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Bound exciton recombination, and yhonon reylicas
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The recombination of a shallow exciton bound to the ionized donor is considered nothin the Hartree-Pock and
the effective-mass approximations. The valence and conduction bands are assumed to be simple, i.e.,
nondegenerate except for spin. The exchange splitting and the longitudinal optical phonon replicas of the
exciton recombination line are obtained from first principles.

I. INTRODUCTION

Excitons in semiconductors can form complexes
bound at the crystal imperfections. ' The crystal
lattice vibrations influence the electronic optical
spectra. Interaction with optical phonons gives
replicas of the exciton recombination lines below
the zero-phonon line. '

In this paper we consider the recombination of
the exciton bound to an ionized donor in an ionic
crystal. We take into account only the interaction
between the exciton and longitudinal-optical (LO)
phonons. Assuming the effective-mass approxima-
tion we describe the exciton by an envelope func-
tion.

First, starting from the many-electron model.
we derive an equation for the exciton envelope
function. We assume the Hartree-Fock individ-
ual-electron approximation and we neglect the
spin-orbit interaction. Moreover, we make the
following simplifying assumptions: (i) The valence
and conduction bands are nondegenerate, there-
fore there is spin degeneracy only, and the form
of the spin Bloch functions is 1II«„(r) = 111-„(r)y,(s).
(ii) The maximum of the valence band and the min-
inurn of the conduction band are at the I point in
the Brillouin zone, (iii) The forbidden energy gap
F. =F., —E„ is large and the valence band is com-
pletely filled at low temperature.

It is not essential to assume the above form of
the spin Bloch functions but it leads to a simple
form for the expressions for the matrix elements
to be calculated. For other types of the spin
Bloch functions these expressions would be more
complicated.

II. ENVELOPE FOR EXCITON BOUND TO IONIZED DONOR
AND EXCHANGE SPLITTING

The Hamiltonian for valence electrons in a
crystal with an ionized donor (at the origin of the
coordinate system) is

p2 e2 e2
+ f/(r1) —

I I

+g
I2m r;, r; —r,

where U(r) and —e«/I rl are the potentials of the

atomic cores and the ionized donor, respectively,
p«/2m is the electron kinetic energy, and e /Ir, —r/I
is the Coulomb interaction energy of the electrons
i,, j. The number of unit cells in the crystal is
N, so that the indices i,, j label 2N valence elec-
trons. Here we have assumed the static model
of the crystal, where the ions are located at their
equilibrium positions.

We describe the ground state of the valence
electrons by the antisymmetrized product of the
valence spin Bloch functions

1I1 «", ', (r) [r—= (r, s) and

o, s=+ ]

~, =[(»)I]"PC&,', „,(. )

where P is the antisymmetrization operator. We
assume +o to be the eigenfunction of 3C, in the
zeroth-order approximation (unperturbed by the
1mpurlty po'tell'tlal).

The exciton, i. e. , an excitation of one electron
from the valence to the conduction band, can be
described by the function

p /i(k„o„.k„,o„)C(k„o,;k„,o„), (3)
&e «~h ~ e «ffh

where

4(k„o,;k„,o„)=[(2X)!]-"'P q1«, ', ~,(r,)q',",', «, (r, )

' ' ' 0 «111&1/«(r2// 1) 0 «v 1/?(r&N)~--
and the index c refers to the conduction band. We
assume the direct excitation of an electron, so
that the factors /i(k„o„; k„,o„) are nonvanishing
for small k„k„only, and the summation over
k„k„ in Eq. (3) is around the r point in the Bril-
louin zone.

+, is assumed to satisfy the equation

(v, —z)+, = o.

Now we introduce the exciton envelope function
I' with the Fourier transform
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x exp(-ik, r, +ik„~ r„), (6)

where the functions f and g satisfy the equations

(H —E,)f (r„r„)= 0

and

( 4'(k„o, ; k&, o&) ~V, —E 4'&) = O,

where ( I ) stands for

g J(a, .

(7)

where 0 is the volume of the crystal.
In order to derive the equation for F we use the

effective-mass approximation, i. e. , we assume
the electron energy to be E„—8 k /2moa' in the

valence band and E, + hok /2ma' in the conduction
band and we consider the following matrix element:

[H + 2 W&o5 (r, —r„) —Eo ]g(r„r„) = 0. (14)

As in the unbound exciton problem the first
three solutions of Eq. (8), F'", F' ), and F'" are
the exciton envelope functions for the triplet
states with eigenvalue E = E„while F'" represents
the singlet state with eigenvalue E =E2.

Because of the smallness of the exchange en-
ergy term W we can approximate the function g
by the known function f (considered, for example,
in Refs. 8-10). Replacing g by f in Eq. (14) we
obtain

As a consequence we get the equation
Eo=E, +2WQo(f~5(r, —r)

~ f), (15)

H'"~ —E5~~ Fa re~ r„) =0) (8)

where for simplicity we use the single index a (P)

to characterize the relative spin orientations:
=1, 2, 3, 4for (o„o„)=(2 2) ( 2 2) (2 2),
(——,', —,'), respectively.

The nonvanishing elements H'"~ are

H qq' ——H22 ——H,

where ( 1 ) stands for ffdr, dr„, and (f ~ f) = (g ) g)
= 1 because of the normalization (4, ~ @,) = i.

The formula for the exchange splitting E, —E,
in Eq. (15) is entirely analogous to the correspond-
ing result for an unbound exciton. For an unbound
exciton the shift of the singlet state is also equal
to 2W times the square of the envelope function
taken at r, = r„.'"

III. ELECTRIC DIPOLE TRANSITION PROBABILITY

Ho))' = H43 — WQo5(r, —r„),

with

h' e'
H=Ep+E

2m,* ' 2m„*" ~ lrl
e2 e2

+ - — - -, (io)
&pl r„l apl r, —r„l '

where E (o4' lÃo, 14'o) is the ground-state energy
of the valence electrons. The exchange energy
term is

2e
dr, drou o *(r))uo (ro)

QpAp

x )( o'" (r, )u,'"'(r, ).

Here for wave vectors k around the I point we
approximated the Bloch functions g~ by their
periodic parts ur (normalized to unity in the vol-
ume of unit cell Qo= &/N) with k=0 (cf. lecture
notes of Elliott ). In the formula for H we have
introduced a factor ep which had been suggested
by Roth and Haken' to be the static dielectric con-
stant for the shallow exciton.

There are four solutions of Eq. (8):

F '" =f5, , F' =f5o, , F ' =f ,V 2 (6o~+54, ), —

I et Q denote a set of nuclear normal coordinates.
In the Born-oppenheimer approximation the vi-
brational states of the crystal Xo„(Q) and X,„(Q)
are, respectively, associated with the electronic
states 4)o(Q) and 4), (Q) which depend on electronic
and nuclear coordinates. However, we will ne-
glect the dependence of )lao(Q) and 4', (Q) on Q and
we will use, respectively, the functions +p and +y
defined by Eqs. (2) and (3). 4'o and 4, are as-
sumed to be the eigenfunctions of the electronic
Hamiltonian V', so that we will treat them as the
functions unperturbed by the interaction V', „, [see
Eq. (26) ].

We will need to calculate the transition electric
dipole moment matrix element, Mo, (Q), between
the initial and final electronic states )1', (Q) and

+p(Q). However, we will use the Condon approx-
imation' in which this matrix element is independent
of nuclear coordinates and we will calculate M»,
between the states +, and ~p.

In this paper we are interested in the radiative
emission transition 1-0, which corresponds to
the transition from the excited (4', ) to the ground
(4'o) electronic state.

If the Condon approximation is made, the total
emission probability per unit time is'2

and

F' =g —,'v2(5, —5, ),

(i2)
64m3 4

p„= aa, )M„) f G„( )a)a ), (i6)
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where n'/e „indicates the presence of crystal me-
dium, n being the refractive index, while e„ is
the high-f requency dielectric constant. The func-
tion characterizing the spectrum is

2

G„(v}= av„Q ~(q)X„(q}dq
[

&&5(Eo, —Eo —hv),

where F~ and Eo ~re the eigenenergies of the
vibrational states X,„and Xo [see Eq. (28)] and

p is the frequency of the emitted photon. The
average av„ is understood to be an average over
the initial vibrational states weighting each with
the customary Boltzmann factor exp(-E, „/kT}
The eigenfunctions Xo and X~ belong to two dif-
ferent Hamiltonians [defined by Eq. (27)] and are
not orthogonal with respect to each other.

IV. ELECI'RIC DIPOLE MOMENT

The electric dipole moment matrix element
depends on envelope function

Moi =
& ~o I eg r;

I
~i &

sgno drF „,r, r

&& u,'"'*(r)e r u,"'(r),

where sgno =o/I o I. We see that only one solution
of Eq. (8), F'", gives rise to a nonvanishing
electric dipole matrix element (18). Thus (as in
the case of unbound exciton') only the singlet
state +,' ' corresponding to the envelope function
F'~ is the state of the bound exciton which can
recombine radiatively.

If we approximate the function g by the function

f, the matrix element (18}, between 4,'e and 4'o

can be written

Mo, '= —~20 dr r, r)u'"' r er u„' r .

trons with only one branch of LO phonons:

~e + ~vib + ~+i nt s

where

&,ib = —g [p(q»'(q) + ~1q(q) q*(q)1vib

and ~„, is the sum of one-electron terms V'i

U(r', ) (i= 1, . . . , 2N}, where 'U(r) is the Froh-
lich interaction

&(~)=Q y~q(q) e"',

with

H, x,.(q) = E,.x,.(q). (28}

We evaluate the eigenvalues E,(q) in first-order
perturbation theory, i. e. , we use in Eq. (26) the

eigenfunctions of F„+,(a=0. 1), where for
a= 1 we take the singlet state 4,' which can re-
combine radiatively. For the interaction in (23}
we find eigenvalues of Eqs. (26) of the form

Here q(q) is the normal coordinate of the longitu-
dinal mode with the wave vector q, ~, is the LO-
phonon frequency assumed to be constant, i. e. ,
independent of q, and the dimensionless Frohlich
coupling constant e is

n = (e'/8) (e ' —e, ') (m/28(d, )"'.
In the Born-Oppenheimer approximation the

equations

(X, +X,„,)+.(q) =E,(q)+.(q) for a=0, 1 (26)

define the eigenvalues E,(q) which are the addi-
tional potentials in the Hamiltonians

0, = W„,b+ E,(q)

determining the vibrational wave functions

Taking into account the slow variation of f with
its arguments in Eq. (19) we get

dr r, r) dr, u,'"'* r))er, u()" r,).
(20)

We have estimated the electric quadrupole
moment matrix element. If the energy of the
emitted photon is 5 eV and the lattice constant is
5 A, the electric quadrupole moment is of the
order of 1% of ~Mo'+,

Eo(q) = Eo+QAgq(q),

E,(q) = E,+pa,-q(q).

We will need only the difference D~ = 8; —A~

Dg=p +o dr dip, F, 1 rl)
0 0 g re&

&& [iu, '(r. ) i'e""' -i u,"(r„)i'e"'o]. (80)

V. EXCITON-PHONON COUPLING AND CALCULATION
OF Q 01(v)

The total Hamiltonian for our problem is the
sum of the electronic and vibrational Hamiltonians
plus a term representing the interaction of elec-

Now we calculate the function Goy(u) by the meth-
od used by Gummel and Lax. '3'" We write the
function Go~(u) with the Fourier transform

Goy(P) = 8
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of

(f) tr(e ii-Hp/B ei tH1/ B e BH 1)/tr(e BH1) (32)

S LO-phonon branches

Gp", '(v) = k ' e (I/n! )(SC)"6(vp —v —nv, ). (37)

where p= I/kT. If we express the Hamiltonians

0, for a = 0, 1 in real, normal vibrational coordi-
nates, ' the trace (32) can be evaluated by use of

the density matrix for the harmonic oscillator. ' '"
For low temperatures, i. e. , for kT«p~„ the

result for Gp, (v) can be expressed in the form

Gpi(v) =Q Gpt (v),
n=0

(33)

where Gp, '(v) describing the n-phonon process is

Gp",'(v) = k ' e e(l/n! }C"5(vp —v —nv, ). (34}

The summation over n in Eq. (33} extends up to
n, = E[vp/v, ], where E[x] stands for the integer
just below x, vp = (EB —Ep)/k, v, = &p, /2tt and the
distribution factor C is

C = (2kpp', )
' Q D;

~

'. (35)

Because the exciton envelope F is a slowly vary-
ing function of its arguments, we see from Eq.
(30) that D; is essentially nonvanishing only for
small q. For small q we can write

DQ pQ dr, dr„r„r„)
&& (etp're —ei p'r) (36)

If the number of LO-phonon branches is S and
if we assume the same frequency constant ~, for
each LO-phonon branch, the result appears in the
same form as for one LO-phonon branch [Eq. (33)].
The difference is only in the distribution factor
C which has to be replaced by C = SC. Thus for

VI. CONCLUSION

Starting from the Hartree-Fock and the effec-
tive-mass approximations we derive the equation
for the envelope of the shallow exciton bound to
an ionized donor. The exchange splitting and the
electric dipole matrix element are expressed in
terms of the envelope. The interaction of the ex-
citon with LO phonons is considered and the dis-
tribution of the LO-phonon replicas of the bound
exciton recombination line is calculated.

For the shallow exciton the envelope function
varies slowly in configuration space. For this
envelope the Fourier components with small wave
vectors are essential and the exciton interaction
with the LO phonons is well described by the
Frohlich coupling which favors small phonos
wave vectors q. In D;, Eq. (30), the factor y;,
Eq. (24), is inversely proportional to !ql and the
integral also has the largest value for small q.
Thus D& is essentially nonvanishing for small q
only. Therefore in the distribution factor C, Eq.
(35), only small phonon wave vectors are essen-
tial and the dependence of this factor on the exciton
envelope becomes independent of the Bloch func-
tions, which results in considerable simplification
[see Eq. (36) ].
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