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Nonlinear relaxation near the critical point: Molecular-field and scaling theory
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We examine the critical-point singularity of the nonlinear relaxation of purely dissipative systems. Applying
the molecular-field approximation to the time-dependent Ginzburg-Landau model, it is shown that the critical
exponent of the nonlinear relaxation time {5'"")can be different from that of the linear one {6'~) even in

ergodic systems. From the assumptions that scaling applies and that only the near-equilibrium fluctuations

significantly affect the relaxation time, a scaling law 6("'}= 5('}—P is derived (P is the critical exponent of the
order). On the base of this scaling law we reanalyze the available Monte Carlo calculations, high-temperature

series, and the critical-slowing-down experiment on Ni, Mn.

I. INTROlj}UCTION

The renormalization- group formalism has proved
to be very useful in calculating not only the static'
but also the dynamic critical properties. By this
method the critical-point singularity of the linear
dynamic response has been found for several mod-
els.'-' The linear-response theory, however, de-
scribes the reaction of the system to an infinitesi-
mal external disturbance, while in experiments'
and computer simulations' ' it is often much easier
to realize nonlinear-response situations, i.e. , it
is much easier to investigate the response of the
system to finite changes in the thermodynamic
variables. A natural question is whether the criti-
cal-point singularity of the two responses is the
same.

Since in nonergodic systems the initial condition
plays an important role, the linear and nonlinear
responses are expected to have different singulari-
ties. In fact, the one-dimensional X-F model, '
which is nonergodic and exhibits a critical field at
zero temperature, can be solved exactly; the di-
vergence of the nonlinear relaxation time of the or-
der T'"" is shown" to be different from that of the
linear one (r" '}.

Ergodic systems, on the other hand, reach their
equilibrium independently of the initial conditions.
The assumption that the initial and intermediate
stages of the relaxation do not affect the divergence
of the relaxation time, since the critical fluctua, —

tions appear only very close to equilibrium, 'o led
to the belief that in ergodic systems 7'"" and 7"}

diverge with the same critical exponent. This view
seemed to be supported by Monte Carlo calcula-
tions' and by high-temperature series expansion'
on the two-dimensional one-spin-flip kinetic Ising
model "

Recently, it has been shown in a short communi-
cation" that the singularity of 7'"" and w"' can be
different even in ergodic systems. In the present

paper we discuss the problem in more detail and
give a careful analysis of the assumption tha, t the
initial and intermediate stages of the relaxation do
not critically affect the relaxation time. This leads
to the conclusion that the singularity of T'"" should
be weaker than that of r"'.

In order to illustrate the point, first the time-
dependent Landau- Glnzburg equation " ls tl eated
in the molecular-field approximation. In Sec. II
we examine both the ca.ses of conserved and non-
conserved order parameter. Section III contains
the calculation of the relaxation time for the case
when the thermodynamic force restoring the equi-
librium is assumed to be the derivative of the
scaled fr'ee energy. In Sec. GI we also explore the
implications of the scaling assumption as applied
to nonlinear relaxation, and a scaling law connect-
ing the critical exponents of v'" and v'"" is de-
rived. Finally, in Sec. IV the above mentioned
Monte Carlo calculations" and high-temperature-
expanszon serves' are analyzed sn the light of the
new scaling law, and a new interpretation is given
to the critical-slowing-down experiment' in Ni, Mn.

II. MOLECULAR-FIELD THEORY

The simplest and best understood systems ex-
hibiting critical slowing down are the kinetic Ising
models""'" and their continuum analogs, the
time-dependent Ginzburg- Landau (TDGL} mod-
els.'" " The static properties of these systems
are known and they have no complications other
than the diverging relaxation time near the cr'itical
point.

The calculation of their nonlinear response in-
volves, in an essential way, not only the small
eigenvalues of the I iouville operator of the system
but also the large ones, which makes the problem
difficult. Thus, as a first step towa. rd an under-
standing of the difference between linear and non-
linear relaxation, we shall examine the TDGL
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F((t(, T) = d x ('r2(t-(x(, t) +-,' u(t('(x, t)

+ —,
'

[(7(t (x, t)]2}, (2)

with r =1 —T,/T. T, is the critical temperature in
the molecular-field approximation and u is a posi-
tive constant.

If the order parameter is not a conserved quanti-
ty then I' in Eq. (1) is just a constant I', setting the
time scale, while if it is conserved then I"= —X,V'

in order to ensure that f dx (t((x, t) does not depend
on time. Thus after Fourier transformation, (1)
takes the form

d(t'2 t) =- r, (( ~ q*((,(((

~ Q (', (t(p(tl((t(), , ,
Qy02

(3)

where

(j((x, t) = g e '2'*(t(,(t) (4)

and I', =X,q' or I' = I'„depending on whether P, is
or is not conserved.

Usually a Langevin noise term and an infinitesi-
mal field conjugate to the order parameter are
added to the right-hand side of (3), the former to
imitate the equilibrium fluctuations, the latter to
calculate the linear response to the field. We can
omit both terms since in the molecular-field ap-
proximation the Langevin noise term would disap-
pear and we want to investigate the nonlinear re-
laxation, so for our purposes it is more convenient
to determine the relaxation time of the order pa-
rameter in the following way. For -~&t &0 a field
is switched on so that an initial state is prepared
in which

«42(0)& = 5&4 ,(0)&« a d 5(4...(0)& = o, (5)

where

6&(t,(0)&
= &4,(0)&

—&(t,(")& (6)

the brackets ( ) being the equilibrium average in
the initial ensemble with the field switched on. At

models in a molecular-field approximation.
TDGL theory describes the time evolution of the

order parameter (j((x, t) toward the minimum-free-
energy configuration by an equation of purely dissi-
pative form

Sq(x, t) 5F((j, T)
st 5y(x, t) '

where F((j(, T) is the standard Landau expression for
the free energy of a system with a real, one-com-
ponent order parameter

6&(t,(t)& =
&(t,(t)& . (8)

The systems described by TDGL models are
purely dissipative systems, so having the solution
of (1) for &(f(,(t)& satisfying the initial condition (5),
the relaxation time of the order parameter can be
defined as

"&(t(,(t)&

2 &(t',(0)&
(9)

For small initial deviation from equilibrium, r,
goes over to the definition of the relaxation time in
linear regime

~(»= »m k
&$~(o))-4

"
&(t(,(t) (t(,(0)&„ (10)

while for finite &(t(„(0)&, (9) is the definition of the
nonlinear relaxation time

&(n l) —&k 0 &i((&(O)&, f in jte '

In the molecular-field approximation the higher-
order correlation functions are decoupled so,
averaging Eq. (3) over the initial ensemble, one
finds that the equation of motion for ((t( (t)) is Eq.
(3), only (t(, (t) has to be substituted by &(t( (t)). With
the initial conditions (5), &(,22(t)& =0 and &(C(2(t)&

=
&(t( 2(t)& for all t, so the equation for &(t(2(t)& reduces

to

dt ((j(„(t)&= —I'2[(r + k') &(t(,(t)&+ 3u&(t~, (t)&'], (12)

where the factor 3 in front of u is replaced by 1 in
case the uniform mode k =0 is considered.

The solution of this equation satisfying the initial
condition m, = [3u/(r+ k')]' ~'&(t(2(0)& is easily found:

&Y'2( ) [(1+ 2) 2t 2] 2/2((( (t'))
(13)

(0,(0)&

where t = I,(r+k')t. '

For the case k=0 and I', = I', =1, the solution (13)
has been discussed in connection with the molecu-
lar-field approximation to both the kinetic Ising
model" and the TDGL model. " In these works,
however, the linear relaxation time and the life-
time of the metastable states were the main con-

t =0 the field is switched off, and since the TDGL
models are ergodic by construction

&0,(")&= ((t,&„,
where the brackets ( )„denote the equilibrium
average in the system without the field. Through-
out this paper we shall consider only the high-tem-
perature phase where &(t(2&„=0for every k; thus,
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3"=r
( +»*&~( +"a* (&'( &] '

where

(t&(x) = (1/x) are sin[x/(1+ x ')' i'] .

(14)

(15)

The linea, r relaxation time (10) is determined by
putting (g»(0))=0 in (14). Since (t&(0) =1, we have

cern. Regarding the nonlinear relaxation time,
the authors satisfied themselves with the observa-
tion that for large t (13) shows the same exponen-
tial decay as the linear relaxation (mn-0). This
observation led to the erroneous conclusion" that
the state with uniform order parameter is an as-
ymptotic eigenstate of the Liouville operator of the
system, thus T

The weakness of the above argument lies in over-
looking the fact that 7'"" is determined by an inte-
gral (9}, (11). The system starting with a finite
deviation from equilibrium arrives at equilibrium
via near-equilibrium ("linear" ) states which decay
with the linear relaxation time; however, since the
linear regime is confined near the critical point to
smaller and smaller deviations from equilibrium,
the linear part of the relaxation has such small
weight in the integral determining 7'"" that the
singularity of 7'""becomes weaker than that of
T . This phenomenon can be illustrated by calcu-
lating r"' and r'"" explicitly. Substituting (13)
into (9), one finds

while in the case of conserved order parameter
(I', = &(,k'),

g(l) 4 and z( l) 3 (22)

Since it is easily measured, special attention is
usually paid to the uniform mode (k =0) of the non-
conserved order parameter. The critical expo-
nents of its relaxation time are defined by the re-
lations

T(l) -r and T'(" )-r(l ) (nl )

0 0

and their value can be read from (16) and (18),
putting k =0 in these formulas:

(23)

4("=1 and ~(nr)
2 ~

Since the molecular-field theory is valid for sys-
tems with infinite-range forces, the conclusion to
be drawn from the above calculation is that the
singularity of the linear and nonlinear response
can be different even in ergodic systems.

We conclude this section with the remark that
from the functional form of r», [Eqs. (14) and (15)]
one can see that, if the initial deviation is finite
but small enough (x«1} then, on approaching the
critical point, a relaxation time diverging with the
linear exponent is observed first. However, close
enough to T, (x)) I) there is a crossover to the
nonlinear exponent. The crossover region (x -1}is
scaled by the critical exponent of the order P=-,':

7'"=1/I' (x+k ) (16)
(p, (0))/r' ' - const . (25)

the nonlinear relaxation time is different from T"'.
r(n(& —A/I' (&+ k2)1/2 (18)

where A = »/[2(3u)' 2(((&»(0})].
In the molecular-field approximation the correla-

tion length scales as ( —r ' -', so both 7',"' and 7,'""
have the form required by dynamic sealing, ' '"

and

r" ' = k "(&n,(k~-)

r(n» —k n(n(& fl-
(19)

(20)

but the dynamic critical exponents z"' and z'"" are
not equal. They of course depend on whether g0 is
or is not conserved.

In the case when the order parameter is not con-
served (I'»= I;= const),

(l ) —2 and (nl ) —
y (21)

If ((t&»(0)) is kept finite when approa, ching T, (r-0),
then the argument of (t} becomes large for small k,
and since

lim (t (x) = —,'&((1/x),

III. SCALING THEORY

In systems with short-range interactions the mo-
lecular-field theory breaks down near the critical
point. As a more realistic treatment of these sys-
tems, we adopt the following approach": only the
uniform mode ((j&= ((t&,)) is considered and the equa-
tion of motion is assumed to be that of the TDLG
theory (1), but the Landau free energy (2) is re-
placed by the scaled free energy"

+(0 x) =2""'f(4/r'), (26)

where now r = 1 —T, /T, with T, being the real
critical temperature and y and P are the critical
exponents of the susceptibility and the order, re-
spectively. Also, I' is assumed to be the renor-
malized kinetic coefficient with temperature depen-
dence I'= I;r'.

The above approach is certainly phenomenologi-
cal but its justification can be found in the Kadan-
off-type cell analysis extended to time dependent
phenomena. '4

The calculation of the relaxation time is parallel
to that of the previous section. Introducing scaled
variables
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(27)

and

m(t') = ((t')/r~, (28)

the equation of motion can be written

~m ~f
&t ~m

' (29)

Having the solution m(t ) of (29) satisfying the ini-
tial condition m, = g(0)/r8, the relaxation time (9)
is expressed in scaled form

1
lim P,(m, ) -—,

mp
' (40)

The assumption that the solutions (38) and (39) can
be extended to the boundary between the linear and
nonlinear regime (m -1) implies tha, t B -1 and t,
=t, . The matching condition m&(t, ) =m&(t, ) -1 gives
t, . From (38) it is easily seen that for m, » 1,
t, -1

Now the integral (31) can be calculated using (38)
for t &1 and (39) for t & 1. Elementary integration
gives

r, -=7 = (I/I;r"") Q, [g(0)/x ], (30) which implies for the nonlinear relaxation time

with T(nr)-r y-g+B (41)

(31)

In order to find T"' and 7'"", the small- and large-
argument asymptotes of P, are needed. The prob-
lem is that f(m} is not known in general, so the so-
lution of (29) is not available. What is known are
the asymptotes oP' 8f/sm:

Bf
lim - m (32)
m-p ~m

lim -m'+" ~ ~9

m- ~&m
(33)

m(t') =m, e ';
thus,

P,(m, -0) =1,
which determines the linear relaxation time

(34}

(35)

so the solution of (29) can be obtained if m(t ) »1
or m(f ) «1. We shall assume that these solutions
can be extended to the region where m(t ) -1 and

they match there continuously.
If mp && 1 then the matching condition is not need-

ed since m(t }«1 for all f, so we are in the linear
regime (32) and the solution of (29) is a simple ex-
ponential [the proportionality constants in (32) and

(33) are set to 1 since they are irrelevant]:

i.e. , the critical exponent of r'"" is different from
that of r"'. Comparing (36) and (41), one finds

g(nf ) —~(l ) p (42)

Now we give a more general argument support-
ing this scaling law. It is based on two assump-
tions:

(i) The relaxation time r has the scaled form (30) .
Sca,ling does not give any rela. tionship between 6"'
and 6'"", since it does not specify the large-x be-
havior of P, (x). If, for large x, Q,(x)-x-', then
4'""= 6"'—aP. The value a = 1 is favored by ob-
serving that there is an explicit x ' dependence in
the definition of r [Eq. (9}]. This will be the large-
x behavior of P,(x) if the second assumption is
valid.

(ii) The initial and intermediate stages of relax-
ation do not critically affect the relaxation time.
Then, since ergodic systems are being considered,
starting far enough from equilibrium the system
forgets its initial condition when it arrives at the
nea, r-equilibrium states, so (g(t)) does not depend
on ($(0)). Thus the critical contribution to the in-
tegral determining r will depend on ($(0)) only
through the denominator, implying that Q, -x '.
Of course, the validity of the above assumption re-
mains to be checked by microscopic calculations
and experiments.

so

+(l ) -y- II (36)
IV. SEARCH FOR DIFFERENCE BETWEEN 6 AND g "'

g(l ) —y+ o. (37}

If the m, »1, then the solution of (29) for t &t,
when m(t ) » 1 is given by

(38)m (f') =m /[1+(y/P)m" f )

while for t & f, when m(t ) « I the solution is again
an exponential,

Since there is no microscopic calculation at hand,
the ideas developed in the previous sections and
the scaling relation (42) can be compared only with
high-temperature series, Monte Carlo (MC) cal-
culations, and with the only available experiment
on Ni, Mn.

A. MC calculations and high-temperature series

m (t ) =Be " '2'. (39)
Because of computer storage and time problems,

the MC calculations a,re mainly confined to two-
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dimensional systems. Since, in the two-dimen-
sional Ising model, P is a small number (P = 0.125)
equal to the accuracy of the individual determina-
tion of 4,"' and 6'"", the difference between them,
(42), is easily overlooked, especially if one be-
lieves that they must be equal.

The first attempt to calculate the relaxation time
of the two-dimensional one-spin-flip kinetic Ising
model is due to Ogita et al. ' Their MC result
7'""—r ' "has been interpreted as d'""= 4"'=y.
In fact, this estimate comes from the temperature
region 0.2&r&1, where the effective exponent of
the susceptibility (y-r "«f varies between 1 and
1.5, indicating that ~'""&y. Latex, it was re-
alized' that the coxrections to scaling are much
smaller if the relaxation time is considered as a
function of the natux'al high-temperature variable
v =tanh(2Z/kT). Plotting Ogita's result as a func-
tion of p one finds 4'""= 2.1, which is close to the
high-temperature- series estimate"- ' of the linear
relaxation time exponent 6")=2.0.

Stoll et al.' extended the MC calculations to the
temperature region 0.02 &r &0.2. Theix result
4'""=1.85+0.1 would be in good agreement with
the scaling law (42) and, combining it with the pre-
vious result 4'""=2.l from the tempexature range
0.2&r&1, it would even demonstrate the ideas
discussed at the end of Sec. II about the crossover
from 4") to 4'"" as T, is approached. The prob-
lem, however, is that they have found the same
singularity for the linear relaxation time 4")
= 1.85 + 0.1.

High-temperature series' for 7'"" do not help
to sort out this problem. Only six terms have been
calculated and, applying the ratio method to the
series

r(l ) g)l )

p(n l ) a(nl )

relaxation' (Fig. 1). The MC calculation shows
that far from the critical temperature 7"'-7'"",
but around r =—0.2 the effective exponent of ~'""
becomes smaller than that of 7'". Unfortunately,
the two points where the deviation is observed
have large error bars, so it is impossible to draw
any numerical conclusion with respect to 6'"".

A crossover can be also observed in the energy
relaxation. We have not discussed this question,
but it is clear from the previous sections that the
nonlinearity of the relaxation affects the critical
exponent of the energy relaxation (n.~), too. For
example, in the molecular-field approximation
a"' =1, while 6z'"" =0 (logarithmic singularity). "
In case of the one-spin-flip kinetic Ising model
high-temperature- series estimates, "MC calcula-
tions' and renormalization-group arguments' sug-
gest that 4~ ' =2.0. At the same time, the result
of Ogita et al.' on the nonlinear relaxation of the
energy (Fig. 2) shows that nz'"" = 2 only far from
T„while around r =0.2 there is a crossover to
AE(""=0.3. Probably the value 0.3 does not have to
be taken seriously, but it is evident that h~™)+~~ '.

8. Dynamics of Nli3Mn

To our knowledge the only experiment concerned
with nonlinear critical slowing down is that of
Collins and Teh' on the order-disorder transforma-
tion of Ni, Mn. The ordering in Ni, Mn is a first-or-
der phase transition, "but the discontinuity of the
order parameter is so small that it is undetectable
by neutron-scattering experiment, and approaching

ilg (1)

50

where a~"' and a~"" are the expansion coefficients
for v"' and v'"", one finds the following estimates
for the difference between 4"' and 4'"".

6")—6'""=——0.25, 0, 0, 0.21, 0.11, -0.04.

(44)

Since the oscillation is of order P, the question
whether 6") and 6'""are equal or not remains un-
answered.

Clearly, a more precise MC calculation is need-
ed which would cover the whole temperature xegion
0.02&r&1 for both y "and v'"" and also the high-
temperature series has to be extended to higher-
order terms.

The qualitative picture of crossovex from 6'""
=&'" to 4'""&4"' is apparent in the dynamics of
the kinetic Ising model with vacancy mechanism of

IO-

5 IO

I 0.5 0.24
50 IOO

O.II4 0.074

FIG. 1. Dynamical response in the kinetic Ising model
with vacancy mechanism of relaxation. The linear (& '

)

and nonlinear (7' "'&) relaxation time of the order is
plotted vs the fluctuation of the order ( (n )/(n )z „).
The normal temperature scale is also indicated. In the
region ~&0.2 the effective exponent of 7'("') becomes
smaller than that of 7'('~.
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0.05 O. l
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FIG. 2. Helaxation time of the energy of the one-spin-
flip kinetic Ising model in nonlinear regime. v =tanh(2J/
kT) is the natural high-temperature variable. The effec-
tive exponent changes from 2.1 to 0.3 on approaching T, ,

=1.25. One explanation" of the 4= 1 result is that
Ni, Mn, being a metallic alloy, has long-range
forces; thus the mean-field theory applies which
predicts 4=1 for the linear relaxation time.

It ean be questioned, however, whether v' " or
7'""was measured in this experiment. If the
change of temperature ~T is kept constant when

approaching T, then at one point the initial devia-
tion of the order dm(0) beco.ues comps, rable with
the equilibrium value I = ~r ~s, so we arrive to the
nonlinear regime dm(0)/ ~r ts) l. If this happens,
then a change of the critical exponent should be ob-
served. It ean be observed, if one notices that the
log-log plot of r, vs ~r

~

is a straight line only for
the special value of the activation energy E,=3.0
eV. The activation energy of the vacancy migra-
tion in Ni, Mn, however, is not a known quantity.
Allowing other values 3.0&E,&3.6 eV (see Fig. 3
for E,=3.4 eV), the straight line breaks into two.
The slope of the line in the temperature region
0.001 & ~r

~

&0.01 is —1.0, and it is independent of
E,. The other part (0.01 &

~
r

~

& 0.08), which is
also a straight line, has a, slope varying from -1.0
to -1.5 as E, is changed from 3.0 to 3.6 eV. The
location of the changeover is independent of E, a,nd,
within a factor of 2, it coincides with the location

T, one observes critical fluctuations.
The relaxation time of the order has been mea-

sured below T, by neutron-scattering techniques.
Making a steplike change in tempers. ture (d.T = 7'
typically), the crystal was put into a nonequilibrium
state and then the time of relaxation to the new
equilibrium state was measured by observing the
change in the intensity of the scattering. The re-
sulting time v'was analyzed as a product of Ising
time rl (ordering time) and diffusion time To (unit
of time for the ordering process):

)O
I

7 T17 g ~ (45)

The diffusion time was assumed to be an exponen-
tial

e-E / kT
I)

and the activation energy E,= 3.0 +0.2 eV was
chosen so that the ordering time had a simple
power-law behavior,

(46)

(47)
5x lo

In this way, 4=1.04+0.09 wa.s found.
This result is surprising at first sight, since the

binary alloys a.re supposed to be good examples of
Ising systems. The vacancy mechanism of relaxa-
tion might change 4 as compared to the one-spin-
flip model, but because of the purely dissipative
character of the system one still expects' 4~y

FIG. 3. Helaxation time of the order in Ni3Mn. The

activation energy of the vacancy migration &, is set ar-
bitrarily at 3.4 eV. The slope -1.0 in the region 0.001
&

~
r

~

& 0.01 is independent of E„hntthe slope of the

tail changes from -1.0 to -1.5 as E, is changed from
3.0 to 3.6 eV.
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of the point where the 5m(0)/ir ~~= I condition is
satisfied (P is allowed to vary between 0.3 and 0.5).
This strongly suggests that 4=1.0 is the critical
exponent of the nonlinear relaxation, and to find
6") one should determine F, from an independent
experiment. If E,=3.4 eV, then the scaling law

—I3 would be satlsf led with P 0.3 near
the Ising value.

V. FfNAL REMARKS

The examples described in Sec. IV demonstrate
quite mell that 4'""04"', but they are not suffi-
cient to verify the scaling prediction 4'""= 6'"
—P. Although a final verification of this scaling
law remains the task of a microscopic theory, we
summarize what could be done by other means.

(a) In the MC calculations, n"' and A'"" have to
be determined with accuracy much better than 13.

With improving computer techniques this does not
seem to be impossible.

(b) The high-temperature series for r'"" has to
be calculated further until the oscillation in 4")
—6'""becomes much less than P.

(c) The activation energy of the vacancy migra-
tion in Ni, Mn has to be determined independently
of the critical-slowing-down experiment. It would
be also worthwhile to investigate the initial-condi-
tion dependence of the relaxation time in the non-
linear region. In the original Ni, Mn experiment,
only two points were investigated in the linear re-
gion and, of course, the relaxation time was insen-
sitive to small variations of the initial condition.

Finally, we mention that although the arguments

of the present paper apply only to purely relaxa-
tional systems, a similar changeover from linear
to nonlinear behavior is expected in systems with
oscillating modes. We refer here to the very sim-
ple Alben model" which is exactly described by
the Landau theory and the equation of motion, for
the order parameter is that of an anharmonic os-
cillator,

d p
dl

.o ——J'|I) —'W$ ~

If the initial deviation from equilibrium is infini-
tesimal, the characteristic time of the system is
the period of the linear oscillator which diverges
as we approach T, (r-0):

(t),-~ -z i2

On the other hand, if the initial deviation is finite,
the period of the motion goes to a finite value at

C

lim w'"" = const .

The difference between the exponents is again —.'

as for the TDGL model in mean-field approxima-
tion.
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