property is complicated considerably by
the complexity of the SiO~ structure. We consider
two properties for which sufficient theoretical
work has been done to allow a reasonably direct
compar ls On.

C. Piezoelectricity

For the microscopic theory of piezoelectricity
in any system one must first learn how the atoms
move relative to each other under elastic strain
and must then compute the charge redistribution
under that distortion. The first attempt at such a
theory for quartz was made by Gibbs74 in 1926 with-
out any real knowledge of either of these aspects.
He assumed that the silicon atoms moved as points
in an elastic continuum (though there could in fact
be i.nternal displacements between the three sili-
con atoms in the primitive cell), that the Si-0
bond distances remained fixed (though we have seen
t at t e radial force constant C is not all that
much larger than the angular constants C,) and that
the angle which the plane of the bonding unit makes
with the e axis does not change (presumably be-
cause that was a simple choice). He then assumed
fixed charges —eZ~ of each oxygen (and of course
2gZ* on each silicon). The value of Z* could then
be fixed in terms of one of the measured piezo-
electric constants; he obtained a value of Z~ = 0. 5
using the piezoelectric constant e». This was
recalculated by Machlup and Christopher~~ who

obtained a value 0.34 from a presumably equiva-
lent calculation. Had they used the other indepen-
dent constant, e« they would have obtained Z*= Q.05.

Clearly the model is grossly inaccurate. We
have not attempted a more realistic treatment of
the deformation but we may use the effective
charges obtained in the last section to rectify the
error in the use of a rigid charge, at least in the
context of the same model for the deformation.
%'e will find that this does not improve the results
and thus suggests that it is the model of the de-
formation which is at fault.

In the model used by Gibbs and by Machlup and
Clll'Istopllel' (we llave followed tile wol'k of tile
latter) there is no change in bond length so that
the charges e~ and e*, do not provide the simplest
description. It is most useful to proceed directly
with Z* and BZ*/88.

We may compute the effect of the corresponding
charge transfer by considering each bonding
unit. We write the vector distance between the
two silicon atoms H. For a strain &, = &„„, the
change in R is given by e1R„/R, changing 8 by
—&,R„/2dR sin8. This gives a change in the x
component of the dipole due to this effect of
(- e,RE/2R)8Z*/88, which may be summed over
each bonding unit to obtain the contribution to
e» and to e~4, all of the necessary parameters
have been given by Machlup and Christopher.

We note first that since Machlup and Christopher
found a value of Z* of 0. 34 fit the experimental
e», our use of 1.02, before making the transfer
corrections, leads to an e» a factor of three
too large. We find that the transfer corrections
increase this another 50%, worsening the dis-
crepancy. Similarly the transfer corrections in-
crease the error in e, 4 from a factor of 20 to a
factor of 30. As we indicated earlier, the error
seems to be in the deformations themselves. In
that regard, it is of interest to note that though
the transfer acts to reduce the dipole change, in
the above calculation it increases the piezoelectric
constant. The reason is that the contribution to the
dielectric polarization (for both types of strain)
arising from angular deformation of the Si-0-Si
units is of opposite sign (and about half as big)
as that due to rotation of the bonding units. Be-
cause of this cancellation the arbitrary assumption
of fixed angle between the plane of the bonding unit
and the c axis looks particularly suspect.

D. Infrared absorption intensities

The coupling between light and the lattice vibra-
tions aris es dir ectly from the dipole moments
induced by the vibrational distortion of the lat-
tice. Given the form of the normal modes it is
possible to calculate the coupling directly from
the effective charges given in Table IV. This is
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a very major undertaking even given the form of
the modes and we will instead make a comparison
using a model of the coupling introduced by Klein-
man and Spitzer" (KS). They introduced a direct
charge —eZ+ (- 2e4' 1n their notation) on the oay-
gen, and of course 2eZ* on the silicon. They also
recognized that there will be transfer charges
(which they called valent charges} which they
represented by a one-parameter diadic of the
form eqg, p p . Here the sum is over unit vec-
tors p from each oxygen atom to its nearest-
neighbor silicon atoms. The contribution to the
silicon charge is of opposite sign and summed
over the four oxygen neighbors.

It is interesting that this model is not general
enough to represent our calculated charges; it
does not include the counterpart of SZ*/Sg. We
may write the effective charges we have discussed
in terms of the model of Kleinman and Spitzer,

e„*= Z* —2Q sinag, e~ = Z*,
e*, =Z*-2Qcos 9,

Comparison with the values we have predicted in
Table IV makes it immediately clear that no
reasonable fit can be made; e,* cannot in the model
be made to be intermediate between e„* and e*, .

They nevertheless were able to fit the observed
infrared absorption intensities, We may see how
this was accomplished by substituting their values,
Z*=1.5 and @=2, in Eq. (76} to obtain the values
listed in the last column of Table IV. First we
note that in the deformations cor'responding to
the three effective charges, the oxygen moves with
respect to the silicons which is characteristic of
optical modes; the bottom entry on the other hand
corresponds to a relative motion of the silicons
with the oxygen stationary with respect to their
center of gravity which is characteristic of the
acoustical modes and not relevant to the infrared
properties. Furthermore the intensities depend
upon the square of the effective charges and are
therefore independent of the sign. We then see that
Kleinman and Spitzer obtained the right ordering
of the magnitudes by selecting parameters such
that e,* was negative; there is no other way within
the context of the model. It seems clear that our
signs must be correct and the values from the
model quite artificial. We may nevertheless use
their model to test the prediction of the intensi-
ties based upon our charges.

About the best fit of our values using their
model is with Z* = 1 and Q= 2. This gives (com-
pared with our values) 0.62 (0. 45), 1 (1.02), and
—2. 62 (2. 74) for the three charges. But these
values of Z~ and Q are just 3 the ones they obtained
as a best fit. Thus our values would lead to ex-
actly the same relative intensities which they fit,
but would give absolute intensities too small by a
factor of ~4. An absolute error in these intensities
from a microscopic theory may not be surprising,
and we find the agreement on the relative intensi-
ties most gratifying. Adjustment of the parame-
ter y could presumably improve the accord with

experiment.

X. CONCLUSIONS

In this paper we have constructed a model in
terms of which the electronic structure and a
variety of properties of silica and germania may
be studied in a comprehensive way. Some of the
basic aspects of the model are definitely not new.
For example, several authorse "have in the past
employed sp3 hybrids on the silicons to describe
the bonds in SiO3. We have carried those simple,
rather qualitative ideas farther and have been able
to describe quantitatively not only energy levels
and spectra but al.so the dielectric constants,
elastic constants, and effective charges. All this

a d ne 'th a ' of co p te calcula-
tions. 76 Instead the analysis was carried out
analytically so in the end we were able to express
most quantities as simple analytical functions of
structural parameters (such as the Si-0-Si angle
and Si-0 distance) and two fundamental parame-
ters, W2 and 8;. This permitted a study of the
various properties in the different allotropic
forms of SiO3.

Neverthel. ess, this paper, lengthy as it is, is
a beginning more than an end. Decisions had to
be made in the process of developing the model and
in some cases there was not adequate information
to permit unambiguous choices. As more ex-
periments are carried out and, perhaps, more
numerical calculations, someof thechoiceswehave
made may have to be modified. In any case, the
model is simple enough to prove useful in analyz-
ing future experiments. It is consistent internally
and also with the exper"imental and theoretical data
available thus far. Its success in predicting the
properties of QeO~ quantitatively and in describing
more complicated solids than SiO~ and QeOz
[Paper II (Ref. 17)j is additional evidence that it
is substantially correct.
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